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Abstract. The potential for using high-resolution meteoro-
logical data from two operational numerical weather analy-
ses (NWA) to diagnose and predict persistent contrail forma-
tion is evaluated using two independent contrail observation
databases. Contrail occurrence statistics derived from sur-
face and satellite observations between April 2004 and June
2005 are matched to the humidity, vertical velocity, wind
shear and atmospheric stability derived from analyses from
the Rapid Update Cycle (RUC) and the Advanced Regional
Prediction System (ARPS) models. The relationships be-
tween contrail occurrence and the NWA-derived statistics are
analyzed to determine under which atmospheric conditions
persistent contrail formation is favored within NWAs. Hu-
midity is the most important factor determining whether con-
trails are short-lived or persistent, and persistent contrails are
more likely to appear when vertical velocities are positive.
The model-derived atmospheric stability and wind shear do
not appear to have a significant effect on contrail occurrence.

1 Introduction

Contrail-induced cloud cover has the potential to produce
significant regional effects on climate (Minnis et al., 2004).
As air traffic increases, the possibility for globally signifi-
cant impacts also rises. Although these impacts, such as ra-
diative forcing, have been estimated using general circula-
tion models (GCMs) (Marquart and Mayer, 2002; Hansen et
al., 2005), their magnitudes remain highly uncertain because
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of the relatively crude ways that contrails are parameterized
in those models. One approach to improve contrail repre-
sentations and to understand and predict contrail climate ef-
fects better, is to develop models that can more accurately
simulate contrail properties at smaller scales based on am-
bient atmospheric variables including temperature, relative
humidity, and winds and then parameterize those models for
inclusion in GCMs. Higher resolution contrail models could
also be useful for aiding contrail mitigation efforts, if that
need arises. To perform such simulations, it is critical to
have meteorological data at high temporal and spatial res-
olutions over a large domain because air traffic over a given
location changes rapidly throughout the day. Only a few op-
erational numerical weather analyses (NWA), including the
NOAA/ESRL Rapid Update Cycle (RUC; Benjamin et al.,
2004) and the Advanced Regional Prediction System (ARPS;
Xue et al., 2003) produced by the University of Oklahoma
Center for Analysis and Prediction of Storms, currently pro-
vide those variables at the resolutions necessary to diagnose
persistent contrail formation over the United States of Amer-
ica.

The basic thermodynamics of contrail formation from jet
exhaust was described by Schmidt/Appleman theory (Schu-
mann, 1996), which has been modified more recently to ac-
count for the effects of jet aircraft efficiency. This theory
describes the temperature and pressure conditions necessary
to allow the isobaric mixing of the hot, moist exhaust gases
with the cold ambient air to form a contrail. The formation
of persistent contrails occurs when the relative humidity with
respect to ice (RHI) reaches or exceeds 100%. A review of
the historical development of the theory and its experimental
verification is given in Schumann (1996). NWAs, however,
often underestimate upper tropospheric relative humidity
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Figure 1. Distribution of hourly mean cumulative flight lengths (in km) for all commercial 

flights with altitudes between 7 and 15 km for each 1×1 degree grid box for the time period 

between 15 and 20 UTC during November 2004 (see Garber et al., 2005).  The crosses and plus 

signs indicate all GLOBE locations reporting contrail observations between April 2004 and June 

2005.  The small white crosses represent locations with 30 or fewer total observations, while the 

larger white crosses are locations with more than 30 total observations.  The black plus signs 

denote locations with more than 50 observations taken during mostly clear (cloud coverage less 

than 25%) conditions. 

Fig. 1. Distribution of hourly mean cumulative flight lengths (in
km) for all commercial flights with altitudes between 7 and 15 km
for each 1×1 degree grid box for the time period between 15:00
and 20:00 UTC during November 2004 (see Garber et al., 2005).
The crosses and plus signs indicate all GLOBE locations report-
ing contrail observations between April 2004 and June 2005. The
small white crosses represent locations with 30 or fewer total ob-
servations, while the larger white crosses are locations with more
than 30 total observations. The black plus signs denote locations
with more than 50 observations taken during mostly clear (cloud
coverage less than 25%) conditions.

(UTH) due to large dry biases in the balloon soundings used
to construct the analyses and to internal adjustments made to
meet the model’s physical constraints (Minnis et al., 2005b).
Although this dry bias prevents a straightforward determina-
tion of persistent contrail formation via Schmidt/Appleman
theory, such a dry bias might be correctable if the numerical
weather humidity data can be shown to be consistent with the
appearance or non-appearance of contrails. Thus, one out-
standing problem that must be addressed before a realistic
simulation of contrails can be achieved is to determine how
accurately the meteorological data provided by the numerical
weather analyses and forecasts diagnose contrail formation
conditions.

This paper evaluates the potential for using the RUC and
ARPS models to diagnose and predict persistent contrail for-
mation conditions using a variety of datasets. To achieve
that goal, we match several months of contrail occurrence
statistics derived from satellite and surface observations to
the NWA-derived humidity, vertical velocity, wind shear and
atmospheric stability. The relationships between contrail oc-
currence and the NWA-derived statistics are then analyzed to
determine under which atmospheric conditions the formation
of persistent contrails is favored.

2 Data and methodology

Two independent types of contrail observations are used to
evaluate the NWA models. Satellite data can reveal con-
trails above lower level clouds that are missed by surface ob-
servers, but are biased, on average, toward lower occurrence
rates. Surface observers can provide more reliable contrail
observations and detect some of the thinner contrails missed
by the satellite.

2.1 Surface data

The Global Learning and Observations to Benefit the Envi-
ronment (GLOBE) program collects observations of cloud
occurrence and coverage throughout the contiguous United
States (CONUS) from primary and secondary schools across
the country. (See www.globe.gov for more information about
the GLOBE program.) In May 2003, GLOBE initiated a
contrail observation protocol to measure and classify con-
trail observations. A primary goal of the GLOBE program
is to use detailed written protocols to enable students to pro-
vide scientifically valuable measurements of environmental
parameters (Brooks and Mims, 2001). Over 18 500 obser-
vations were reported over the region between 1 April 2004
and 27 June 2005. The observations usually include con-
trail coverage, contrail number, cloud coverage, cloud type
and a classification of contrails into three categories, short-
lived (SHRT), non-spreading persistent contrails (NSPR),
and spreading persistent contrails (SPRD). The contrail cat-
egories are defined as follows: short-lived contrails are con-
trails that dissipate as the aircraft moves across the sky. Per-
sistent contrails are contrails that remain in the sky after the
aircraft has flown out of view of the observer. Spreading con-
trails are defined as persistent contrails wider than the width
of a finger held at arm’s length. This width corresponds to a
contrail that is 2 degrees of arc wide, or at least 350 m wide
(based on a contrail altitude of 10 km) (O’Shea, 1991), which
is the minimum width expected to be detectable in NOAA’s
Advanced Very High Resolution Radiometer (AVHRR) im-
agery. The cloud coverage observations are reported within
six categories based on total coverage of non-contrail cloudi-
ness: no clouds (0% coverage), clear (1–9% coverage), iso-
lated (10–24% coverage), scattered (25–49% coverage), bro-
ken (50–89% coverage) and overcast (90–100% coverage).

The GLOBE contrail dataset contains observations from
417 schools. The schools are mostly located in highly pop-
ulated regions with substantial air traffic (Fig. 1). Only 123
of the schools (29.5%) reported more than 30 observations
during the 15-month time period, but those schools reported
16 008 observations, 86.5% of the total. Nearly all schools
reported only one observation/day. Approximately 92% of
all observations were between 14:30 and 20:30 UTC, and
nearly 58% of the total were between 16:30 and 18:30 UTC.

To test the quality of the surface-based observations, the
set of 11 schools that had at least 50 observations taken under
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Table 1. Mean of the maximum upper tropospheric relative humidities (in percent) with respect to ice (RHI) collocated with 11 GLOBE sur-
face observation locations under mostly clear skies between April 2004 and June 2005 (number of observations in parentheses). Observations
are sorted into four categories based on detection of contrail occurrence by surface and satellite.

Location Lat Lon A: Surface (Y) B: Surface (N) C: Surface (Y) D: Surface(N)
Satellite (Y) Satellite (Y) Satellite (N) Satellite (N)

Mobile, AL 30.70 N−88.05 W 86.91 (8) 84.09 (5) 54.10 (3) 42.96 (48)
Fayetteville, NC 35.05 N−78.59 W 77.47 (8) 79.31 (5) 81.00 (4) 38,94 (18)
Norfork, AR 36.20 N−92.27 W 76.35 (6) –(0) 40.65 (22) 38.09 (25)
Mountain Home, AR 36.24 N−92.32 W 73.43 (6) 74.01 (2) 38.03 (19) 39.94 (17)
Hartland, ME 44.88 N−69.45 W 86.58 (4) 80.42 (1) 63.16 (2) 46.01 (13)
Placerville, CA 38.78 N−120.89 W 96.20 (18) 64.38 (3) 31.44 (3) 37.80 (11)
Tucson, AZ 32.17 N−110.44 W – (0) – (0) 39.15 (2) 43.64 (21)
Waynesboro, PA 39.75 N−77.57 W 96.40 (2) – (0) 25.57 (1) 53.32 (15)
Box Elder, MT 48.29 N−109.87 W 84.29 (1) 74.41 (3) 70.58 (2) 86.86 (10)
Whitehall, MI 43.38 N−86.32 W 92.99 (5) 94.52 (6) – (0) 70.59 (24)
Washington, DC 38.56 N−77.01 W 94.96 (12) 94.92 (2) 57.17 (12) 54.36 (10)
Total 88.19 (70) 82.51 (27) 46.50 (70) 48.26 (212)

mostly clear skies (non-contrail cloud coverage less than
25%) were chosen for closer study. Because these schools
provided multiple observations throughout the period, we ex-
pect that these locations would be more likely to provide
high quality contrail observations among the GLOBE par-
ticipants than locations with few contrail reports. Figure 1
shows the location of the 11 schools as a large black plus
(+) sign. All schools with the exception of Box Elder, Mon-
tana are located in regions with substantial commercial air
traffic during the typical observation period. From these
schools, a uniformly random sample of 379 GLOBE con-
trail observations were compared with observations of con-
trail occurrence determined by visual inspection of loops
of nearly coincident, multi-spectral Geostationary Opera-
tional Environmental Satellite (GOES) imagery (Minnis et
al., 2008). The comparison between surface and satellite
observations is summarized in Table 1, where the observa-
tions are sorted into four categories. Category A indicates
that both the surface and satellite observations detected con-
trails, while category D shows the cases where both meth-
ods detected no contrails. Category B includes the occasions
when contrail occurrence was detected by satellite but not
reported by the student observers, and category C include
the observations when the surface observer reported persis-
tent contrails while none were apparent in the satellite im-
agery. The surface and satellite observations matched nearly
75% of the time (categories A and D), while 18% of the
observations were in category C, and the remaining 7% of
observations were in category B. As a test of the integrity
of the surface and satellite observations, the maximum rela-
tive humidity with respect to ice (RHI) within the upper tro-
posphere (between 150 and 400 hPa) was determined from
the ARPS analyses for each observation, and the mean for
each observation category is presented in Table 1. The mean

ARPS RHI for category A observations was 88.2%, while
the mean ARPS RHI was only 48.3% when both observa-
tions showed no contrails (category D). It is important to
note some differences between surface-based and satellite-
based observations. Surface observers often miss contrails
forming above lower cloudiness (although by choosing only
mostly clear observations, this type of error should be min-
imal here), misidentify linear cloud features as contrails (or
contrails as cloud streaks), or record the observation incor-
rectly in the contrail report. Cloud cover and the misidenti-
fication of cloud streets as contrails also hamper the visual
detection of persistent contrails in the GOES satellite im-
agery loops. Surface observers, however, can detect much
narrower and probably optically thinner contrails than those
seen in the 4-km resolution GOES satellite imagery. Some
of the cases where observers reported contrail coverage not
seen in the satellite (category C) may have been due to the
observation of non-spreading persistent contrails that could
not be detected in the GOES imagery loops. In addition,
over 75% of the category C reports occurred at only three
schools. Due to an ambiguity in the GLOBE contrail report-
ing form, some schools may have reported short-lived con-
trails in the contrail coverage fractions, leading to the large
number of category C reports for those locations. The lack
of any substantial difference in the ARPS RHI between cat-
egories C and D at the three schools supports the possibility
of this type of error.

2.2 Satellite data

Multi-spectral data from the AVHRR onboard theNOAA-16
satellite were used to identify linear contrails (Lee, 1989)
following the contrail detection algorithm of Mannstein et
al. (1999) as applied by Palikonda et al. (2005). The
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Mannstein et al. (1999) algorithm uses a combination
of channel 4 (10.8-µm) and channel 5 (12.0-µm) radi-
ances to identify contrails. Radiance data were collected
from 366 mid-afternoon overpasses of the satellite between
16 April 2004 and 27 June 2005 within a 4×6 degree grid
box over eastern Ohio/western Pennsylvania/West Virginia
(38◦–42◦ N; 78◦–84◦ W), an area selected because of its
heavy commercial air traffic (Garber et al., 2005). During
the observation period, contrails were detected within 43.3%
of all available grid boxes, while cirrus was detected within
47.7% of the available grid boxes. Minnis et al. (2005a)
and Palikonda et al. (2005) found that the technique tends to
overestimate contrail coverage by 20–40% mainly because
of natural cirrus that appears much like contrails.

2.3 Meteorological data

Meteorological data from the high-resolution, hourly RUC-
20 analyses and ARPS analyses and forecasts provide infor-
mation on temperature, humidity, pressure, and vertical ve-
locity that is matched with each of the surface and satellite
observations. The RUC-20 data have a resolution of 20 km,
while the ARPS data were obtained from the 27-km resolu-
tion, hourly CONUS domain analyses. The ARPS forecasts
are 1-day (16–20 h) , 2-day (40–44 h), and 3-day (64–68 h)
forecasts from 16:00 UTC to 20:00 UTC.

To match the surface and meteorological data, data from
the RUC analyses closest in time with the contrail observa-
tions are bi-linearly interpolated to the location of each ob-
servation. An observation is not used if the time difference
between the observation and the RUC analysis was greater
than 1 h. The level between 400 and 150 hPa with the max-
imum relative humidity with respect to ice (RHImax) is de-
termined from all levels (spaced at every 25 hPa) that have
a temperature less than or equal to−40◦C. The tempera-
ture constraint was added to eliminate areas where the atmo-
sphere is likely to be too warm to form contrails (Appleman,
1953). Although the observed contrails may have formed at
other levels, this level was chosen as the most likely level
for contrail formation, and to provide a consistent represen-
tation of humidity at typical commercial aircraft flight levels.
The probability distribution function of the level of RHImax
is roughly Gaussian in shape for both the RUC and ARPS
analyses with a maximum around 250 hPa.

All other meteorological data (including vertical velocity)
are selected from this level for comparison with the surface
observations of contrail occurrence. The vertical shear of
the horizontal wind and the temperature lapse rate for the
25-hPa layer below the level of maximum RHI are also com-
puted. The vertical velocity, the lapse rate (a measure of the
atmospheric stability) and the vertical shear are expected to
influence the spreading rate of persistent contrails (Jensen et
al., 1998).

A similar procedure is used to match the ARPS upper tro-
pospheric data with the surface-based contrail observations.

The RHI is computed from the ARPS fields of potential tem-
perature and specific humidity at the 25-hPa intervals to de-
termine the level of maximum upper tropospheric humidity.

To compare NWA output with the satellite observations,
contrail and cirrus occurrence statistics are derived for each
1×1 degree grid box within the 4×6 degree observation do-
main. Contrail occurrence is determined for each grid box
from the automated linear contrail detection algorithm while
cirrus occurrence is determined by visual inspection of in-
frared imagery from each satellite overpass. Meteorological
data (including RHI, vertical velocity, wind shear and atmo-
spheric lapse rate) from the RUC and ARPS are then linearly
interpolated to the center of each 1×1 degree box within the
domain to correlate the meteorological data with the occur-
rence of contrails and cirrus. Due to gaps in available me-
teorological data, and to the satellite viewing angle require-
ments for the contrail detection method, only 5400 grid box
matches were available during the observation period.

3 Results

3.1 Comparison of NWA output with surface observations

Contrail coverage was reported in 27.0% of a total of 18 504
surface observations. At least one persistent (either spread-
ing or non-spreading) contrail was reported in 17.0% of the
observations. This frequency is slightly higher than Min-
nis et al. (1993) for the period of highest contrail occur-
rence, 1993–1994: 15.2% for unobscured skies. Most of
the GLOBE data (80.1%) were taken during the non-summer
months when contrail coverage is greater. Similar to the US
Air Force observers in the Minnis et al. study, the high-
est contrail frequencies were reported from October through
April (18.8%), while the lowest contrail frequencies were re-
ported from June through September (12.0%). Most of the
persistent contrail observations (71.3%) were made in partly
cloudy skies (either clear skies, or skies with isolated or scat-
tered cloudiness). Table 2 shows the mean value of RHImax
calculated from the collocated RUC and ARPS analyses for
several cloudiness categories.

The increase in RHImax with increasing cloud coverage
category suggests that the GLOBE cloud and contrail obser-
vations were consistent with the numerical weather output,
as the largest RHImax values occurred when overcast skies
were reported. Although most persistent contrails were ob-
served under partly cloudy conditions, the RHIs computed
by both numerical weather analyses were higher when per-
sistent contrails formed than when partly cloudy conditions
were reported. Table 2 shows that persistent contrails form
as expected in high humidity environments, although a com-
parison between the mean RHImax for persistent contrails
(the category NSPR+SPRD) with the minimum RHI required
by the Schmidt/Appleman criteria (100%) demonstrates that
both models show a dry bias of at least 15 to 38% when
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Table 2. Mean and standard deviation (in parentheses) of the maximum upper tropospheric relative humidities (in percent) with respect to
ice (RHI) from RUC and ARPS analyses and from ARPS 1-day, 2-day and 3-day forecasts collocated with GLOBE surface observations
between 1 April 2004 and 27 June 2005. The number of GLOBE observations that were matched to the RUC (R obs.) and ARPS (A obs.)
analyses for each cloudiness category are also included. The lines in the table indicating contrails are presented in bold print.

R obs. RUC A obs. ARPS 1-day 2-day 3-day

No cloud 1783 33.78 (21.4) 1355 51.83 (22.2) 47.61 (21.8) 57.14 (22.4) 59.54 (23.9)
Clear 2661 46.32 (25.0) 2178 65.73 (26.1) 60.18 (25.4) 67.63 (23.9) 68.20 (23.8)
SHRT only 1302 47.03 (24.8) 1116 67.08 (23.4) 61.78 (24.7) 69.50 (22.1) 70.40 (22.7)
Isolated 2017 51.72 (26.2) 1655 71.32 (25.6) 65.25 (25.3) 70.62 (24.3) 70.91 (24.3)
Scattered 3168 53.87 (26.6) 2624 72.17 (28.2) 66.25 (26.5) 70.90 (24.6) 70.35 (24.6)
Cirrus 4472 57.63 (25.7) 3676 78.03 (25.2) 71.62 (24.2) 74.79 (22.4) 73.73 (23.0)
Broken 3433 59.03 (27.0) 2902 77.76 (27.4) 70.61 (26.9) 72.99 (24.9) 72.20 (25.4)
NSPR only 892 62.18 (24.6) 735 82.57 (24.6) 75.88 (20.9) 77.80 (20.4) 75.45 (23.1)
NSPR + SPRD 2294 62.27 (24.9) 1895 84.66 (22.4) 77.58 (20.8) 79.13 (20.2) 77.19 (22.0)
SPRD only 1001 62.08 (25.4) 834 85.59 (22.7) 77.54 (21.1) 79.35 (20.7) 77.79 (21.3)
Overcast 5060 65.85 (27.5) 4247 85.63 (27.5) 74.43 (26.8) 73.94 (26.4) 71.48 (27.1)

compared to contrail formation theory. The contrail obser-
vations with the highest average RHImax conditions occurred
when persistent spreading contrails were present. The dry
bias is expected as both models limit upper tropospheric
moisture. Even though ice supersaturation is common in the
upper troposphere and RHI has been measured to be as high
as 150% (e.g., Miloshevich et al., 2001), both the RUC and
the ARPS analyses contain at most only slight ice supersat-
urations which likely appear incidentally as the result of nu-
merical issues. The RUC-20 analyses do not allow RHI to
exceed 100% by more than a few percent at pressures below
300 hPa. The RUC-20 mean value of RHI for overcast clouds
is ∼15% less than that found by Minnis et al. (2005b) when
comparing RUC-2 RHI with clouds having temperatures be-
low −40◦C. This difference reflects the change in upper tro-
pospheric humidity processing scheme between RUC-2 and
RUC-20 to limit RHI artificially in the RUC-20. The ARPS
analyses allow some ice supersaturation, although RHI val-
ues rarely exceed 112%. No ice supersaturation occurs in the
ARPS forecasts; the maximum RHI is only 100 percent. This
difference between the analyses and forecasts could account
for the marked drop in the RHI values in the forecasts shown
in Table 2.

Table 3 shows the mean values of vertical velocity (vv),
vertical wind shear (vs), and atmospheric lapse rate (lr) from
the RUC and ARPS collocated with the surface contrail ob-
servations from GLOBE. Although most persistent contrails
were reported under partly cloudy conditions, the RUC and
ARPS vertical velocities were larger than the mean vertical
velocities reported under such cloudiness conditions. When
persistent contrails were present, the vertical shear of the hor-
izontal wind was similar to the shear analyzed under typ-
ical partly cloudy conditions. The temperature lapse rate
at the level of maximum RHI indicates the stability of the
atmosphere where contrails form, and helps determine the

Table 3. Mean vertical velocity in cm s−1 (vv), mean vertical shear
of the horizontal wind in m s−1 km−1 (vs), and mean lapse rate in
K km−1 (lr) computed from RUC and ARPS analyses collocated
with GLOBE surface observations between April 1, 2004 and June
27, 2005. The lines in the table indicating contrails are presented in
bold print.

vv (cm s−1) vs (m s−1 km−1) lr (K km−1)

RUC ARPS RUC ARPS RUC ARPS

No cloud −1.16 −0.66 3.94 3.42 −6.77 −6.00
Clear −0.71 −0.53 4.10 3.66 −7.01 −6.43
SHRT only −0.56 −0.57 3.84 3.55 −7.11 −6.56
Isolated −0.18 −0.18 4.11 3.57 −7.12 −6.82
Scattered +0.04 −0.31 4.11 3.60 −7.07 −6.85
Cirrus +0.11 −0.15 4.12 3.73 −7.24 −7.02
Broken +0.81 +0.20 4.22 3.79 −7.14 −7.06
NSPR only +0.50 +0.05 4.22 3.70 −7.33 −7.07
NSPR+ SPRD +0.37 +0.10 4.18 3.66 −7.35 −7.18
SPRD only +0.31 +0.19 4.14 3.66 −7.34 −7.28
Overcast +2.05 +1.04 4.57 4.22 −7.24 −7.19

depth of persistent contrails. Contrails are expected to be
thicker vertically as the magnitude of the lapse rate increases
(i.e., the atmosphere becomes less stable). Although Table 3
shows that the largest mean lapse rates occur in both the RUC
and ARPS analyses when spreading persistent contrails are
reported, the differences in the lapse rate are not large enough
to be statistically significant.

3.2 Comparison of NWA output with satellite observations

Figure 2 presents normalized probability density histograms
of RHI computed using the 1×1 degree grid boxes from the
satellite overpasses. In Fig. 2a, RHI values from the RUC
and ARPS models are separated into grid boxes containing
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Figure 2a. Normalized probability distributions of relative humidity with respect to ice (RHI) 

computed from RUC and ARPS analyses collocated with NOAA-16 observations of the 

occurrence or non-occurrence of persistent contrails between April 1, 2004 and June 27, 2005. 

Fig. 2a. Normalized probability distributions of relative humidity
with respect to ice (RHI) computed from RUC and ARPS anal-
yses collocated with NOAA-16 observations of the occurrence or
non-occurrence of persistent contrails between 1 April 2004 and
27 June 2005.

Table 4. Optimum RHI-based ARPS and RUC forecast skill statis-
tics determined fromNOAA-16measurements of cirrus and contrail
occurrence for OH/PA/WV region from 366 afternoon overpasses
from 16 April 2004 to 27 June 2005.

Cirrus Optimum RHI Hit Rate Bias Ratio HSS

ARPS 78 0.779 0.967 0.556
RUC 62 0.756 1.004 0.512
ARPS 1-day forecast 76 0.732 0.960 0.461
ARPS 2-day forecast 76 0.632 1.092 0.265
ARPS 3-day forecast 80 0.552 0.933 0.097
Contrail
ARPS 74 0.614 1.159 0.228
RUC 62 0.589 1.106 0.173
ARPS 1-day forecast 70 0.613 1.146 0.227
ARPS 2-day forecast 77 0.572 1.123 0.143
ARPS 3-day forecast 80 0.545 0.985 0.075

contrails (dashed lines) and boxes with no contrails (solid
lines). The contrail distributions are skewed toward higher
RHI values, but the “no contrail” distributions are relatively
uniform. The distributions in Fig. 2b, which are separated
by the presence or absence of cirrus, show a clear distinc-
tion in the humidity between the cirrus and non-cirrus grid
boxes. Figure 2b suggests that the NWAs may be better at
predicting cirrus than contrail occurrence. The demarcation
seen in Fig. 2b suggests that for the ARPS analyses, a sim-
ple threshold near 75% RHI would accurately predict cirrus
occurrences while for the RUC analyses the best threshold
would be between 60 and 65%.

To assess the skill level of such an RHI-based forecast,
three measures of forecasting skill were computed. The skill
scores were constructed using a simple 2-by-2 forecast ma-
trix with the following outcomes:a is the number of cases

 

Figure 2b.  Normalized probability distributions of relative humidity with respect to ice (RHI) 

computed from RUC and ARPS analyses collocated with NOAA-16 observations of the 

occurrence or non-occurrence of cirrus between April 1, 2004 and June 27, 2005. 

 

Fig. 2b. Normalized probability distributions of relative humidity
with respect to ice (RHI) computed from RUC and ARPS analyses
collocated with NOAA-16 observations of the occurrence or non-
occurrence of cirrus between 1 April 2004 and 27 June 2005.

where the RHI is at or above the threshold and cloud is ob-
served in the grid box (hits);b is the number of cases where
RHI is at or above the threshold but no cloud is observed
(false alarms);c is the number of cases where RHI is below
the threshold but a cloud is observed (misses); andd is the
number of cases where RHI is below the threshold and no
cloud is observed (correct rejections). The three skill mea-
sures are:

Hit rate. The hit rate is (a+d)/(a+b+c+d), and repre-
sents the percentage of forecasts in which the method cor-
rectly predicted the observed event.

Bias ratio. The bias ratio is computed from (a+b)/(a+c),
and measures the tendency of a forecast method to over-
or under-forecast the occurrence of contrails or cirrus. A
perfectly unbiased method would have a bias ratio of 1.00,
while values below unity indicate that the cirrus/contrail oc-
currence is under-forecasted, and values above unity indicate
that cirrus/contrail occurrence is over-forecasted.

Heidke Skill Score (HSS). The HSS is calculated
as HSS=2(ad–bc)/[(a+c)(c+d)–(a+b)(b+d)] (see Wilks,
1995). This measure of forecasting skill compares the hit
rate of the forecast method with the hit rate achieved with a
random forecast. Perfect forecasts have an HSS of one, fore-
casts equal in skill to the random forecast have an HSS of
zero, while a negative HSS indicates that the forecasts are
less skillful than random forecasts.

Table 4 shows the hit rate, bias ratio and HSS computed
for the best-case RHI threshold chosen for each NWP analy-
sis/forecast for both cirrus and contrail occurrence. The opti-
mal RHI for each case was determined by finding the partic-
ular RHI threshold that maximizes HSS. The HSS-optimized
thresholds also tended to have the highest hit rates, and the
bias ratios usually were close to 1.00.
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To test the significance of the HSS in the contrail cases
(compared to a random forecast), the variance of HSS within
1000 series of random contrail predictions were compared
to the HSS computed for the contrail cases. For each se-
ries, random contrail predictions were determined for each
satellite grid box using uniformly distributed random num-
bers and the mean contrail occurrence within the grid boxes
(approximately 0.46). The HSS of the random forecasts were
computed for each series, and the distribution of HSS for the
1000 runs were plotted to determine the variance of the HSS.
The variance of HSS in the random forecasts is a function of
the total number of contrail forecasts (i.e., grid boxes) within
a series. For the RUC and ARPS analyses (5401 grid boxes),
the HSS was no more than +0.050 and no less than−0.043.
The ARPS 3-day forecasts had the smallest number of avail-
able grid boxes (2385), so that the range in HSS for the ran-
dom 3-day forecasts ranged from +0.067 to−0.053. We ex-
pect that the HSS in all of the contrail cases (except perhaps
the 3-day forecasts, which had an HSS equal to 0.075) are
beyond at least three times the standard deviation of the HSS
in the random forecasts, and thus are statistically significant.

As might be expected based on an inspection of Fig. 2, the
cirrus occurrence forecasts were much better than the contrail
occurrence forecasts for both analyses. Because cirrus and
contrails can only form in supersaturated regions, the optimal
RHI should be at least 100%. Thus, both the RUC and the
ARPS have a dry bias. Some dry bias is expected because
the model analyses produce a grid average relative humidity
such that the model would have an RHI of 100% only when
the entire grid box were covered in clouds, which usually
does not occur when persistent contrails are observed from
the surface. The difference in the skill scores between the
RUC and ARPS analyses is not as large as the difference in
the cirrus skill scores compared to the contrail skill scores.
The higher cirrus skill scores suggest that the model analyses
do a better job representing the areas of UTH associated with
cirrus than regions where persistent contrails appear. This
may be related to the difficulty of the RUC and ARPS to
assimilate contrail observations in their analyses.

4 Discussion and conclusions

The results in Table 2 confirm that relative humidity is
the most important factor determining whether contrails are
short-lived or persistent. Although most surface observations
of contrails occur in clear or partly cloudy skies, the UTH
observed when persistent contrails form is typically much
higher than the average humidities observed under partly
cloudy conditions, or when only short-lived contrails are re-
ported. In contrast, the RHI values reported when spreading
persistent contrails are observed are nearly the same as the
RHI when non-spreading persistent contrails are reported.

Vertical velocity also appears to influence where persistent
contrails may form. Persistent contrails are more likely to ap-

pear when the vertical velocities are positive than when nega-
tive. Although both vertical shear and atmospheric lapse rate
probably influence contrail spreading, these two variables ap-
pear to be less important in determining whether contrails
will spread than the other factors. It is likely that sufficient
UTH and positive vertical velocities help to make contrails
deep enough and long-lived so that the wind shear can spread
the clouds. Another result of this study is that the upper tro-
pospheric RHI in the RUC/ARPS analyses correlates well
with satellite observations of cirrus (probably due to the as-
similation of cirrus coverage in the models), but the prog-
nosis of contrails from relative humidity analyses is com-
plicated by the occasional lack of contrail formation when
UTH is high. This may be the result of cirrus clouds com-
peting with contrails for atmospheric moisture and obscuring
the detection of any contrails that formed. It might also be
due to errors in the UTH diagnosed by the models, or sim-
ply to the lack of jet air traffic in the region. Other factors
that can affect the determination of contrails or cirrus from
NWAs are input data such as satellite radiances or cloud-
top heights. Inclusion of those parameters into the numer-
ical weather assimilation can, in many instances, force the
model to increase or decrease the UTH to match the obser-
vations resulting in the relatively good diagnoses of cirrus-
related parameters seen here. However, such data are avail-
able only in an analysis model and would only contribute to
the diagnoses in a forecast model indirectly by improving the
forecast. A comparison of the forecast skill statistics in Ta-
ble 4 shows that the simple RHI threshold model loses much
forecast skill in predicting cirrus occurrence after 24 h.

Because the intent of this paper is to demonstrate the over-
all applicability of NWA data to predict contrail occurrence,
no consideration is given here to the spatial or seasonal vari-
ations in these atmospheric variables. More insight may be
gained in future studies by looking at spatial or seasonal dif-
ferences in the contrail occurrence data.

Although the meteorological data within the RUC and
ARPS analyses are qualitatively consistent with con-
trail formation theory, direct quantitative agreement with
Schmidt/Appleman theory is not currently possible due to
the artificial upper limits placed on UTH in both analyses.
This arbitrary cutoff of supersaturation removes information
about the humidity field that prevents a straightforward appli-
cation of Schmidt/Appleman theory, which requires accurate
temperature and relative humidity data. The results of Ta-
ble 4 demonstrate that forecast models based on RUC/ARPS
humidity alone have limited skill in diagnosing contrail oc-
currence. Despite these results, the humidity data do show
some consistency with persistent contrail occurrence, and it
is likely that contrail forecasts could be improved by using
logistic regression (Jackson et al., 2001; Travis et al., 1997)
or other statistical methods that can include several meteoro-
logical parameters in the prognosis. We plan such a multi-
variable analysis in an ongoing study. In addition, Burkhardt
et al. (2008) used assumptions about the subgrid variability in
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relative humidity in a general circulation model (ECHAM4)
to diagnose contrail coverage without explicitly represent-
ing ice supersaturation in the model. Such a method could
be useful in determining contrail occurrence and coverage
within the RUC and ARPS analyses. However, we caution
that because upper tropospheric humidity is the main factor
determining contrail formation, contrail forecasts will remain
somewhat limited in accuracy until accurate assimilation of
ice supersaturation is incorporated into numerical weather
analyses and models. Some current numerical weather pre-
diction models such as the ECMWF IFS (Integrated Fore-
casting System) model now include supersaturation over the
ice phase explicitly (Thompkins et al., 2007), and it is en-
couraging that the latest versions of both the RUC and the
ARPS at the time of this writing are now producing signif-
icantly greater levels of ice supersaturation than were avail-
able for comparisons with the observations used in this study.
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