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Abstract

Monte-Carlo (MC) simulation based techniques are often applied for the estimation of uncertainties in hydrological models due to uncertain
parameters. One such technique is the Generalised Likelihood Uncertainty Estimation technique (GLUE). A major disadvantage of MC is the
large number of runs required to establish a reliable estimate of model uncertainties. To reduce the number of runs required, a hybrid genetic
algorithm and artificial neural network, known as GAANN, is applied. In this method, GA is used to identify the area of importance and ANN
is used to obtain an initial estimate of the model performance by mapping the response surface. Parameter sets which give non-behavioural
model runs are discarded before running the hydrological model, effectively reducing the number of actual model runs performed. The
proposed method is applied to the case of a simple two-parameter model where the exact parameters are known as well as to a widely used
catchment model where the parameters are to be estimated. The results of both applications indicated that the proposed method is more
efficient and effective, thereby requiring fewer model simulations than GLUE. The proposed method increased the feasibility of applying
uncertainty analysis to computationally intensive simulation models.

Keywords: parameters, calibration, GLUE, Monte-Carlo simulation, Genetic Algorithms, Artificial Neural Networks, hydrological modelling,

Singapore

Introduction

When applying a hydrological model to simulate runoff from
a particular catchment, modellers must identify a set of
parameters such that the model predicts the behaviour of
the natural system realistically. This has been the subject of
extensive research (Sorooshian and Gupta, 1983, 1995;
Kuczera, 1997) and it is commonly suggested that
hydrological models are often over-parameterised (Beven,
1989; Jakeman and Hornberger, 1993). The response surface
of the objective function to the parameters may also suffer
from multi-modality and discontinuity, thus rendering many
optimisation methods inefficient (Xiong and O’Connor,
2000). Adding to the difficulty of the concept of a single
‘optimal’ parameter set is that this optimum set depends very
much on the events used in calibration (Beven, 1993) and
the length and quality of the data sets used (Sorooshian and
Gupta, 1983). Hence, different events may result in very
different ‘optimal’ parameter sets. Equally, the optimum may
also depend on the objective function chosen in calibration
(Gan et al., 1997).
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Monte-Carlo simulation is a robust method for exploring
the response surface of the objective function (Melching,
1995) and, based on this technique, Beven and Binley (1992)
proposed the Generalised Likelihood Uncertainty Estimation
(GLUE) procedure; this rejects the principle of a single
optimal parameter set. In GLUE, the likelihood that a given
parameter set is a good simulator of the system is a function
ofthe model performance expressed in terms of the objective
function chosen. Lamb ef al. (1998) stated that the definition
of likelihood used in GLUE is not to be confused with the
traditional statistical definition; rather it is an indication of
the relative likelihood that the model is acceptable, given
the available data. Parameter sets not considered behavioural
because a threshold performance is not achieved are
discarded from further analysis. The Bayesian framework
within which the procedure has been developed
(Romanowicz et al., 1996) effectively allows for the
estimation of model uncertainties by constraining prior
information on the parameters in the form of prior
distributions using the data available. The posterior
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parameter distributions which result can be used to make
model predictions where the spread, or uncertainty, due to
the parameter distributions is shown. Once new data become
available, the posterior parameter distributions can be
applied again as prior distributions and updated using the
new information contained in the additional data.

A practical problem with the GLUE procedure is that, for
models with a large number of parameters, the sample size
from the respective parameter distributions must be very
large to achieve a reliable estimate of model uncertainties
(Kuczera and Parent, 1998). The less prior information on
the distribution of parameters and acceptable parameter
ranges, the higher the number of runs must be. Since
hydrological models often have large parameter sets, this
can make the application of the GLUE procedure unfeasible
due to limited computer resources.

Depending on the prior parameter distributions chosen,
the number of redundant model runs may be large. These
redundant model runs are runs carried out only to be
subsequently discarded due to a performance below the
threshold set under the GLUE framework. Considerable
saving in computational effort may be achieved if the
performance of a given parameter set is estimated without
actually running the model. This is especially crucial if the
model runs are computationally intensive. Kuczera (1997)
proposes a method for identifying hyper-ellipsoid parameter
sub-spaces using a probabilistic search method where local
and global optima are first identified using a global search
algorithm and subsequently the shape of the response surface
ofthe objective function is investigated using gradient-based
methods. Although it is shown to reduce the computational
effort significantly, the method was applied to a reasonably
well-posed problem. Montesinos and Beven (1999)
presented the use of a genetic algorithm for identifying
parameter sub-spaces that are subsequently sampled and run
in the GLUE procedure. Werner and Khu (2001) identified
interesting parameter subspaces using a combination of
genetic algorithm, Kriging and GLUE; the computational
effort could be reduced by as much as 80% without
significant loss of information of the interesting sub-spaces.
However, Kriging assumes isotropy of the parameter
response surface, with the additional drawback that
application of Kriging to more than three parameters (such
as 4-D mapping) is not trivial.

In this paper, a combination of genetic algorithms (GA)
and artificial neural networks (ANN) is applied to identify
interesting parameter subspaces for further evaluation using
the GLUE procedure. This approach has the same effect as
the approach taken in Werner and Khu (2001) but without
the assumption on isotropy of the parameter response surface
and is more easily applicable to complex response surfaces

with higher dimensions. GA is an efficient way to identify
parameter sets above a threshold value of model
performance while exploring the response surface of the
objective function in the parameter space. ANN is used to
map the response surface of the objective function and to
estimate the performance of the parameter sets sampled in
the GLUE procedure. The proposed method, adopted here
as the GAANN procedure, is intended to reduce the number
of model evaluations otherwise required in the GLUE
procedure

In this paper, a discussion of the GLUE procedure is
followed by a review of the GA and ANN techniques. The
proposed approach is then presented in detail and tested
using a simple problem where the response to a rainfall event
is determined using a Nash Cascade model (Shaw, 1988)
with known parameters. It is subsequently applied in
parameter estimation for a widely used rainfall runoff model,
SWMM, using observed rainfall and runoff from a
catchment in Singapore.

Estimating uncertainties using GLUE

A critical review of the application of physically based
distributed modelling (Beven, 1989) with multiple
distributed parameters, led to the recognition that, rather
than a single globally optimal parameter set, a large number
of parameter sets could show equivalent behaviour in terms
of the objective function used in calibration. This recognition
is the basic principle of the GLUE procedure, where the
likelihood that any possible parameter set is a good simulator
of the system is expressed in terms of how well the model
performs with that parameter set, given the available data.
Generally, there are five major steps in the GLUE procedure
(Beven and Binley, 1992):

1. Definition of a likelihood measure. This is typically
chosen on the basis of the objective function to
determine model performance, where the objective
function should reflect the use of the model. It is clear
that the choice of objective function has significant
influence on the results of the procedure, as it influences
the likelihoods found for parameter sets and their
distribution. Typical examples of objective function are:

® Root Mean Square error;

m

\/;Z(Qobs,i

RMSE = Qumi )/ )

i=1

e Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970):
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where O, is the observed discharge at time i, O is
the simulated discharge Q is the average of the observed
discharges. m is the total number of time steps in the

calibration period.

2. For each of the parameters, a prior distribution must be
defined. Parameter sets will be sampled randomly from
this prior distribution, and it must reflect the prior
knowledge on this parameter. In most of the reported
applications of the GLUE procedure (Beven and Binley,
1992; Aronica et al., 1998; Uhlenbrook et al., 1999),
little prior information was available as to the
distribution of each parameter, and a non-informative
uniformly distributed prior is selected. The range of the
distribution is normally selected based on reasonable
values from literature and expert knowledge. Choosing
a non-informative prior will have the least effect on the
posterior distributions if there is enough observed data
available, which is normally not the case. The effort
and data required to make a reliable estimate of the
posterior distributions is, however, large when compared
to that where an informative prior is available.

3. A number of parameter sets( N vc ) are sampled using
the Monte-Carlo technique from the prior parameter
distributions. The model is then run using these
parameter sets and the model outcome of each run is
compared to the observed values using the selected
objective function. Based on the value of this objective
function, a likelihood value is assigned to the parameter
set. As is common with the use of non-informative
priors, the distribution of the likelihood function must
be normalised to create a proper posterior distribution
of likelihoods (Romanowicz et al., 1996).

4. All parameter sets performing below a pre-selected
threshold are removed from further analysis. The
rationale is that although all the parameter sets may
calculate a model response successfully, this response
may not be realistic in terms of the behaviour of the
system. All parameter sets below the threshold are
considered non-behavioural and thus removed by
assigning zero likelihood. Clearly, the selection of the
value for this distinction between behavioural and non-
behavioural can have significant impact on posterior
distributions (Melching, 1995). In a general sense, the
calibration procedure where an optimal parameter set
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is sought, can be seen as the selection of a threshold
value such that all parameter sets giving a model
efficiency below the optimal value found have a
likelihood of zero, and the optimal set a likelihood equal
to one (Beven and Binley, 1992). Lees and Wagener
(2000) suggested that the threshold value should be
selected so that it reflects the expectation of the
modeller. It is suggested here to take the argument
further and select the value of the threshold independent
of the model, model structure and parameter. The
selected threshold value should reflect the requirements
set for the model with the framework of its practical
use. This entails the threshold value dividing
behavioural from non-behavioural parameter sets is
imposed directly on the fitness in terms of the objective
function rather than on the scaled likelihood value.

5. The likelihood values of the behavioural parameter sets
are normalised such that the distribution function is
again proper. Subsequent predictive model runs using
the remaining parameter sets are weighted according
to the likelihood value of the parameter used, and from
this ensemble the weighted mean and uncertainty
bounds of model outcome can be derived.

If a high threshold value is selected, the number of
simulation runs retained for analysis is reduced, since all
runs lying in the parameter space outside the threshold value
are discarded from further analysis. This will result in the
method discarding a large number of simulations. Figure
1(a) shows the response surface of the 2-parameter Nash
Cascade model (also known as the gamma model), (Shaw,
1988) as an example of an application of the GLUE
procedure. The dots represent the randomly generated
parameter sets. If the threshold value is set at an efficiency
of R,=08, the simulations represented by small crosses
are the parameter sets retained for further analysis. This
shows the relative inefficiency of the GLUE procedure,
where only a fraction of the parameter sets run with the
model lie within the area of interest, in this case in the order
0f 20%. The example will be discussed in detail further on
in the paper. Similar selections, where large parts of the
parameter space are discarded after model evaluation, have
been reported in a variety of hydrologic models (van der
Perk, 1997; Kuczera, 1997; Campbell ef al., 1999).

Selecting potentially behavioural
parameter sets

The main inefficiency of the GLUE procedure is not the
generating of the random parameter sets, but comes from
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Contour plot of Nash-Sutcliffe efficiency response surface of the 2-parameter Gamma model. Model performance contours are from:

(a) GLUE and (b) mGLUE - GAANN model.

computationally expensive calls to the model. Typically, the
number of evaluations required in GLUE (using standard
Monte-Carlo sampling) requires tens of thousands of model
evaluations. For a simple model requiring moderate
computational resources, say | minute per simulation, it
takes up to 17 days to complete 25000 model simulations,
where only about 20% of these simulations are ‘useful’.

There is a number of possible ways to overcome this
problem and they are:

1. use a more efficient sampling algorithm, such as Latin
hypercube method;

2. replace the computationally intensive model with a
faster surrogate model, such as ANN; or

3. use a hybrid of the above 2 techniques.

The proposed method, GAANN, aims to reduce the
number of function evaluations and, thereby, to increase
the efficiency in the GLUE procedure. Therefore, the authors
propose a hybrid method, where part of the hydrological
model computation is replaced with a fast surrogate model
but the original sampling technique and the GLUE
framework remains unchanged. The proposed method serves
to identify the contour line representing the ‘threshold’
objective function separating behavioural parameter
combinations (sets) from non-behavioural sets in the
objective function response surface. The non-behavioural
parameter sets are essentially discarded from further
analysis. To achieve this, the objective function response
surface is mapped based on a small sample of parameter
sets using an ANN. This small sample of parameter sets
used in the ANN is generated through the application of a
genetic algorithm.

Sampling using Genetic Algorithm
Genetic Algorithm (GA) is an established probabilistic
search method in optimisation problems, where the name
originates from the analogy of the method with evolutionary
theory (Goldberg, 1989). In GA, the value of each parameter
is encoded as a binary string of fixed length. The parameter
set is then coded by joining the binary strings to form a
continuous string called chromosome. The algorithm starts
by spawning a group of chromosomes (known as a
generation) randomly in the parameter space. The fitness of
each of these parameter sets (chromosomes) is evaluated,
and this determines the likelihood of an individual surviving
into the next generation. Subjecting the existing
chromosomes to a process of reproduction (i.e. crossover
and mutation) creates the next generation of chromosomes.
In crossover, two selected chromosomes with high fitness
are intermixed to form two new chromosomes. It is through
this process of intermixing (or commonly known as mating)
that chromosomes with better fitness emerge. In mutation,
arandom change occurs in the binary code of a chromosome.
This random change causes the algorithm to explore new
parameter space. This procedure is carried out until a
specified termination criterion is met following the
procedure outlined in Fig. 2. Readers are referred to
Goldberg (1989) for an extensive overview of GA.

GA gives good results in model parameter optimisation
(Wang, 1991; Liong et al. 1995) but has to be properly set
up to achieve a balance between exploitation and exploration
of'the parameter space (Goldberg, 1989). Exploitation means
that the final solution converges rapidly; exploration means
that the search routine has covered a fair amount of
parameter space without leaving significant unexplored
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Generate initial population and evaluate
each chromosome;
set gen=1 (gen=generation)
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Fig. 2. Flowchart showing the genetic algorithm.

areas. When GA is used as a search routine, the emphasis is
on the speed of convergence to the optimal point(s). For the
purpose of mapping the response surface of an objective
function, the focus should be on locating all regions of
interest, and the exploration of the parameter space around
the regions of interest.

Montesinos and Beven (1999) used GA to search for
interesting subspaces before continuing with the GLUE
procedure. They noted that for a high number of GA
iterations, there is a tendency for GA to cluster around near
optimal points, leading to convergence of the population
and narrow uncertainty bounds. This is due to the application
of GA as an optimisation technique looking for global
optimal parameter sets. The GLUE procedure, however, is
founded on the realisation that such a unique optimum does
not exist, and exploration should be the key if GA is to be
used. The focus on exploitation would cause the GA to
converge to some optimal points, hence a possible
misrepresentation of the uncertainty bounds.
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In this study, GA is applied as a searching technique to
locate the interesting parameter sub-spaces, and niching
(Goldberg, 1989) is used to avoid premature convergence
on local optima, and to find multiple regions of interest.
Niching entails that if the Euclidean distance between two
parameter sets in a generation is found to fall within the
niching radius I, one of the two will be discarded and a
new individual randomly sampled from the parameter space.
Hence, GA will have a higher probability of exploring all
local optima in the parameter space. Using niching, GA is
able to locate multiple areas of local optima while finding
the region of ‘near’ global optima with only a small number
of parameter evaluations. Furthermore, areas in the
parameter space with consistent poor performance are
sampled comparatively lightly.

Using ANN as a surrogate model

Artificial Neural Network (ANN) is a computing paradigm
designed to mimic natural neural networks in the biological



Reduction of Monte-Carlo simulation runs for uncertainty estimation in hydrological modelling

brain (Hetcht-Nielsen, 1989). ANNs are commonly thought
of as universal approximators for function mapping (Hornik
et al., 1989). In the area of hydrology and water resources,
ANN has been used in many applications (ASCE Task
Committee, 2000) such as forecasting water levels or runoff
(Karunanithi et al., 1994), prediction of water quality and
ecological impact (Rechnagel ef al., 1997 ), regulating
operation of treatment plants or networks (Belanche ef al.,
2000), as a surrogate for computational intensive
hydrodynamic models (Ultsch and Roske, 2002), decision
variables mapping (Liong ef al., 2001), etc.

Although there are many types of ANNs, by far the most
widely used is the feed-forward NN or the multi-layer
perceptron, which is organised as layers of computing
elements (called neurons) connected by weighted
connections between layers (Fig. 3). An ANN is commonly
divided into three or more layers: an input layer, a hidden
layer(s), and an output layer. The input layer contains the
input nodes (neurons), i.e. the input variables for the
network. The output layer contains the desired output of
the system and the hidden layer usually contains a series of
nodes associated with transfer functions. The feed-forward
network is also known as the (error) back-propagation
network because of the method used in its training. Training

is a process of adjusting the connection weights in the
network so that the network’s response best matches the
desired response.

In this study, the mapping capability of ANN is used to
reconstruct the surface of the performance of the parameter
sets found by GA. A commercially developed ANN shell,
Neuroshell 2 (Ward Systems Group Inc., 1993), is used and
the 3-layered back-propagation algorithm is applied to train
the network.

The inputs to ANN consist of all the parameter sets
generated from GA and the outputs are the performance of
all these parameter sets. 80% of the data set are randomly
chosen for training the ANN and the remaining 20% used
as a test for overfitting. After the ANN is trained and tested,
the performance of all the parameter sets generated via
Monte-Carlo sampling (as in GLUE) can be estimated from
the trained network. Parameter sets estimated to be
behavioural (by the trained ANN) are selected for running
with the numerical simulation model. The number of
parameter sets selected is denoted as N, The actual
performances of the N, sets are subsequently compared with
the pre-determined threshold value. Those with actual
performance below the threshold are removed and the
remaining behavioural parameter sets are denoted as N, .

input layer hidden layer

consisting of consisting of Outp_utllayer
the model hidden neurons consisting of
parameters the model

response

Fig. 3. Schematic diagram of the feed-forward, back propagation architecture of an artificial neural network

685



Soon Thiam Khuand Micha G.F.Werner

Using GAANN within the GLUE
procedure

In this study, GAANN is coupled with the GLUE procedure
to reduce the number of simulation runs and increase the
sampling efficiency of GLUE. GA is applied independently
from the sampling procedure used in GLUE and ANN is
used to construct the inverse mapping of the behavioural/
non-behavioural space. Application of GAANN in the
GLUE procedure (herein known as mGLUE) is as follows:

1. RunGA for G generations with P individuals in each
generation. The fitness of each individual in each
generation is stored. The total number of individuals is
designed as N .

2. Train the ANN to map the response surface using the
fitness of each of the individuals, and the associated
parameters;

3. Sample the parameter space using GLUE, resulting in
Ny samples;

4. From the trained ANN, the potential fitness of each of
the N\, parameter sets is estimated. If this is found
to be above the threshold the parameter set is retained
for analysis with the model; if not, it is discarded. This
procedure results in the selection of N parameter
sets.

5. Evaluate each ofthe N « Pparameter sets with the model
and compute the ‘actual’ fitness.

6. Remove from the NSel parameter sets those with
‘actual’ fitness falls below the threshold as in the GLUE
procedure described. Likelihood values for the
remaining N, behavioural parameter sets are
assigned as before.

The coupling of this approach with the GLUE procedure is
illustrated in the flow chart given in Fig. 4. The success of
the integration of the GA depends on the method used to
evaluate the potential fitness of each of the N, parameter
sets. In its most optimal form the GA and subsequent
selection procedure will be able to identify the contours

Generate parameter sets
using Generalised
Likelihood Uncertainty

technique

GAANN

Sample the parameter space
using Genetic Algorithm (GA)

v

Use Artificial Neural Network
(ANN) to map the response
surface of the objective function

'

Estimate the model performance
using the trained ANN

v

Estimation (GLUE) >

Sort the sampled parameter sets
into behavioural and non-
behavioura sets

v

Removed the non-
behavioura sets

v

Run the simulation model with
the behavioura sets only

Fig. 4. Flow chart showing mGLUE procedure (coupling of GAANN procedure in the GLUE procedure).
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between behavioural and non-behavioural parameter sets
such that no runs in step 3 are discarded and N, = N, ,,
while the runs retained for further analysis are the same as
those that would have been retained had the normal
procedure been carried out.

The performance of the proposed method can be measured

using the following indexes:

1. Efficiency of procedure, & = Nyg /N, 3)
2. Effectiveness of GAANN, @ = N, /Ny @)
3. Cost of mGLUE over GLUE,

}/ — N:;GLUE / N.[(gtLUE (5)
4. Reliability of mGLUE over GLUE,

ﬂ — NgeﬁLUE / NEE:;UE (6)

Application I: NASH-CASCADE

The Nash-Cascade, or gamma function model, is a linear
model derived from routing rainfall through a cascade of
equal linear reservoirs (Shaw, 1988). The instantaneous unit
hydrograph (IUH) is given as (Xiong and O’Connor, 2000):

1 Y )"
u@Ot)=—— —— || —
09 =i ) v
With the. Gamma funlction of n:
I'(n)= Jexp(—x)x”’ dx (8)

0

The duration T unit pulse function, or the TUH
hydrograph is defined as:

se:U(T,t)=[ULY)-U@t-T)/T (€))
where U (1,t) is the unit step response:
1 AT
U@Lt = N
00~ i) o

and the response to a rainfall event is finally given as the

=
o
—
o

5/25

Q (mm/d) / P (mm/d)

JaaVANVAN

convolution of step responses, where Q. is the outflow at
time step /, R is the rainfall at timestep /, and the time interval
isT.
m
Q =Z;U(T,J'T)Rf,-+1 (1)
=
The gamma function model has two parameters, the linear
storage coefficient K and the number of linear stores n.
Although the second parameter is intuitively taken as an
integer value, giving the problem an analytical solution, this
need not be the case, and, given an observed runoff and
rainfall, the parameters must be estimated by calibration. A
gamma model with known parameters » = 4 and K = 4 is
applied to an arbitrary rainfall to generate an experimental
observed runoff event (Fig. 5).

The GLUE procedure was applied with parameters » and
K sampled uniformly in the range of 1.0 to 9.0 and the
number of Monte Carlo runs (N,,.) set at 2500. Model
performance was evaluated using the Nash-Sutcliffe
coefficient, and parameter sets with R’ below 0.8 were
considered non-behavioural. The points in Fig. 1(a) are the
randomly generated parameter sets, and contours indicate
lines of equal model performance, showing a significant
number of parameter sets falling outside the 0.8 contour.
Application of the traditional GLUE procedure with N, .
set at 2500 was repeated five times. Table 1 shows that, on
average, about 25% of the N, . runs are found to be
behavioural (N, ).

In the modified GLUE (mGLUE) procedure, 250 GA runs
(N,,) are used for exploring the parameter space. The
population size (P) of the GA is 25 and run for a total of 10
generations, giving a total of 250 simulations. The
population size need not be too big in this case because the
problem is relatively simple for the GA to optimise. The
procedure is applied five times to test for consistency using
N, =2500 and N_,=250. Table 1 shows that between 67
and 106 of the 250 runs were found to be behavioural,
representing about 34% of the GA runs. The ANN is trained
with 80% of these 250 runs and the remaining 20% GA
runs are used for verification.

o
-
o
o

100 200

300

400
Time (h)

500 600 700

Fig. 5. Rainfall and generated runoff for the Gamma function model with parameters n = 4 and K = 4.
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Table 1. Number of model simulations required in applying GLUE
and mGLUE procedure to the Gamma function model

GLUE mGLUE
procedure procedure
Initial runs required, N, . 2500 250
Number of N . runs that are 628 (average) 67-106
behavioural
Number of extra runs required, N_, 571-723
Total number of runs required, N~ 2500 821-973

Number of runs generating
behavioural points, N,

628 (average) 502-575

All 2500 randomly sampled parameter sets previously
generated in GLUE were fed into the ANN and the
corresponding performance in terms of R’ estimated. Table
1 shows that the ANN selected between 571 and 723 (out
0f 2500) as behavioural (N ). Out of these selected points,
between 501 and 575 points are found to be actually
behavioural (N, ). This demonstrated that a large portion
of the actual model runs generate behavioural points. From
the values of the various performance indexes, the mGLUE
procedure is a cost effective way to reduce the number of
model runs required in GLUE without significantly
degrading the reliability of the GLUE procedure.

Catchment
outlel

Fig. 1(b) shows the contours of equal performance for
the ANN estimates with the points indicating selected
parameter sets. Clearly, the general shape of the objective
function response surface, as well as the interaction between
parameters, are represented well by the trained network.
This indicates that the ANN was able to fit the points that
were behavioural.

Application II: SWMM model

A second application of the procedure to a model with a
higher dimensional parameter space is explored. The Storm
Water Management Model (SWMM) (Huber and Dickinson,
1988), originally developed by the US Environment
Protection Agency (USEPA) is a dynamic rainfall-runoff
simulation model, primarily but not exclusively for urban
areas, for single-event or long-term (continuous) simulation.
Flow routing is performed for surface and sub-surface
conveyance and groundwater systems, including the option
of fully dynamic hydraulic routing in the Extran block. Non-
point source runoff quality and routing may also be
simulated, as well as storage, treatment and other best
management practices. Readers may consult the USEPA
website for more information and free software download.
The SWMM Extran runoff block is used in this application
and applied to the Upper Bukit Timah catchment in
Singapore as shown in Fig. 6. 35% of'the 6.11 km? catchment

Singapore

Upper Bukit Timah
Catchment

<Q

LEGEND

Catchment Boundary /
Stream/ Channel / 2
Sub~ Catchment  Boundary P

Sub-Catchmenl Label Number sus 4
Pluviograph ‘¢

Fig. 6. Upper Bukit Timah catchment in Singapore
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is developed, with forests and steep slopes dominating the
other 65%. Eight parameters of the model are selected for
the study and they are the roughness value for overland flow,
depression storage in pervious areas, three Horton
infiltration parameters, catchment width, percentage of
impervious area, and average catchment slope (Liong ef al.,
1995). Prior ranges for each parameter are assigned between
50% and 150% of the default values as in Liong ef al. (1995).
The model is applied to the short storm starting March 2nd
1984 (Fig. 7), with model efficiency again being measured
through the Nash-Sutcliffe efficiency and behavioural
models having efficiency above 0.8.

An initial sensitivity analysis was carried out to determine
the number of simulations required by the GLUE procedure

Discussion of Results

Tables 1 and 2 showed that the number of calls to the
hydrological model has been significantly reduced using
GA and ANN. Table 3 compares the performance of the
mGLUE procedure with that of GLUE for the two

applications.

The efficiency of the procedure, ¢, is the actual percentage
of useful runs (identified as behavioural) over the total

Table 2. Number of model simulations required in applying GLUE
and mGLUE procedure to the SWMM model

where N _was varied from 1000 to 100,000. At about 25 000 GLUE mGLUE
runs, the estimates for the quantiles of the distribution procedure  procedure
function were found to become stable with », , in the order il ed 25000 5500
of 10% of the total randomly generated parameter sets. Five Initial runs required, Ny . : >
. B Number of extra runs required, N |~ —— 2425-2503
runs using N, =25,000 were theltl executed, where the GA Total number of runs required, N 25000 4925-5003
and ANN were now used to estimate the performance of Number of runs generating 2586 2306-2354
the 25,000 runs, and only those with an estimated behavioural points, N, ,
performance of above 0.8 actually being run. 1% exceedance quantile 16.97 16.90-17.12
Using N, as 10% of N,,., ANN gave a good estimate of 2.5 % exceedance qauntile 17.16 17.16-17.30
model performance. The correlation coefficient of the ANN 5% exceedance quantile 17.38 17.33-17.48
for training and testing were 0.999 and 0.997 respectively. 50% exceedance quantile 19.43 19.34-19.52
The number of estimated behavioural runs (N_) was 95% exceedance quantile 21.65 21.63-21.75
remarkably close to 10% of the N, . runs, with only about 97.5 exceedance quantile 21.95 21.90-22.03
5% waste. 99% exceedance quantile 22.29 22.25-22.36
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Fig. 7. Hyetograph and hydrograph of storm dated 2" March 1984, Upper Bukit Timah catchment (Singapore).
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Table 3. Performance comparison of the GLUE and mGLUE procedures

Run Efficiency Effectiveness of COST of mGLUE Reliability of mGLUE
& GAANN, o over GLUE, y over GLUE, 8

Gamma model - GLUE 25%

Gamma model - mGLUE 61% 80% 39% 60%

SWMM - GLUE 10%

SWMM - mGLUE 47% 94% 20% 90%

number of simulations required for the procedure. Table 3
shows that the values of ¢ for the Nash-Cascade model is
25% for GLUE and 61% for mGLUE; the proposed
procedure is, thus, much more efficient in generating
behavioural parameter sets than the GLUE procedure. A
similar result was obtained for the SWMM model. The
efficiencies are 10% and 47% for GLUE and mGLUE
respectively, due to the complexity and irregularities of the
response surface of the SWMM model compared to the
results obtained in the Nash-Cascade model discussed
earlier.

Although ¢ provides an indication of the efficiency of
each procedure, the total number of simulations required in
each procedure differs significantly (Tables 1 and 2). Figure
8 shows that, despite this reduction in the number of runs,
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0.5}
0.4¢}

cumulative likelihood

0.3}

0.271

—— standard GLUE
modified GLUE

0.1}

15 20 25
peak discharge (m3/s)

the distributions of peak discharges are very similar; the
difference between GLUE and mGLUE is less than
0.2 m*s"'and this holds even for the tails of the distributions
(Table 2). Table 3 shows that the costs, y, (the ratio of the
total number of simulations of each procedure) of GLUE
over mGLUE for the Gamma function and SWMM models
are 39% and 20% respectively. Particularly for more
complex response surfaces requiring a greater number of
GLUE (Monte Carlo) simulations, the number of actual runs
can be reduced significantly by the GAANN procedure; in
application 2, the total number of runs is reduced from
25000 to 5000 (= 20%).

Having demonstrated that significant savings can be
obtained using the mGLUE procedure, the reliability and
effectiveness of the proposed procedure should now be

(b)
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Fig. 8. Cumulative likelihood distribution (cdf) and distribution of residual for the peak discharge of the storm dated 2" March 1984,
Upper Bukit Timah catchment (Singapore).
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questioned. The reliability of procedure can be calculated
by comparing the number of behavioural solution sets
selected by both methods. It should be obvious that the
number of behavioural sets from GLUE is always larger
than mGLUE since it uses an approximation to select the
behavioural sets from the Monte Carlo generated sets. From
Table 3, the reliability of mGLUE for the Gamma and
SWMM models are 60% and 90% respectively. The higher
reliability of the mGLUE-SWMM results may be attributed
to the effectiveness of GA in obtaining good (behavioural)
solution sets using a smaller number of simulations than
the Monte Carlo procedure and the high success rate of using
ANN to map the response surface of the model simulations.
The effectiveness of GAANN for the Gamma and SWMM
models are 80% and 94% respectively (Table 3).

With regard to the concern of additional runtime, the
proposed procedure was implemented using a collection of
MATLAB scripts, including the standard GA toolbox. All
steps are currently automatic except for the ANN (due to
present lack of availability of the MATLAB-ANN toolbox)
but this could be easily automated once the toolbox is
purchased. The overheads incurred in GAANN are minimal
when compared to the actual runtime of the simulation
model.

Finally, there is a slight drawback with the proposed
procedure. The efficiencies of mGLUE, although higher than
GLUE, were lower than expected. This showed that about
half the total runs are not being used to determine the
posterior distribution functions. The reason was that the runs
carried out during the exploration of the objective function
response surface (generated by GA) were discarded from
the analysis and considered redundant. Although a good
number of these runs are behavioural, these cannot be
incorporated in the final analysis, as the sampling procedure
used in GA is essentially different from the Monte-Carlo
sampler used in GLUE. The authors are currently exploring
the possibility of using simulated annealing instead of GA
as the basis of exploring the response surface. (Note: a
simulated annealing type algorithm has been applied
successfully lately to uncertainty analysis (Vrugt et al.,
2003)).

Conclusions

A novel method, GAANN, reduces the number of model
runs required in the Monte Carlo based sampling of the
GLUE procedure. Using a genetic algorithm (GA), the shape
ofthe response surface of the objective function is explored
and, then, the structure of the objective function response
surface is identified using the universal mapping function,
artificial neural network (ANN). This allows for the

estimation of the potential fitness of parameter sets without
actually running the hydrological model. Based on whether
this estimated potential fitness exceeds a threshold used to
distinguish between behavioural and non-behavioural
models, the parameter set is either retained for further
evaluation with the model, or discarded.

Two applications of GAANN are demonstrated, the Nash-
cascade model with known parameters and the catchment
model, SWMM, applied to a catchment in Singapore with
observations of rainfall and runoff. GAANN reduces
significantly the number of runs required to estimate the
likelihoods of parameter sets compared to the GLUE
procedure. This reduces, significantly, the computational
effort involved in investigating model parameter uncertainty.
Integration of this method with the GLUE procedure extends
the scope of application of uncertainty estimation, without
diminishing the robustness of the GLUE procedure or
significantly complicating its application.
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