
Introduction

Today, sustainable development has now become a key issue all over the world. To achieve this, 

many research studies and practical activities have been carried out in many countries (e.g. Harby et al., 

2004). Since the need for a balance between development and environmental conservation to achieve a 

better quality of life is widely recognized, clearer goals and applicable techniques are urgently required 

for the sustainable development and management. However, it is very diffi cult to maintain this balance 

because of the complicated trade-offs between ecological, social, and economical demands. 
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Several studies and challenges for the conservation and restoration of river ecosystems have been 

conducted by using the physical habitat simulation system (PHABSIM: Bovee et al., 1998), habitat 

evaluation procedures (HEP: U. S. Fish and Wildlife Service, 1980a), etc. The objectives of these tech-

niques are to numerically quantify the anthropogenic impacts on fl ora and fauna in target basins. In 

general, these impacts are evaluated as changes in habitat potential, often in terms of weighted usable 

area (WUA: Bovee et al., 1998) or habitat unit (HU: U. S. Fish and Wildlife Service, 1980a), in keeping 

with the physical environments such as water depth, velocity, and substrate. Since both WUA and HU 

are based on the habitat preference of a target species within a given environment, the evaluation tech-

niques for habitat preferences are one of the essential components requiring continued study. 

To date, many researchers have proposed and applied habitat prediction models to evaluate the 

habitat preference of a target species. These models are based on the habitat suitability index (HSI: U. S. 

Fish and Wildlife Service, 1980b; Lechowicz, 1982; Inoue and Nakano, 1999; Urabe and Nakano, 1999), 

linear and nonlinear regression models (Guey et al., 2000; Vadas and Orth, 2001; Guey et al., 2003), 

fuzzy rule-based models (Hiramatsu et al., 2003; Fukuda et al., 2005; Rüger et al., 2005; Fukuda et al., 

2006b; Mouton et al., 2006), artifi cial neural network models (Brosse and Lek, 2000; Fukuda et al., 

2006a), etc. In addition, these models are also used to understand the ecology and the habitat require-

ments of the target species. 

Since the consideration of all the ecological requirements is practically impossible in planning and 

management, it is crucial to identify which factor should take priority during conservation and resto-

ration. One of the methods is to consider the preference weight for each factor. Based on the study by 

Sekine et al. (1997), several weighting operations have been proposed. However, it appears to be diffi cult 

to apply these techniques to the studies based on fi eld survey because habitat preference is affected by 

complicated interactions between multiple environmental factors. The other method is to employ an in-

formation-theoretic approach, e.g. Akaike information criterion (AIC) and Bayesian information criteri-

on (BIC); this approach is now widely known and applied to various fi elds of research for the purpose of 

obtaining the ‘best model’ among candidates (Burnham and Anderson, 2002). This approach provides 

us with information regarding certain aspects of the signifi cance of a particular factor by considering 

the balance between prediction errors and the number of parameters evaluated within the model em-

ployed.

The main aim of this paper is to demonstrate the applicability of the information-theoretic approach 

for the identifi cation of the best model and the signifi cant factors in predicting the spatial distribution of 

Japanese medaka (Oryzias latipes) dwelling in the agricultural canals of Japan. We further verify which 

factor signifi cantly affects the habitat preferences of Japanese medaka. 

Methods

Study site

The study was carried out in an agricultural canal located in Kurume City, Fukuoka, Japan. The 

spring-fed canal runs through paddy fi elds, is used for both irrigation and drainage purposes and fl ows 

into the Kose River, which is a tributary of the Chikugo River. The fi sh species dwelling in this canal 
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Fig. 1.   Schematics of the overview of the study reach (a and c) and water bodies (b and d) in similar physical condi-
tions of water depth and current velocity on 14 October (a and b) and 5 November (c and d) 2004. Solid lines 
denote the boundary between the water bodies. See text for the details of the study reach.

are presented elsewhere (Fukuda et al., 2006b). We established a 50-m study reach (width, 1.6–2.0 m, 

gradient = 0.3%) in this canal. A concrete agricultural facility is located approximately 31 m from the 

downstream end. The riparian zone of the reach was not covered with any trees or bushes. The dis-

charge of the reach varies widely between irrigation and non-irrigation periods; however, the discharge 

in each period generally remains stable. The water temperature remained stable (16.1–18.6 °C) during 

the survey.

Field survey

During the non-irrigation period, the spatial distributions of Japanese medaka and the physical 

habitat characteristics of water depth (henceforth referred to as depth), current velocity (velocity), lateral 

cover ratio (cover), and percent vegetation coverage (vegetation) in the study reach were surveyed on 

two sunny days, i.e. 14 October and 5 November 2004. The study was performed in this period because 

in the irrigation period, spatial uniformity in both fi sh distribution and physical environment occurs due 

to the backwaters that are caused by weir control. Hence, these spatial distributions were not affected 

by any agricultural activities or agricultural chemicals. Based on Yoshioka’s study (Yoshioka, 1963), the 

survey is found to be conducted right after the end of the spawning season. We fi rst observed the fi sh 

distribution (11:00–14:30) and then surveyed the physical habitat characteristics within the reach. 

The spatial distribution of Japanese medaka was observed visually from the bank; the observer 

moved slowly and carefully to avoid any fi sh disturbance caused by the observer’s activity. The number 

of fi sh was counted in units of fi ve fi sh to take into consideration the patterns of school formation, i.e. 

fi sh in a small school (less than fi ve fi sh) were not counted. Observations were repeated eight times, and 

the results were averaged to avoid observation variance. 

Immediately after completing fi sh observation, the four physical habitat characteristics of depth, 

velocity, cover, and vegetation were surveyed to establish a relationship between the physical environ-

ment and habitat preferences of Japanese medaka. First, depth and velocity were measured to divide the 

study reach into small water bodies possessing similar characteristics with regard to these two physical 
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parameters (Fig. 1). Depth was measured with a stainless steel ruler and velocity, with a portable pro-

peller current meter (KENEK, V-303) at three lateral points comprising a midpoint and two near-shore 

points at longitudinal intervals of 1 m. By using the measurements of depth and velocity, the reach was 

divided into water bodies (Fig. 1). Next, the other two factors of cover and vegetation were calculated 

from the schematic diagrams of the water bodies (Fig. 1). The lateral cover ratio—an index of the spa-

tial structure of a water body - is defi ned as a function of the presence of lateral cover which comprises 

the water’s edge, a dyke or anything that emerges from the water surface and surrounds the water body. 

The cover thus consists of four components (four lateral sides). The full, i.e. the maximum cover ratio is 

100%. Each of the cover components is assigned a score of 25%. In the defi nition of the cover, objects 

attached to more than 90% of the boundary between water bodies, i.e. the solid lines in Fig. 1, were 

regarded as cover components, that is, we considered only instream and undersurface cover structures 

that may have had the same effects as the margin of the stream. Percent vegetation coverage is defi ned 

as the percentage of the area covered with aquatic vegetation in each water body. Both submerged and 

emergent vegetation were pooled because of their same roles, i.e. providing food and shelter from preda-

tors and fast-fl owing currents.

In the following analyses, the fi sh distribution data that we used were the observed fi sh population 

density obtained for the ith water body ρo,i (individuals per square metre), where i (i = 1, 2, …, n) de-

notes the index of the water body and n, the total number of water bodies. 

Habitat preference model

In this study, we utilized a fuzzy rule-based preference intensity model (FPIM) to quantify the hab-

itat preference of Japanese medaka (Hiramatsu et al., 2003; Fukuda et al., 2005, 2006b). The FPIM is a 

hybrid model based on the two artifi cial intelligence techniques of fuzzy reasoning and simple genetic 

algorithms (GA). Fuzzy reasoning was introduced to consider the essential vagueness of fi sh behavior 

and habitat preference, the uncertainty in fi eld measurement errors, and the dispersions of the physical 

environment within a water body. We applied simplifi ed fuzzy reasoning in this study for its simplicity 

and high performance (Mizumoto, 1995). An overview of fuzzy if-then rules is shown in Fig. 2. The 

simple GA was employed to optimize the singletons in the consequence part of the fuzzy if-then rules. 

The following is a brief explanation of the optimization procedure. Firstly, the GA proposes an initial 

consequence part of the fuzzy rules. Secondly, the composite habitat preference is calculated by using a 

simple multiplication method expressed as

[1]

where Pi denotes the habitat preference in the ith water body and the abbreviations d, v, c, and veg in-

dicate depth, velocity, cover, and vegetation, respectively. Thirdly, the spatial distribution of Japanese 

medaka is predicted using the equation

[2]

where ρc,i is the calculated fi sh population density in the ith water body and ρo,i, the observed density 
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Fig. 2.   Schematic showing the overview of the fuzzy if-then rules of the FPIM premise part (i) and consequence part 
(ii) of the four-factor composite model. The singleton 1 in the consequence part of depth is set to be zero to 
consider the ecology of Japanese medaka (Fukuda et al., 2006b). 

(Fukuda et al., 2006b). Fourthly, the mean square error (MSE) between the predicted and observed fi sh 

population density is calculated. Then, the GA repeatedly modifi es the singletons so as to minimize the 

MSE. Finally, the optimized FPIM is obtained. The details of the modelling procedure and calibration 

conditions have been described in Fukuda et al. (2005, 2006b). 

Data analysis

To identify the most signifi cant factor and the combination of factors for the prediction of the spatial 

distribution of Japanese medaka, we applied the information-theoretic approaches of AIC and BIC. The 

analyses were as follows. Firstly, we developed the FPIM for every combination of the four environmen-

tal factors of depth, velocity, cover, and vegetation (Table 1). Next, the MSE between the predicted and 

observed fi sh population density was calculated for all of the models. Finally, every model was evalu-

ated by the AIC with a correction term for small sample sizes.
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Table 1.    Conditions and results of the AICc and BIC calculation. The number of parameters consists of the 
model parameters including one for σ2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Model
index

D, V, C, Veg

D, V, C

D, V, Veg

D, C, Veg

V, C, Veg

D, V

D, C

D, Veg

V, C

V, Veg

C, Veg

D

V

C

Veg

Environmental
factors

18

15

15

12

13

12

9

9

10

10

7

6

7

4

4

Number of
parameters

10.68

15.32

16.44

15.78

13.70

20.49

20.21

25.51

16.82

20.62

19.78

28.20

23.23

22.42

26.14

MSE

1439.1

1529.4

1548.4

1530.8

1494.9

1601.0

1590.8

1653.4

1543.5

1598.4

1580.7

1674.0

1623.9

1608.1

1649.4

AICc

1501.1

1581.4

1600.4

1572.7

1540.2

1642.9

1622.4

1685.1

1578.6

1633.5

1605.4

1695.2

1648.6

1622.4

1663.6

BIC

0.0

90.3

109.3

91.6

55.8

161.9

151.7

214.3

104.4

159.2

141.6

234.9

184.8

169.0

210.3

AICc

difference

0.0

80.3

99.3

71.6

39.1

141.8

121.3

184.0

77.5

132.4

104.3

194.1

147.6

121.3

162.5

BIC
difference

1

3

5

4

2

9

8

13

6

10

7

15

12

11

14

MSE

1

3

6

4

2

10

8

14

5

9

7

15

12

11

13

AICc

1

5

6

3

2

11

9

14

4

10

7

15

12

8

13

BIC

Rank

[3]

and

[4]

where n denotes the sample size, i.e. the number of data used, and k, the total number of estimable pa-

rameters within the model (Burnham and Anderson, 2002; Johnson and Omland, 2004). Since all the 

FPIMs are optimized by the simple GA so as to minimize the MSE between the observed and predicted 

fi sh population density, the residuals of the prediction model (Eq. 2) are assumed to be independent and 

normally distributed with a constant variance σ2. Hence, the model structure is expressed as

[5]

where ρo,i is hypothesized to be a function of the environmental factors considered. The residuals of the 

models

[6]

110 S. Fukuda et al.



���������� ������ ������������ ������������������������
����������������������������� �������������
���������� ��������������� ����� ������ ������������ ������������������������� ������ ������������� ������������������������������ ������ ������������� ��������������������������� ����� �������������������� �� ������������������������������ ���������������� ���������������������� ���������������������������������������������� ���������������������� ���������������������������������

have the probability distribution f(ρo,i|θ) given as

[7]

where θ is a vector of k parameters, i.e. the number of model parameters (corresponding to the number 

of singletons in the consequence part of the fuzzy rules to be determined) including one for σ2. The k 

values of the candidates are summarized in Table 1. The likelihood is simply the product of Eq. 7 over 

the n observations.

[8]

Taking the logarithm of Eq. 8, we then obtain the log likelihood

[9]

To achieve the maximum likelihood estimator σ̂2, we fi rstly differentiate Eq. 9 by σ2 as follows. 

[10]

we then derive the estimator by taking the condition that Eq. 10 is equal to zero, that is,

[11]

Substituting Eq. 11 into Eq. 9, the maximum log-likelihood (MLL) is thus obtained as

[12]

Consequently, Eqs. 3 and 4 are rewritten as follows.

[13]

[14]
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Fig. 3.   Schematic diagrams showing the results of the fi eld survey. The fi sh population density in each survey was 
normalized and the two results were pooled for the analysis.

To compare the signifi cance between the candidates and to rank them, we calculated the AICc and BIC 

differences ∆m where m denotes the index of the candidate. Since the AICc and BIC values are rela-

tive values, these differences are important. The following rough rules of thumb are available for the 

comparison: models with ∆m > 10 have essentially no empirical support, models with 4 < ∆m < 7 have 

considerably less support and models with 0 < ∆m < 2 have substantial support (Burnham and Anderson, 

2002).

Results

During the two surveys on 14 October and 5 November 2004, 269-point water bodies were ob-

served within the study reach (Fig. 1). Of these, 139 were the result of the fi rst survey and 130 were from 

the second survey. The total fi sh population density observed was 404 (individuals per square metre) in 

the former and 356 in the latter. Since each survey was conducted independently, we pooled the results, 

and the fi sh density was normalized for each survey as shown in Fig. 3. This fi gure would indicate that 
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Fig. 4.   Schematic diagrams showing the habitat preference estimated by the four-factor composite (solid line) and 
single-factor (broken line) FPIMs.

Japanese medaka prefer deeper and slow-fl owing water and areas with greater lateral cover and rela-

tively lesser vegetation coverage; however, no area within the study reach exhibited more than 50% of 

lateral cover. 

Using the above results, we developed FPIMs that considered every combination of the four en-

vironmental factors to minimize the MSE between the predicted and observed fi sh population density 

(Table 1). The model structure of the optimized four-factor composite FPIM is shown in Fig. 2 as an 

example. Figure 4 illustrates the habitat preference curves estimated by the four-factor composite (solid 

line) and single-factor (broken line) FPIMs. Although slight differences in the preference curves for 

depth and velocity were found between the two FPIMs, both curves for every factor were in fairly good 

agreement with each other. In addition, these curves demonstrated similar habitat preferences as men-

tioned earlier.

Since the habitat preference model was successfully achieved, we then predicted the spatial distri-

bution of Japanese medaka using Eqs. 1 and 2. The results of the MSE calculation are summarized in 

Table 1. The signifi cance of each factor and that of the combination of factors were analyzed by using 

the MSE together with AICc (Eq. 13) and BIC (Eq. 14) (Table 1) because the n/k ratio was low (n/k = 14.9 
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Table 2.    AICc and BIC differences between models. The upper half matrix is the BIC difference; the lower half 
matrix, the AICc difference. See Table 1 for model index and conditions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Model
index 1

−

90.3

109.3

91.6

55.8

161.9

151.7

214.3

104.4

159.2

141.6

234.9

184.8

169.0

210.3

2

80.3

−

19.0

1.4

34.5

71.6

61.4

124.0

14.1

69.0

51.3

144.6

94.5

78.7

120.0

3

99.3

19.0

−

17.6

53.5

52.6

42.4

105.0

4.8

50.0

32.3

125.6

75.5

59.8

101.0

4

71.6

8.8

27.7

−

35.9

70.2

60.0

122.7

12.8

67.6

49.9

143.2

93.2

77.4

118.6

5

39.1

41.2

60.2

32.5

−

106.1

95.9

158.5

48.6

103.5

85.8

179.1

129.0

113.2

154.5

6

141.8

61.5

42.5

70.2

102.7

−

10.2

52.4

57.5

2.6

20.3

73.0

22.9

7.2

48.4

7

121.3

41.0

22.0

49.8

82.2

20.5

−

62.6

47.3

7.6

10.1

83.2

33.1

17.4

58.6

8

184.0

103.7

84.7

112.4

144.9

42.2

62.6

−

109.9

55.0

72.7

20.6

29.5

45.3

4.0

9 10

132.4

52.0

33.1

60.8

93.3

9.4

11.0

51.6

54.8

−

17.7

75.6

25.6

9.8

51.0

11

104.3

24.0

5.0

32.7

65.2

37.5

17.0

79.7

26.8

28.1

−

93.3

43.2

27.5

68.7

13

147.6

67.2

48.3

76.0

108.5

5.8

26.2

36.4

70.0

15.2

43.2

46.6

−

15.8

25.5

12

194.1

113.8

94.8

122.6

155.0

52.3

72.8

10.2

116.6

61.8

89.8

−

50.1

65.8

24.6

14

121.3

40.9

22.0

49.7

82.2

20.5

0.1

62.7

43.7

11.1

17.0

72.9

26.3

−

41.3

15

162.5

82.2

63.2

91.0

123.4

20.7

41.2

21.4

85.0

30.2

58.2

31.6

15.0

41.3

−

77.5

2.8

21.8

6.0

38.4

64.3

43.8

106.4

−

54.8

37.1

130.4

80.4

64.6

105.9

< 40). In order to compare the signifi cance and to rank the models, the AICc and BIC differences were 

calculated as summarized in Table 2. From Table 2 and the rules of thumb, it is found that, for instance, 

the plausibility of model 7 is equal to that of model 14 from the viewpoint of BIC. The results in Tables 

1 and 2 indicate that among the four environmental factors, cover is the most signifi cant, followed by 

velocity, vegetation, and depth. In addition, the four-factor composite FPIM was found to be the best 

model among the candidates. The ranks based on AICc and BIC are different for each of the criteria, and 

the criteria exhibit different characteristics with regard to model selection; for example, BIC would se-

lect a model with a smaller number of parameters. 

Discussion

We employed the FPIM to evaluate the habitat preferences of Japanese medaka. The applications of 

fuzzy rule-based models in ecological research have been increasing (Rüger et al., 2005; Adriaenssens 

et al., 2006; Mouton et al., 2006) because ecological data and expert knowledge contain uncertainty 

themselves (Bosserman and Ragade, 1982). The fuzzy rule-based approach has substantial features such 

as consideration of uncertainties, refl ection of ecological and expert knowledge, etc. Knowledge-based 

modeling approaches, such as expert systems, in which fuzzy sets and rules are defined by experts 

such as biologists are often employed. Recently, some studies have introduced heuristic optimization 

techniques for the modifi cation of the rules (Mouton et al., 2006). For comparison, the FPIM comprised 
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the two artifi cial intelligence techniques of fuzzy reasoning and GA; this enabled us to evaluate habitat 

preference using fi eld observation data (Hiramatsu et al., 2003; Fukuda et al., 2005, 2006b). The major 

difference between the FPIM and the models based on heuristic optimization is the parameter being 

optimized. In the former model, the premise part and if-then rules are predefi ned and then the GA opti-

mizes the consequence part using fi eld data; in the latter model, the rules are optimized, while the fuzzy 

sets, i.e. the premise and consequence parts, are unchanged. The applicability of the FPIM has been 

verifi ed by Fukuda and Hiramatsu (2006), and the results indicate that the FPIM has a fairly good abil-

ity in predicting the spatial distribution of Japanese medaka. 

The habitat preference curves evaluated by the four-factor composite and single-factor FPIMs were 

in good agreement with each other. This suggests the applicability of a univariate approach in habitat 

preference evaluation performed using fi eld observation data. In a natural system, habitat selection by 

fi sh is affected by complicated interactions between multiple environmental factors that make it diffi cult 

to relate the physical environment to habitat preference. To overcome this problem, we employed a GA 

and estimated habitat preference with regard to the four environmental factors of depth, velocity, cover, 

and vegetation simultaneously (Fukuda et al., 2005, 2006b). For the same reason, we applied the fuzzy 

neural network to predict habitat selection (Fukuda, 2006a). Despite the diffi culties and complexities in-

volved, almost all the habitat preference models are generally based on the univariate approach and are 

widely applied in habitat evaluation (e.g. Guey et al., 2000; Nykänen and Huusko, 2004; Koizumi et al., 

2005); however, few studies have verifi ed whether the univariate approach can be applied. Therefore, 

further investigations are required for this verifi cation.

The present FPIM represented the habitat preference of Japanese medaka as previously reported 

(Fukuda et al., 2006b). Japanese medaka avoided shallow and fast-fl owing water and preferred greater 

lateral cover and less vegetation coverage. This avoidance of shallow water has been explained by Mor-

ishita and Morishita (1997): a fi sh requires a depth at least three times their body length to inhabit a 

stream. The report by Takemura et al. (2003) supports the observation that Japanese medaka avoid fast-

fl owing water: the individual swimming ability of adult medaka is limited to velocities ranging from 10 

cm s−1 to 15 cm s−1. The preference for a larger cover suggests the importance of a nearshore habitat that 

is now widely recognized as a necessary habitat condition for larval and juvenile stream-resident fi sh 

(Moore and Gregory, 1988; Wolter and Bischoff, 2001; Nykänen and Huusko, 2003). Since Japanese me-

daka generally grow up to approximately 2 cm in length, the results obtained for larval stream resident 

fi sh can be compared with those for adult medaka. The avoidance of larger vegetation coverage may be 

due to the feeding behavior of the medaka in the daytime. Rosenfeld and Boss (2001) reported that the 

position of the fi sh would be determined by the balance between the net gain of energy from feeding 

and the cost of being exposed to fast-fl owing water. Since this study is based on daytime observations in 

one season, further studies concerning diurnal and seasonal changes in habitat preference are necessary 

for a deeper understanding. 

Information criteria have been widely applied for the selection of the best model among available 

candidates; models are evaluated on the basis of the principle of parsimony by using the number of 

parameters within the model, the residuals, and the sample size (Burnham and Anderson, 2002). The 

prediction ability and the effi ciency of models are generally diffi cult to analyse, but comparison of the 

differences between the models would be easy with the help of the criteria (see examples in Burnham 
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and Anderson, 2002). Although the criteria have been originally developed for linear regression models, 

their application is now extended to non-linearly fi tted models (Burnham and Anderson, 2002; Shimizu 

et al., 2002). Some studies have attempted to apply information criteria to non-linear systems, such as 

artifi cial neural networks, for quantifying the effective number of parameters (e.g. Murata et al., 1994); 

however, Anders and Korn (1999) have discussed this applicability and emphasized that care is needed 

due to the identifi cation problems inherent in network models. 

The result from the information-theoretic approach gave us three arguments. Firstly, cover was 

found to be the most significant factor in the current observation data from the viewpoint of model 

selection. This suggests that, among the single-factor models, the FPIM that considered lateral cover 

possessed superior explanatory abilities with regard to the habitat preference of Japanese medaka. The 

signifi cance of cover also indicates the importance of lateral habitat, i.e. the water’s edge (Moore and 

Gregory, 1988; Wolter and Bischoff, 2001; Nykänen and Huusko, 2003). Since the signifi cance of the 

factor was evaluated using the balance between the prediction error and the number of parameters, the 

present result should be validated together with the other evaluation methods such as weighting opera-

tions. In contrast, previous studies have reported that velocity was found to be the most significant 

factor governing the habitat preference of Japanese medaka (Hiramatsu et al., 2003; Hiramatsu and 

Shikasho, 2004; Fukuda et al., 2005, 2006b). It is also necessary to consider other effects, such as sea-

sonal changes, because the signifi cance of environmental factors would differ according to the season, 

life stage, inter- and intra-specifi c competition, etc. Secondly, the FPIM that comprised the four factors 

of depth, velocity, cover, and vegetation possessed the best prediction ability among all the candidates. 

This result is supported by the rule of thumb, that is, every other model exhibited differences in the 

AICc and BIC that exceeded the value of ten. This may be because the four-factor composite FPIM si-

multaneously quantifi ed the habitat preference for each factor and was thus able to refl ect the effect of 

the complicated interactions between the environmental factors in its model structure. Thirdly, the AICc 

and BIC demonstrated different characteristics for model selection. BIC selected models with fewer 

model parameters, which corresponds to the previous study by Johnson and Omland (2004). Burnham 

and Anderson (2002) discussed the differences between the two criteria; one reason for the difference is 

the assumption in the derivation procedure. They suggested the use of AIC-type criteria in the biologi-

cal sciences because it is diffi cult to keep the reality as sample size is increased by orders of magnitude 

in biological systems. This simple factor is a violation of the assumptions that form the basis of the BIC 

(Burnham and Anderson, 2002). 

In conclusion, the information-theoretic approach appears to be very useful in the identifi cation of 

the best model and the most signifi cant factor that can explain the habitat selection of the target species. 

Together with ecological knowledge, this approach can provide us with additional information useful in 

decision making for the improved conservation and restoration of ecosystems.
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