
1. Introduction
Zinc is the second most abundant trace element in the
body and powerfully influences cell division and differ-
entiation [1,2]. In microorganisms, plants and animals,
over 300 enzymes require zinc for their functions. Zinc
has three functions in zinc enzymes : catalytic, coactive
(or cocatalytic) and structural [3]. In the brain, zinc turn-
over is strictly regulated via the brain-barrier system
[4,5]. Averaged intracellular zinc concentration is esti-
mated to be approximately 150 mM, judging from zinc
concentration in the total brain, while extracellular zinc
concentration is estimated to be approximately 0.15−
1 μM from zinc concentration in the cerebrospinal fluid

and extracellular zinc concentration measured by in vivo
microdialysis. Zinc serves as an intracellular and an ex-
tracellular signal factor in synaptic neurotransmission ;
approximately 90% of the total brain zinc is zinc metal-
loproteins. The rest exists in the presynaptic vesicles and
is histochemically reactive (as revealed by Timm’s
sulfide-silver staining method) [6,7].
Zinc concentration in the hippocampus is relatively
high in the brain [8] and the action of zinc is closely
linked to functions and pathological processes in the hip-
pocampus [9]. There is a large number of evidence on
zinc-containing glutamatergic neurons that sequester zinc
in the presynaptic vesicles and release it in a calcium-
and impulse-dependent manner [7,10]. Zinc concentra-
tion in the presynaptic vesicles is the highest in the giant
boutons of hippocampal mossy fibers and is estimated to
be approximately 300 μM there [11]. All giant boutons
of mossy fibers contain zinc in the presynaptic vesicles,
while approximately 45% of Schaffer collateral boutons
is zinc-positive [12]. Vesicular zinc may serve as an en-
dogenous neuromodulator of several important receptors
including the α-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (AMPA)/kainate receptor, N-methyl-D-
aspartate (NMDA) and γ-amino butyric acid (GABA) re-
ceptors [13-15]. However, the extracellular concentration
of zinc reached after the release is a matter of debate. Es-
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timates after tetanic stimulation range between 10 and
100 μM [16,17], even up to 300 μM under extreme con-
ditions [18]. Excess of extracellular zinc become neuro-
toxic because of the translocation of zinc to postsynaptic
neurons [19-23].
This review summarizes zinc action via crosstalk be-
tween zinc and calcium in both functional and pathologi-
cal aspects and also enhanced glutamate excitotoxicity in
zinc deficiency.

2. Zinc action via crosstalk between zinc and cal-
cium in functional aspect
Neural circuits of the zinc-containing glutamatergic
neurons are considered to be associated with the episodic
memory function and are important for behavior, emo-
tional expression and cognitive-mnemonic operations [4].
Lu et al. [24] demonstrated that endogenous zinc is re-
quired for the induction of long-term potentiation (LTP)
in hippocampal mossy fiber synapses. Li et al. [25] dem-
onstrated that the induction of LTP in hippocampal
mossy fiber synapses requires translocation of synapti-
cally released zinc. On the other hand, the impairment of
spatial learning, memory or sensorimotor function was
not observed in zinc transporter-3-null mice, which lack
the histochemically reactive zinc in synaptic vesicles
[26,27]. There is also some evidence that zinc has no role
in the CA3 mossy fiber LTP [16,28]. Thus, the physi-
ological significance of zinc as an endogenous neuro-
modulator is still poorly understood.
To clarify the presynaptic action of zinc released from
mossy fibers, zinc action in presynaptic activity during
tetanic stimulation was examined using rat hippocampal
slices. In mossy fiber terminals preferentially double-
stained with zinc and calcium indicators, the increase in
calcium orange signal during delivery of tetanic stimuli
(100 Hz, 1 s) to the dentate granule cell layer is enhanced
by addition of 1 mM CaEDTA and attenuated by addi-
tion of 100 μM zinc [29]. It is likely that zinc released
from mossy fiber terminals suppresses the increase in
calcium signal in the presynaptic terminals induced by
stimulation of depolarization, followed by inhibitory
modulation of the presynaptic activity (Fig. 1). Presynap-
tic calcium influx through voltage-dependent calcium
cannel (VDCC) triggers vesicular exocytosis. FM4-64 is
known as a fluorescent indicator of synaptic vesicle recy-
cling and is taken up into presynaptic vesicles in an
activity-dependent manner. Subsequent rounds of exocy-
tosis arising from depolarization lead to the release of the
dye from the presynaptic terminals (destaining) [30,31].

When tetanic stimuli at 10 Hz for 180 s, which induce
mossy fiber LTP, are delivered to the dentate granule cell
layer, the decrease in FM4-64 signal is enhanced by ad-
dition of 1 mM CaEDTA and suppressed by addition of
100 μM zinc [29]. Zinc released from mossy fiber termi-
nals during tetanic stimulation may suppress vesicular
exocytosis, probably via inhibitory modulation of intra-
cellular calcium mobilization (Fig. 1). The hippocampal
mossy fiber LTP is expressed by presynaptic mecha-
nisms leading to persistent enhancement of neurotrans-
mitter release. The induction of mossy fiber LTP is criti-
cally dependent on the increase in presynaptic calcium
induced by stimulation of depolarization [32-34], which
activates the calcium-calmodulin-sensitive adenyl cyc-
lase I [35]. Therefore, mossy fiber zinc seems to be in-
volved in the presynaptic mechanism leading to the LTP.
On the other hand, the increase in calcium concentra-
tion in postsynaptic CA3 pyramidal cells is required for
the initiation and modulation of numerous cellular proc-
esses including synaptic plasticity such as LTP [36-39].
It occurs via influx through NMDA receptors [37,39] and
VDCC [40,41] or release from internal calcium stores
[39,42]. Zinc blocks NMDA receptors [43], in addition
to VDCC [44]. However, the action of intracellular zinc

Fig. 1 Zinc action in calcium mobilization in the
mossy fiber synapses.
When the action potential is delivered to mossy
fibers, calcium influx occurs via voltage-
dependent calcium channel (VDCC) and cal-
cium concentration is increased in the terminals
(1), followed by exocytosis (2). Zinc released
from mossy fiber terminals may negatively
modulate the presynaptic activity via suppres-
sion of the increase in calcium concentration (3).
The negative modulation of the presynaptic ac-
tivity by zinc leads to suppression of postsynap-
tic calcium mobilization (3). Zinc also nega-
tively modulates the increase in calcium concen-
tration in postsynaptic CA3 neurons (3).
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in calcium release from internal stores via calcium chan-
nels, i.e., inositol 1,4,5 trisphosphate (IP3) and ryanodine
receptors, is unknown. Zinc uptake into CA3 pyramidal
cells and its significance was examined using rat hip-
pocampal slices with ZnAF-2DA, a membrane-
permeable zinc indicator [45]. Intracellular ZnAF-2 sig-
nal in the CA3 pyramidal cell layer is increased during
delivery of tetanic stimuli to the dentate granule cell
layer. This increase is completely blocked in the presence
of CNQX, an AMPA/kainate receptor antagonist. These
results suggest that zinc is taken up into CA3 pyramidal
cells via activation of AMPA/kainate receptors. AMPA/
kainate receptors consist of calcium-impermeable and
calcium-permeable (GluR2-lacking) receptors. The
calcium-permeable AMPA/kainite receptors, which are
involved in zinc influx, may play an important role in
both synaptic plasticity and excitotoxicity [46,47]. The
action of zinc taken up into CA3 pyramidal cells in the
increas in intracellular calcium via group I metabotropic
glutamate receptors is examined by regional delivery of
tADA, a group I metabotropic glutamate receptor agonist,
to the stratum lucidum after blockade of AMPA/kainate
receptor-mediated calcium and zinc influx [45]. Intracel-
lular calcium orange signal in the CA3 pyramidal cell
layer is increased by stimulation with tADA, suggesting

that tADA induces calcium release from internal stores
in CA3 pyramidal cells. The increase in calcium orange
signal by tADA is enhancedby perfusion with pyrithione,
a zinc ionophore that decreases basal ZnAF-2 signal in
the CA3 pyramidal cell layer. On the other hand, it is
blocked by perfusion with pyrithione and zinc that in-
creases basal ZnAF-2 signal. These results indicate that
the increase in calcium levels via the metabotropic gluta-
mate receptor pathway is inversely related to zinc levels
in CA3 pyramidal cells (Fig. 1). The cross talk between
calcium and zinc via this pathway seems to be important
for CA3 neuronal activity.

3. Zinc action via crosstalk between zinc and cal-
cium in pathological aspect
When 1 mM glutamate was regionally delivered to the
stratum lucidum, in which mossy fiber synapses exist, in
hippocampal slices double-stained with zinc and calcium
indicators, extracellular zinc signal is markedly increased
in the stratum lucidum and intracellular calcium signal is
increased in the CA3 pyramidal cell layer [48]. Excessive
delivery of exogenous glutamate may lead to the release
of zinc and glutamate from mossy fibers and excite
mossy fiber synapses. The persistent increase in calcium
signal in the CA3 pyramidal cell layer during stimulation
with glutamate is significantly attenuated in the presence
of 100 μM zinc, while significantly enhanced in the pres-
ence of 1 mM CaEDTA. Zinc released from mossy fibers
may attenuate the increase in intracellular calcium signal
in mossy fiber synapses and postsynaptic CA3 neurons
after excessive inputs to dentate granular cells (Fig. 1 and
2). The zinc may negatively modulate the activity of
mossy fiber synapses even under excitation via excess of
extracellular glutamate. However, it is possible that the
zinc becomes neurotoxic via the translocation of the zinc
to CA3 neurons. There is a lot of evidence that excessive
zinc influx via calcium-permeable AMPA/kainate recep-
tors is involved in neurodegeneration [22,46,49]. In ex-
cessive excitation, zinc release from mossy fibers seems
to act protectively for CA3 pyramidal cells initially via
negative modulation of presynaptic activity and postsyn-
aptic calcium mobilization (Fig. 1). However, zinc taken
up into CA3 pyramidal cells may damage the cells (Fig.
2).
In global ischemia, CA1 pyramidal neurons degener-
ate, whereas CA3 pyramidal neurons remain intact
[46,50]. Degeneration of CA1 neurons can be protected
by blockade of calcium-permeable AMPA/kainite recep-
tors [46,51]. Excessive influx of zinc and calcium via

Fig. 2 Toxic action of zinc in pathological processes.
Excess of extracellular glutamate triggers exces-
sive influx of zinc and calcium in postsynaptic
neurons via glutamate receptors and VDCC, fol-
lowed by neurodegeneration. Calcium-
permeable AMPA/kainite receptors play an im-
portant role in the neurodegenerative processes.
Zinc suppresses calcium mobilization into post-
synaptic CA3 neurons via blockade of NMDA
receptors and VDCC. The increase in intracellu-
lar zinc may suppress calcium release from in-
ternal stores, whereas it is toxic in postsynaptic
CA3 neurons.
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calcium-permeable AMPA/kainite receptors results in
neurodegeneration in ischemia (Fig. 2).
On the other hand, zinc concentration in the brain may
be decreased by epileptic seizures [7,52]. Kainate is an
agonist of glutamate receptor subtypes and kainate-
challenged mice and rats are experimental models of hu-
man temporal lobe epilepsy. They have been used to un-
derstand brain zinc movement in epileptic seizures. Zinc
concentration in the hippocampus is significantly de-
creased in kainate-challenged mice [52]. A selective loss
of Timm’s stain is observed in the hippocampal mossy fi-
bers after electrical stimulation of the perforant path,
which evokes hippocampal granule spikes and epilepti-
form discharges [53,54]. Extracellular concentrations of
zinc and glutamate are significantly increased in the hip-
pocampus of young rats challenged with kainate [55].
Thus, the attenuation of Timm’s stain is linked to exces-
sive excitation of zinc-containing glutamatergic neurons
and implies the translocation of zinc to postsynaptic neu-
rons. Neuronal loss is observed in the CA1, CA2 and CA
3 pyramidal cell layers after challenge with kainite [56],
probably followed by the loss of zinc from the hip-
pocampus [52].

4. Enhanced glutamate excitotoxicity in zinc defi-
ciency
Dietary zinc deficiency causes anorexia, weight loss
and growth retardation [57-59]. It is possible that the
stress of severe food restriction leads to the increase in

serum corticosterone concentration via activation of the
hypothalamic-pituitary-adrenal (HPA) axis ; Serum cor-
ticosterone concentration is significantly increased in
young rats after 2-week zinc deprivation (Fig. 3) [60].
Zinc-deficient young rats exhibit behavioral abnormality
in the open-field test, suggesting that activation of the
HPA axis is associated with behavioral abnormality in
zinc deficiency. On the other hand, a novel environment
used for the open-field test can also activate the HPA
axis [61,62]. The hippocampus is linked with the HPA
axis activity and is involved in stress response [63,64].
Thus, hippocampal function seems to be influenced by 2-
week zinc deprivation, although zinc concentration in the
hippocampus is not decreased after 2-week zinc depriva-
tion [65]. On the other hand, hippocampal calcium mobi-
lization is altered by glucocorticoids [63]. Glucocorti-
coids increase voltage-dependent calcium conductance
and calcium-dependent afterhyperpolarization [66,67].
They also increase calcium mobilization into the cytoso-
lic compartment, as well as the decrease in its removal
[68]. The basal signal of intracellular calcium (fluo-4 FF)
is significantly increased in the dentate gyrus, CA3 and
CA1 after 2-week zinc deprivation, suggesting the in-
crease in intracellular Ca2＋ levels in the hippocampus
and the change in excitability of hippocampal neurons
via corticosterone in zinc deficiency (Fig. 3) [69]. In
kainite-challenged rats after 2-week zinc deprivation, the
latency in myoclonic jerks is significantly shorter than in
the control [65]. Susceptibility to kainite-induced sei-
zures in zinc deficiency seems to be linked to the in-
crease in basal Ca2+ levels in the hippocampus.
When mice and rats are fed a zinc-deficient diet for 4
weeks, extracellular zinc concentration in the brain is de-
creased and Timm’s stain is also attenuated [55]. Suscep-
tibility to kainate-induced seizures is markedly enhanced
after 4-week zinc deprivation. Enhanced release of gluta-
mate associated with a decrease in GABA concentrations
is a possible mechanism for the enhanced seizure suscep-
tibility in zinc deficiency. Neuronal loss and TUNEL-
positive cells are more observed in the CA1, CA2 and
CA3 pyramidal cell layers of zinc-deficient group than
those of the control group after challenge with kainite
[56]. Glutamate excitotoxcity, which is induced with ka-
inite, is enhanced by zinc deficiency (Fig. 3). Glutamate
excitotoxicity is a final common pathway for numerous
pathological processes such as Alzheimer’s disease and
amyotrophic lateral sclerosis, in addition to stroke/ische-
mia, temporal lobe epilepsy [70,71]. It is likely that
pathological processes associated with glutamate excito-

Fig. 3 Enhanced glutamate excitotoxicity in the hip-
pocampus in zinc deficiency.
Zinc deficiency activates the HPA axis, fol-
lowed by the increase in serum corticosterone,
and increases the basal levels of intracellular
Ca2+ in the hippocampus prior to the decrease in
extracellular zinc. Intracellular calcium dysho-
meostasis, in addition to zinc dyshomeostasis,
may be linked to the enhanced glutamate excito-
toxicity in the hippocampus in zinc deficiency.
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toxicity are aggravated by zinc deficiency. Therefore,
adequate zinc supply to the brain is important for preven-
tion of neurological diseases.
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