
Introduction
Selenium is an essential trace element that exerts its
biological function predominantly as a catalytically ac-
tive selenocysteine residue (Sec) in selenoproteins. Sec is
co-translationally incorporated into a nascent polypeptide
chain, as directed by the UGA codon, tRNA[Ser]Sec, cis-
acting RNA elements, and trans-acting protein factors
[1]. The reactive selenium donor selenophosphate, which

is required for the synthesis of Sec-tRNA[Ser]Sec, is pro-
duced from selenide and ATP by the action of seleno-
phosphate synthetase (SPS) in vitro [2]. Widely accepted
models of selenide synthesis in mammalian cells include
either degradation of L-selenocysteine via selenocysteine
lyase [3] or stepwise reduction of selenite with glu-
tathione (GSH) [4] or thioredoxin (Trx) [5].
Mammalian TrxRs are homodimeric flavoenzymes
with a catalytic dithiol/disulfide and a Sec residue in the
penultimate position [6]. TrxR using NADPH and Trx as
substrates functions as a general protein disulfide-
reducing system [7]. Trx is a 12-kDa ubiquitous protein
with a redox active dithiol/disulfide in the active site.
Three mammalian TrxRs have been characterized,
namely, the cytosolic TrxR1, the mitochondrial TrxR2
[8], and the mouse testis TrxR3/TGR [9]. TrxR1 displays
very broad substrate specificity, reducing not only Trx
but also several other oxidized proteins and low-
molecular-weight compounds, including selenium com-
pounds, hydroperoxides, and ubiquinone [10]. Holm-
gren’s group [5,11] found that incubation of selenite with
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calf thymus TrxR under aerobic conditions resulted in
excessive oxidation of NADPH over stoichiometry,
which was stimulated by the addition of Trx. Thus, they
suggested that TrxR is responsible for selenide genera-
tion from selenite [5,11]. However, little evidence has
been presented for selenide production by the TrxR sys-
tem or its physiological role in selenoprotein biosynthe-
sis. The present study was undertaken to clarify selenite
reduction systems primarily participating in the biosyn-
thesis of selenoproteins in mammalian cells.

Materials and Methods
Materials－The anti-TrxR1 antibody, from Lab Fron-
tier (Seoul, Korea) ; the anti-Trx antibody, from Redox
Bioscience (Kyoto, Japan) ; the anti-GAPDH antibody,
from Ambion (Austin, TX) ; and horseradish
peroxidase-conjugated secondary antibodies, from Bio-
Rad (Hercules, CA). [75Se]Selenite (850 mCi/mg) was
obtained from the University of Missouri Research Reac-
tor Center (Columbia, MO). siRNA targeted to human
TrxR1 (sense strand : 5’- UGAUAGAAGCUGUACA-
GAATT-3’) was purchased from Samchully Pharm. Co.
(Seoul, Korea) ; siRNA targeted to Trx (catalog no. S
100753606), from Qiagen (Valencia, CA) ; Silencer
negative control #1 siRNA, from Ambion. Rainbow [14C]
methylated protein markers were obtained from GE
Healthcare Biosciences (Uppsala, Sweden). All other
chemicals and reagents were commercial products of the
highest grade available.
Cell Culture and siRNA Transfection－The HeLa cell
line used in this study was obtained from the American
Type Culture Collection (Manassas, VA) and maintained
in Dulbecco’s modified Eagle’s medium supplemented
with 10% fetal bovine serum at 37℃ in 5% CO2 under a
humidified atmosphere. HeLa cells were transfected with
siRNA oligo duplexes for Trx or TrxR1 at a final con-
centration of 40 nM using Lipofectamine RNAiMAX ac-
cording to the manufacturer’s protocol.
75Se Labeling of Cells－Cells cultured for 72 h after
siRNA transfection as described above were labeled with
15 nM [75Se]selenite (1.25 µCi/ml-medium) for 11 h. La-
beled cells were harvested, washed with PBS three times,
and lysed in 100 µl of a 25 mM Tris-HCl buffer (pH 8.3)
containing 192 mM glycine and 0.1% SDS. A 10-µl por-
tion of the lysates was analyzed on a 4-20% gradient gel
on SDS-polyacrylamide gel electrophoresis (PAGE) and
stained with Coomassie Brilliant Blue (CBB). The gels
were dried and exposed to a Storage Phosphor Screen
(GE Healthcare Biosciences). The signal from the radio-

labeled 75Se-selenoprotein was detected using a Typhoon
9400 (GE Healthcare Biosciences).
Western Blot Analysis－Proteins solubilized with the
M-PER reagent containing 1 mM EDTA and 1 mM
phenylmethylsulfonyl fluoride were separated by 12.5%
SDS-PAGE and transferred to polyvinylidene difluoride
membranes. Immunoreactive proteins were detected with
the ECL Plus chemiluminescent detection system (GE
Healthcare, UK).

Results and Discussion
Since the thioredoxin system comprising Trx, TrxR,
and NADPH acts as a major redox regulation tool in
mammalian cells [10], we examined whether it partici-
pates in the utilization of selenite as a selenium source
for selenoprotein biosynthesis. An siRNA was designed
to target human TrxR1 and tested for its ability to reduce
TrxR1 expression in HeLa cells. Western blot analysis
revealed that HeLa cells transfected with the TrxR1-
siRNA exhibited 59% reduction in TrxR1 protein levels,
as compared with the control cells transfected with a
non-silencing siRNA (Fig. 1A). The TrxR1-depleted
cells were cultivated for 11 h in the presence of [75Se]se-
lenite and analyzed by SDS-PAGE. As shown in Fig. 1C,
no significant difference was found between the CBB-
stained proteins in the TrxR1-depleted cells and those in
the non-silencing siRNA-treated cells. However, an au-
toradiogram of the same PAGE gel revealed that the in-
corporation of the 75Se label into selenoproteins was
markedly decreased by the TrxR1 depletion (Fig. 1C ).
We then examined HeLa cells transfected with Trx-
siRNA, which showed 99% reduction in the Trx concen-
tration as compared with the control, in which a non-
silencing siRNA was used (Fig. 1B ). It is noteworthy
that the depletion of TrxR1 only slightly affected the
amount of Trx. The Trx-depleted cells were labeled with
[75Se]selenite, and the incorporation of the 75Se label into
selenoproteins by the cells was analyzed (Fig. 1C ). Little
difference was found between the Trx-depleted cells and
the non-silencing control cells. These results indicate that
TrxR1, but not Trx, plays a crucial role in the metabo-
lism of selenite for the production of selenoproteins in
mammalian cells．
Kumer et al. [5] demonstrated a direct reduction of se-
lenite by TrxR with NADPH in vitro. Based on the find-
ing that 3 mol of NADPH is oxidized per mol of selenite
by calf thymus TrxR, they suggested that selenide is
probably formed in the reaction. Our RNAi studies have
shown that TrxR1, but not Trx, plays a important role in
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supplying selenium derived from selenite to selenopro-
tein biosynthesis in HeLa cells. Our results establish an
interesting relationship between TrxR1 and the selenium
metabolism in mammalian cells : the selenoprotein TrxR
1 is responsible for the generation of selenide required
for its own synthesis.
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