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Abstract. With a cloud parcel model we investigate how
cloud processing and cloud evaporation modify the size dis-
tribution and the Angstr̈om exponent of an aerosol popula-
tion. Our study provides a new explanation for the observed
variability of the aerosol optical thickness and Angström ex-
ponent in the vicinity of clouds. Cloud processing causes a
decrease of aerosol particle concentrations, relatively most
efficiently in the coarse mode, and reduces the relative dis-
persion of the aerosol distribution. As a result the Angström
exponent of the aerosol increases. The Angström exponent is
very sensitive for changes in relative humidity during cloud
evaporation, especially between 90% and 100%. In addition,
kinetic limitations delay evaporation of relatively large cloud
drops, especially in clean and mildly polluted environments
where the coarse mode fraction is relatively large. This ham-
pers a direct relation between the aerosol optical thickness,
the Angstr̈om exponent and the ambient relative humidity,
which may severely complicate interpretation of these pa-
rameters in terms of aerosol properties, such as the fine mode
fraction.

1 Introduction

Anthropogenic emissions of primary aerosol particles and
aerosol precursors (sulfur dioxide, non-methane higher
hydrocarbons, nitrogen oxides, soot) have increased at-
mospheric aerosol concentrations substantially since pre-
industrial times (e.g., Charlson et al., 1992; Solomon et al.,
2007). Aerosols act as cloud condensation nuclei, and the
increasing aerosol abundance and changing chemical com-
position affect climate through the so-called aerosol indirect
effects. In the first indirect effect, an increase of aerosol
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particles leads to a higher cloud droplet number concentra-
tion, a smaller average drop radius and a larger optical thick-
ness (Twomey, 1974). In the second indirect effect, the ef-
ficiency of precipitation formation decreases because of the
smaller drop size, and the cloud lifetime increases (Albrecht,
1989).

To estimate the magnitude of the radiative forcing due to
aerosol indirect effects, global models that simulate activa-
tion of aerosol to cloud droplets can be applied (Lohmann et
al., 2007; Penner et al., 2006). Due to the complexity of the
interactions between aerosol and clouds, involving large vari-
abilities in size, chemical composition and hygroscopicity
of particles, current model estimates of the aerosol indirect
forcing display a large range, between approximately−0.5
and−1.5 W m−2 (Forster et al., 2007). Analysis of aerosol
properties retrieved from satellite measurements may help to
decrease current uncertainties in aerosol burden and global
distribution (e.g., Kaufman et al., 2002). Retrieved aerosol
optical thickness gives an indication of the aerosol column
burden. The Angström exponent can be used to estimate the
fine fraction of the aerosol which is often associated with the
anthropogenic contribution (Kaufman et al., 2005; Anderson
et al., 2005; Schuster et al., 2006). The Angström exponent
reflects the spectral dependence of the extinction by parti-
cles, and can be calculated from the optical thicknesses at
two different wavelengths. Typical observed values of the
Angstr̈om exponent are∼0.15 for desert dust and 1.77 for
aerosol from urban and industrial pollution and from biomass
burning (Pace et al., 2006).

Through combination with observed cloud properties (ef-
fective cloud drop radius; fractional cloud cover) the na-
ture and magnitude of the aerosol indirect effects can be ex-
amined (Nakajima et al., 2001; Bréon et al., 2002; Myhre
et al., 2007; Quaas et al., 2008). Remarkably, the radia-
tive forcing associated with the first indirect effect estimated
from remote sensing measurements appears to be relatively
small,∼0.2 W m−2 (Quaas et al., 2008), compared to model

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


72 G.-J. Roelofs and V. Kamphuis: Cloud processing, cloud evaporation and Angström exponent

derived estimates. This is consistent with other studies that
found a weaker relation between aerosol and cloud optical
thicknesses when derived from satellites than from models
(Menon et al., 2008; Lohmann and Lesins, 2002). It is
likely that part of the discrepancy is caused by an under-
estimation in models of the influence of natural aerosol on
clouds, e.g., associated with marine organic aerosol (Roelofs,
2007). Another reason is that the observed optical thickness
in the vicinity of clouds is influenced by blueing of aerosol
by Rayleigh scattering (Wen et al., 2007). A third reason,
connected with the present study, is the difficulty to distin-
guish between cloudy and cloudless air. For full consistency,
aerosol and cloud properties should be retrieved from the
same location. Since this is not possible, cloudy and cloud-
free pixels located relatively close to another are used, under
the assumption that they reflect similar conditions. Charl-
son et al. (2007) find that the albedo associated with cloudy
conditions is not well separated from that in cloud-free en-
vironments but that a so-called “albedo continuum” exists
inbetween that is associated with hydrated aerosol and wispy
clouds. Similarly, cloud halos, regions of enhanced humidity
in the vicinity of isolated cumulus clouds, are associated with
atmospheric dynamics and reflect features of cloud formation
and dissipation (Lu et al., 2003). The “twilight zone” near
clouds (Koren et al., 2007) is thought of as a region of form-
ing and evaporating cloud fragments extending many kilo-
meters from the clouds into the cloud-free zone. The region
is characterized by a decreasing aerosol optical thickness and
an increasing Angström exponent with increasing distance
from clouds, possibly associated with decreasing humidity,
drier conditions and less water uptake by aerosol as the dis-
tance to the nearest cloud increases. Supportive of this, Loeb
and Schuster (2008) calculated Angström exponents for dif-
ferent mixtures of fine and coarse mode aerosol and found a
strong dependence on relative humidity.

Our study investigates the modification of aerosol due to
cloud processes, the evolution of the aerosol size distribu-
tion caused by release of water during cloud evaporation, and
the impact on aerosol optical properties. Section 2 describes
the cloud parcel microphysics and chemistry model and the
model initialization. In Sect. 3 we analyze the evolution of
the aerosol optical thickness and the Angström exponent dur-
ing cloud growth and evaporation, and we discuss how these
parameters are modified by cloud processing and kinetic lim-
itations. Aerosol populations representative of different pol-
lution levels are examined. In Sect. 4 the conclusions and a
discussion of the results are given.

2 Model description and initialization

The cloud parcel model simulates pseudo-adiabatic ascent of
an air parcel, condensation and evaporation of water vapor on
aerosols, droplet activation and condensational growth, colli-
sion and coalescence between droplets, and sulfate formation

in the aqueous phase due to oxidation of dissolved sulfur
dioxide by hydrogen peroxide and by ozone (Roelofs and
Jongen, 2004). The initial dry aerosol size distribution is
represented by 120 size bins between 0.002 and 5µm dry ra-
dius. Each bin is associated with a wet particle radius that
changes upon condensation or evaporation of water. Aerosol
activation, condensation and evaporation are calculated ac-
cording to the K̈ohler equation following Ḧanel (1987). The
Köhler equation was reformulated in terms of the solute con-
centrations to allow for modifications of the Raoult term by
chemical processes (Roelofs, 1992). Collision/coalescence
between cloud and precipitation drops is parameterized ac-
cording to Jacobson (1998) and evaluated stochastically. The
water and chemical contents of drops formed through coales-
cence of smaller droplets are transferred from the cloud drop
size distribution to a separate size distribution with 50 size
bins. The radii that make up this coalescence distribution are
initially logarithmically distributed between 1 and 2000µm,
and during the simulation they are adjusted by condensation
and evaporation. Further, precipitation drops are subject to
removal from the parcel by gravitational settling. The model
considers a time step of 0.05 s for the parcel ascent and the
condensation and evaporation of water, while a larger time
step of 2 s is applied for collision/coalescence and heteroge-
neous chemistry.

Initial aerosol size distributions are derived from three
lognormal modes representing nucleation, accumulation and
coarse mode aerosol, as listed in Table 1. The base case
aerosol is representative for a mildly polluted marine atmo-
sphere. Sea salt is an important component of coarse ma-
rine aerosol, but in our study we assume a similar compo-
sition as the fine mode, i.e., an internal mixture of ammo-
nium bisulfate (80% volume) and unsoluble matter. Since
soluble coarse mode aerosol readily activates this does not
significantly influence simulated cloud characteristics. Other
aerosol size distributions used in our study are adopted from
Whitby (1978). The air parcel is initialized with a tempera-
ture of 288 K and a relative humidity (RH) of 98%. It ascends
with a fixed vertical velocity of 0.2 m/s, and after the liquid
water content reaches 0.4 g/m3 its altitude is held constant.
At 3000 s the parcel starts to descend with a fixed velocity of
0.2 m/s until the simulation stops at 6000 s. Entrainment of
ambient air into the parcel is not considered.

The aerosol optical thickness of activated and intersti-
tial aerosol particles is calculated using an approximation
of the Mie scattering equation (van de Hulst, 1957), for
wavelengths 533 and 855 nm and assuming a single scatter-
ing albedo of 1. Total aerosol/cloud optical thickness for
each wavelength is found by integrating the optical thick-
ness for each aerosol and cloud droplet size bin over the
entire size spectrum, assuming a constant air parcel thick-
ness of 1000 m. Finally, the Angström exponent is calculated
based on wavelengths 533 and 855 nm. We note that the re-
fractive index of pure water, 1.33, is assumed for all parti-
cles. Tang (1997) shows that the refractive index of solution
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Fig. 1. (a) Simulated supersaturation,(b) liquid water content,(c) aerosol/cloud optical thickness (535 nm) and(d) Angstr̈om exponent
for the simulations without cloud processing (black), with collision/coalescence (red), with aqueous phase chemistry (green), and with both
collision/coalescence and aqueous phase chemistry (blue). Note that in (a) the black and green lines as well as the red and blue lines overlap.
I: cloudy phase; II: cloud evaporation LWC>0.05 g/m3; III: cloud evaporation LWC<0.05 g/m3.

droplets varies between 1.34 and 1.38 depending on solute
concentration. The effects of these differences on the simu-
lated optical thickness and Angström exponent are very small
for these wavelengths, on the order of a few percent.

3 Results

3.1 Base case

Figure 1 shows the simulated supersaturation, liquid water
content (LWC), optical thickness (OT) of the aerosol and
cloud particles, and the Angström exponent (α) for four
simulations with base case aerosol (Table 1). One simu-
lation only considers condensation and evaporation of the

aerosol and cloud droplet water, while the others also ac-
count for collision/coalescence (microphysical processing of
the aerosol), or aqueous sulfate formation (chemical process-
ing of the aerosol), or both. The parcel reaches maximum
supersaturation at∼200 s, and obtains a LWC of 0.4 g/m3 at
∼1200 s. During descent, the supersaturation falls below 0
and remains slightly negative (upto several tenths of per-
cent) due to the compensating influence of droplet evapora-
tion. At ∼4000 s the LWC becomes smaller than 0.01 g/m3,
and after that the supersaturation steadily decreases to ap-
proximately 80% RH at 6000 s. Assuming a vertically ho-
mogeneous aerosol or cloud layer with a constant depth of
1000 m, the calculated OT of the air parcel is 70 when the
cloud is fully developed. Each simulation starts withα of
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Table 1. Modal parameters (number concentration N (cm−3), median radiusr (µm), and standard deviationσ ) applied in the simulations.
Parameters are from Whitby (1978) except for the base case. The right column shows the fine mode fraction, i.e., the dry volume fraction of
aerosol particles smaller than 0.5µm radius.

Nucleation mode Accumulation mode Coarse mode Vfine/V

N r σ N r σ N r σ

Base case 1600 0.010 1.7 400 0.040 1.9 10 0.15 2.8 0.08
Marine 340 0.005 1.6 60 0.035 2.0 3 0.30 2.7 0.02
Clean continental 1000 0.008 1.6 800 0.033 2.1 0.72 0.46 2.2 0.24
Average backgr. 6400 0.008 1.7 2300 0.038 2.0 3.2 0.50 2.2 0.18
Aged urban plume 6600 0.007 1.6 9600 0.060 1.8 7.2 0.42 2.1 0.62

Fig. 2. Computed cloud drop size distributions during the evaporational stage of the cloud (grey dots: initial distribution; grey: 3000 s;
red: 3600 s; green: 3900 s; blue: 4200 s; orange: 4600 s; purple: 6000 s) for the simulations(a) without cloud processing,(b) with colli-
sion/coalescence,(c) with aqueous phase chemistry, and(d) with collision/coalescence and aqueous phase chemistry.

∼0.3. During the cloud stageα has values around 0, but
it increases again during cloud evaporation when the LWC
drops below approximately 0.02 g/m3. The increase ofα and
simultaneous decrease of OT continue until RH is∼92% and
the aerosol water is on the order of 10−4 g/m3.

The results of the three other simulations show that cloud
processing of the aerosol has a significant impact on OT and
α. Figures 2 and 3, displaying simulated cloud drop num-
ber and volume distributions, respectively, illustrate the mi-
crophysical evolution during cloud evaporation. At 3000 s,
when evaporation commences, the size distribution in each
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Fig. 3. As Fig. 2 but for the cloud water size distribution.

simulation displays a gap between 0.5 and 5µm that sepa-
rates interstitial aerosol and activated particles. The cloud
droplet concentration maximizes around 8µm radius. When
the cloud evaporates the maximum shifts towards smaller
sizes. At 4200 s the droplet spectrum in the simulation with-
out cloud processing (Figs. 2a, 3a) is approximately the
same as at the beginning of the simulation although a sig-
nificant amount of droplets is still present at sizes above
20µm radius. This peak disappears between 4200 s and
4600 s when the RH is∼95%. In the simulation with col-
lision/coalescence the size distribution for 3000 s displays a
drizzle droplet peak at∼80µm radius that represents∼12%
of the cloud liquid water. Due to fall-out of drizzle the LWC
is smaller between 3000 and 4000 s than in the first simu-
lation. During evaporation a significant number of drizzle
drops persists around 80µm (Figs. 2b, 3b). Drizzle droplets
are formed by collision/coalescence of smaller droplets, and
the 80µm radius is close to the critical radius for acti-
vation of particles with a dry radius of∼1.5µm, equiva-
lent with ∼18 000 coalesced accumulation mode particles.
These droplets finally evaporate further after 4600 s when
RH is below 95%, andα increases again (Fig. 1d). Particle
concentrations for radii exceeding 0.1µm are significantly

smaller than before the cloud event, caused by the gravita-
tional fall-out of drizzle. The contribution to the total OT
from coarse mode aerosol is smaller and that from fine mode
aerosol is larger than before cloud processing began. There-
fore the maximumα is also larger, i.e., 0.5 vs. 0.3, as shown
in Fig. 1.

The chemical processing simulation is initialized with a
concentration of 1 ppbv SO2, 0.5 ppbv H2O2 and 30 ppbv O3.
SO2 dissolves in the cloud water where it is chemically
transformed to sulfate. This adds new aerosol matter to
the droplets, especially in the smallest activated particles
(Roelofs, 1992). Before cloud evaporation the simulated
drop size distribution is similar to that in the base case. The
in-cloud produced matter increases the Raoult (solute) ef-
fect, so that the equilibrium drop size at a given RH is larger
than for unprocessed particles. The distribution for 4200 s
shows that particles with an initial wet size around 0.2µm
have grown to a somewhat larger size,∼0.3µm (Figs. 2c,
3c). The chemical processing thus enhances the contribution
of the fine mode fraction to the total optical thickness and,
consequently, a larger value forα, ∼0.7, is calculated than
before the cloud event.
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Fig. 4. Simulated(a) optical thickness (533 nm) and(b) Angstr̈om exponent (533 and 855 nm) as function of supersaturation during cloud
evaporation with downdraft velocities of 0.05 m/s (black), 0.10 m/s (red), 0.20 m/s (green) and 0.40 m/s (blue). Results obtained under
assumption of full water vapor-liquid equilibrium are given by the solid lines; results considering kinetic limitations are given by the dashed
lines (see text).

When microphysical and chemical processing are both
considered the effects combine. The particle size distribution
at the end of the simulation is steeper than in the base case,
with a larger concentration of smaller and a smaller concen-
tration of larger droplets (Figs. 2d, 3d). The impacts on OT
from each processing pathway more or less cancel each other
during and after cloud evaporation, so that after∼4500 s OT
is similar to the base case. However, the size distribution of
the remaining aerosol and the attached water are highly dif-
ferent, as is expressed in the corresponding value ofα of ∼1
(Fig. 1). In our study we use similar wavelengths as MODIS
over the ocean (e.g., Anderson et al., 2005), whereas PARA-
SOL and AERONET apply 440 nm and 670 nm, respectively,
as the shorter wavelength (seehttp://www-icare.univ-lille1.
fr/parasol/?rubrique=aerolist; Koren et al., 2007). In our
base case simulation considering full cloud processingα has
a value of 0.968 at∼96% RH and of 0.710 at 50%. Using the
wavelengths applied by PARASOL yields 0.975 and 0.647,
respectively, while using wavelengths applied by AERONET
yields 0.969 and 0.766, respectively. This indicates a moder-
ate sensitivity ofα for wavelength at RH∼95% whereas at
drier conditions discrepancies may be larger. For all wave-
length pairs examined here, however, the simulated evolution
of OT andα are qualitatively similar.

3.2 Kinetic limitations

Due to the inverse proportionality of the droplet growth rate
and the droplet size (e.g., Fukuta and Walter, 1970), larger
drops evaporate more slowly than small droplets. For drops
containing relatively large amounts of aerosol matter, i.e., ac-
tivated coarse mode aerosol but also drops formed by coales-
cence, the time scale of droplet growth is up to several orders
of magnitude larger than the equilibrium time scale (Chuang
et al., 1997). Therefore these drops do not maintain equilib-
rium with a rapidly changing supersaturation. Figure 4 shows

the dynamically computed OT andα during cloud evapora-
tion when RH<100%. The four simulations consider base
case aerosol and full cloud processing, but they apply differ-
ent velocities for parcel descent resulting in slightly differ-
ent values ofα at the end of the simulation. Figure 4 also
shows OT andα calculated under the assumption that the
wetted aerosol size distribution is in equilibrium with the am-
bient supersaturation throughout cloud evaporation. Signif-
icant discrepancies between the dynamically calculated and
the equilibrium OT andα occur for downdraft speeds exceed-
ing 10 cm/s. The dynamically calculated OT is larger up to
an order of magnitude whileα is smaller than corresponding
equilibrium values. For downward velocities smaller than
5 cm/s the particles tend to follow their equilibrium size.

3.3 Sensitivity studies

Figure 5 shows the evolution ofα as function of RH dur-
ing cloud evaporation for different experiments, assuming
equilibrium between aerosol water uptake and RH. Figure 5a
shows the results for the base case simulation (consistent
with Fig. 1d), while the other graphs reflect different cloud
processing efficiencies. A larger initial SO2 concentration re-
sults in larger growth of individual particles due to in-cloud
chemistry, andα increases more (Fig. 5b). When only HNO3
is present, which is known to have an influence on aerosol ac-
tivation through the solute effect (Roelofs and Jongen, 2004;
Kulmala et al., 1993), the computedα is almost the same
as in the simulation without cloud processing because the
dissolved HNO3 is released again when droplets evaporate.
Figure 5c shows that a larger LWC during the cloudy stage
results in a larger increase ofα (Fig. 5c). This is due to more
efficient collision/coalescence, aqueous phase chemistry, and
aerosol removal by rain, all associated with the larger cloud
drop sizes.
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Fig. 5. Computed Angstr̈om exponentα (equilibrated with respect to RH) as function of RH during cloud evaporation.(a) Base case, colors
as in Fig. 1d;(b) with initial SO2 of 0 ppbv (black), 0.2 ppbv (red), 0.5 ppbv (green) and 2.0 ppbv (dark blue); with 0 ppbv SO2 and 1 ppbv
HNO3 (light blue);(c) using a cloud LWC of 0.1 (black), 0.2 (red), 0.4 (green) and 0.6 g m−3 (dark blue).

We also carried out simulations initialized with aerosol
representative of clean marine, clean continental, average
background and aged urban plume conditions, as defined in
Table 1. The marine aerosol is assumed to consist of sea salt,
and in the other cases the same chemical composition as in
the base case is assumed. The results are shown in Fig. 6.
Figure 6a presents simulation results with and without con-
sidering cloud processing. It shows that the increase ofα

as a result of cloud processing is most efficient in clean at-
mospheres and least efficient in polluted environments. Fig-
ure 6a also shows, for the simulations without cloud process-
ing, thatα shows a weak maximum at∼95% RH for marine
and clean continental aerosol, as in our base case simulation,
whereas for aerosol representative of more polluted environ-
mentsα increases sharply between 100% and 95% RH and
less sharply for RH below 95%. Our calculations are con-
sistent with Loeb and Schuster (2008; their Fig. 6) who ex-
amined the dependence ofα on RH for different fine mode
volume fractions. The results from the aged urban aerosol
simulation are consistent with the AERONET data presented

by Koren et al. (2007; Figs. 3 and 4) that reflect the relatively
polluted conditions influenced by biomass burning. Their ob-
servations ofα (∼1.2,∼1.5) are in good agreement with the
computedα at 85% RH. We note that the observations in Ko-
ren et al. (2007) do not reflect the transition from cloudy con-
ditions, whereα is around 0, to the twilight zone.

Figure 6b and c show the effects of kinetic limitations on
OT andα for a downdraft velocity of 0.2 m/s, similar as in
Fig. 4, for the simulations considering only condensation and
evaporation. As discussed earlier, kinetic limitations mainly
affect droplets growing on coarse mode aerosol (Figs. 2, 3).
Kinetic limitations appear to be less important for highly pol-
luted conditions where the coarse mode fraction contributes
relatively little to the optical depth, but they may exert a large
influence in clean and moderately polluted environments.
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Fig. 6. (a) Computed Angstr̈om exponentα (equilibrated with respect to RH) as function of RH during cloud evaporation for aerosol
representative of marine (black), clean continental (red), average background (green) and aged urban plume (dark blue) conditions. Dashed
lines: for simulations considering only condensation/evaporation; solid: for simulations considering full cloud processing;(b) Simulated
optical thickness (533 nm) and(c) Angstr̈om exponent (533 and 855 nm) as function of supersaturation during cloud evaporation. Solid
lines: assuming water vapor-liquid equilibrium; dashed lines: considering kinetic limitations.

4 Discussion and conclusions

With a cloud parcel model we investigated how the size
distribution and Angstr̈om exponent (α based on wave-
lengths 533 and 855 nm) of an aerosol population are
modified by cloud processing and cloud evaporation. Two
ways of cloud processing are considered, i.e., chemical pro-
cessing through aqueous phase sulfate formation and micro-
physical processing through collision/coalescence.

Our simulations show that the effect of microphysical and
chemical cloud processing is to sharpen the decrease of par-
ticle concentrations with increasing particle size. Conse-
quently, the contribution of the fine modes to the aerosol OT
increases, and theα increases. The modification appears to
be stronger for aerosol representative of relatively clean (ma-
rine) conditions than for more polluted conditions when the
initial α of the aerosol is already relatively large and drizzle
formation is less efficient. The LWC of the cloud and the at-

mospheric abundances of aerosol precursors that partake in
in-cloud aerosol production, such as SO2, are important pa-
rameters that influence the increase ofα.

Theα is found to be highly sensitive for RH in the range
90%<RH<100% and for LWC<∼0.05 g/kg. The sensitivity
is associated with different strengths of the Raoult (solute)
effect for small and large aerosol particles. This means that
accurate knowledge of the distribution of RH near clouds is
required for accurate determination of the aerosol fine mode
fraction (Charlson et al., 2007). Assuming vapor-liquid equi-
librium for all aerosol sizes, in our base case and marine sim-
ulationsα displays a clear maximum at∼95% RH. In more
polluted environments, however,α increases at least down to
85% RH. Our simulation results suggest that kinetic limita-
tions play a significant role in most clean and polluted en-
vironments except for typical urban pollution when coarse
mode fractions are relatively small.
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Kinetic limitations delay the evaporation of cloud drops
so that they are larger than their equilibrium size at ambient
RH. Activated coarse mode particles and droplets formed by
collision/coalescence, in our base case simulation between
50µm and 100µm radius, are mostly affected. Their size
decreases only very slowly during cloud evaporation, and be-
comes efficient only when the RH falls below 95%. With
kinetic limitations, the maximumα in the base case shifts
towards smaller RH, between 85% and 92%, depending on
the downdraft speed.

This behaviour may directly relate to the “twilight zone”
described by Koren et al. (2007), in the sense that the twi-
light zone consists of former cloud air, either a remnant from
cloud evaporation or from air detrained from cumulus (Lu et
al., 2003), that contains cloud and drizzle droplets that grad-
ually evaporate in adjustment to the ambient negative super-
saturation. The time scale for this as suggested by our model
simulations is between 20 and 30 min depending on down-
draft velocity. This is of the same order as the time scale for
the variations in OT andα found by Koren et al. (2007).

How does this affect the interpretation of retrieved OT and
α? Figure 4 suggests that when the effect of kinetic limita-
tions is significant, the actual OT is larger than its equilibrium
value for the ambient RH. When this is not accounted for, the
interpretation of the retrieved OT may result in an overesti-
mation of total aerosol mass compared to the actual value.
Theα is smaller than its equilibrium value, and this may lead
to an underestimation of the aerosol fine mode fraction. We
note that this is consistent with Lesins and Lohmann (2006)
who found that aerosol fine mode fractions in model simu-
lations are larger than in satellite observations. In aerosol
indirect effect studies aerosol and cloud parameters are di-
rectly compared. However, the retrieved aerosol may already
have been processed in a cloud event so that aerosol opti-
cal thickness and Angström exponent are no longer consis-
tent with the associated retrieved cloud effective radius. We
showed that the associated aerosol optical thickness may de-
crease or increase depending on the nature of the process-
ing, i.e., microphysical or chemical, while the Angström ex-
ponent becomes larger. The combined influences introduce
rather complex uncertainties in the interpretation of aerosol
optical parameters, but their impact appears to be larger for
clean and moderately polluted environments than for highly
polluted air.

Our results are relevant for studies of aerosol retrieval from
satellite observations and from surface remote sensing. An
accurate interpretation of the measured optical thickness and
Angstr̈om exponent in terms of aerosol mass and fine/coarse
mode fractions is direly needed, for example, to constrain
emission inventories and reduce uncertainties in estimates of
the aerosol direct and indirect effects. Our study demon-
strates that aerosol-humidity and aerosol-cloud interactions
complicate the interpretation. Detailed study of aerosol opti-
cal thickness and Angström exponent from satellite retrievals
and comparison with results from global climate models and

from detailed cloud microphysical models are needed to bet-
ter quantify aerosol-water interactions in the atmosphere and
account for them aerosol retrieval from remotely sensed op-
tical parameters.
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