論 文

高解像度衛星画像とLiDAR データの統合処理による森林被害検出

田口 仁*1·臼田裕一郎*2·福井弘道*3·古川邦明*4

Integration of High Resolution Satellite Imagery and LiDAR Data for Forest Damage Detection

Hitoshi TAGUCHI^{*1}, Yuichiro USUDA^{*2}, Hiromichi FUKUI^{*3} and Kuniaki FURUKAWA^{*4}

Abstract

Fallen (i.e. snow damage and wind thrown) and withering (i.e. disease and insects) of trees in abandoned forests are one of the major problems in forestry. However the current investigation method relies on a ground survey, which is difficult to grasp the conditions extensively. Recently, usage of high spatial resolution satellite imagery and LiDAR (Light Detection And Ranging) data are anticipated as an effective solution for the forest monitoring. High resolution satellite imagery is effective for detecting withered and fallen damage, although this data has a difficulty in distinguishing between withered and fallen damage. Digital Surface Model (DSM) and Digital Elevation Model (DEM) which are made from LiDAR data are effective for detecting fallen damage, although this data has a difficulty in detecting withered damage. In the developing method, integration of high resolution satellite imagery and LiDAR data were utilized to detect two types of damage separately at same time. Multinomial Logit Model (MLM) was utilized for integrated processing. Red, NIR channel and gap areas detected by DSM and DEM were dependent variables for MLM. This method was examined on the IKONOS Multispectral Imagery and LiDAR data in the test area. Accuracy assessments were conducted from the aspect of omission (User's accuracy) and commission (Producer's accuracy). In withered damage detection, 78% and 74% of pixels were correctly detected, respectively. In fallen damage detection, 82% and 84% of pixels were correctly detected, respectively. From these results, this method was demonstrated that integration of two data can detect fallen and withering damage in high accuracy.

Keywords : high resolution satellite imagery, LiDAR data, fallen damage, withered tree, integration

1. はじめに

日本における森林の管理は,近年は担い手不足や木材価 値の低下から,管理の放棄された林分が増えている。その ため,通常の生態系にみられる範囲を超える衰退や枯死と いった森林被害¹⁾に対し,脆弱な林分の増加が問題となっ ている。森林被害が発生した場合,復旧及び保護作業や森 林保険の適用等のため,被害箇所の面積や状況を正確に把 握する必要がある。現状では行政機関を中心に現地踏査に よる被害箇所の把握が行われている。しかし,現地踏査の みでは広範囲かつ網羅的に被害箇所の把握を行うことは困 難である。

(2006. 8. 21 受付, 2007. 1. 24 改訂受理) *¹ 東京大学生産技術研究所

〒153-8505 東京都目黒区駒場 4-6-1

*² 独立行政法人防災科学技術研究所 〒305-0006 茨城県つくば市天王台 3-1

- *³ 慶應義塾大学大学院政策・メディア研究科 〒252-8520 神奈川県藤沢市遠藤 5322
- *⁴ 岐阜県森林研究所 〒501-3714 岐阜県美濃市曽代 1128-1

近年,空間解像度が数メートルの高解像度リモートセン シングデータが登場し,森林分野で利用が活発に行われて いる。中でも,高解像度衛星画像とLiDAR データ(Light Detection And Ranging)の2種類のデータに注目が集まっ ている。高解像度衛星画像では,樹種分類を行った事例²⁾ や,単木判読を行った事例³⁾などが挙げられる。高精度に 高さ情報を取得できるLiDAR データでは,Digital Surface Model(以下,DSM)を作成し,樹高や粗密度の推定する 事例⁴⁾などが挙げられる。これらの高解像度リモートセン シングデータは,森林資源量の把握だけでなく,森林被害 を把握する一手段としても活用できる可能性がある。

筆者らは,既にこれら2つの高解像度リモートセンシン グデータを用いて,冠雪害により倒木した林分の検出手法

- *¹ Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
- *² National Research Institute for Earth Science and Disaster Prevention, 3-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan
- *³ Keio University, Graduate School of Media and Governance, 5322 Endo, Fujisawa, Kanagawa 252-8520, Japan
- *⁴ Gifu Prefectural Research Institute for Forests, 1128-1 Sodai, Mino, Gifu 501-3714, Japan

Fig. 1 Forest damage categories which can be detected by ① high resolution satellite imagery and ② LiDAR data.

Table 1 Forest damage categories which can be detected by 1 high resolution satellite imagery, 2 LiDAR and 3Integration of 1 and 2.

	Withered	Fallen	No damage
1 High resolution satellite imagery		- 	
2 Lidar			
③ Integration of ① and ②			

を開発している⁵⁾。これをさらに、日本全体の森林被害の 問題という視点で捉えた場合,主たる要因は次に示す2種 類の被害に分類することが可能である。それは、適切に間 伐がされない人工林において、形状比が高い樹木が多く、 倒木被害が発生しやすい問題と、病虫害による松枯れやナ ラ類の集団枯損の拡大や、気象害による立ち枯れ被害など の枯損被害の問題である。このように、日本の森林被害は、 倒木被害と枯損被害と捉えることができ、森林被害の種類 によっては、適用される対策や法律、保険が異なる。その ため、異なる被害の形態である枯損被害と倒木被害の両方 を、分離して検出する手法開発が必要である。

そこで本研究では,森林被害を枯損被害と倒木被害とし て捉え,高解像度衛星画像とLiDAR データを使用して,2 種類の被害を分離して検出する手法の検討を行うことにし た。

2. 検出手法の検討

森林被害検出に対して高解像度衛星画像を用いた事例と しては、病虫害による枯損被害を検出した事例⁶⁾や、風に よる倒木被害の検出を行った事例⁷⁾があり、高解像度衛星 画像が枯損及び倒木被害の検出に有効なことが明らかと なっている。しかし、高解像度衛星画像の場合、枯損する ことによって葉が赤色系の反射が強まること、倒木によっ て土壌等の反射特性から赤色系の反射が強まることで、森 林被害の発生を把握することはできるが、枯損被害と倒木 被害の明確な分離は困難である。

一方, LiDAR データは, Digital Elevation Model (以下, DEM) と樹冠形状を表す DSM を用いて,表面形状が凹と なるギャップを抽出することで,倒木した箇所が特定でき る⁸⁾。しかし, 枯損被害の場合はギャップ抽出データから

Fig. 2 Flow chart for forest damage detection.

被害箇所を特定することは困難である。

以上の検討を基に, 2つのデータで検出可能な被害を模式的に示したのが, Fig. 1 である。そして, この短所と長所を重ね合わせたのが, Table 1 である。高解像度衛星画像(①)とLiDAR(②)データを重ねあわせ, 統合処理(③)を行うことで, それぞれの短所を補い, 枯損被害と倒木被害の分離した検出が可能となる。

3. 被害検出の流れ

以上の検討を基に,本研究では,1)明らかに被害である 箇所から教師データを作成し,2)高解像度衛星画像と LiDAR データを統合処理が可能な統計モデルを構築し, 3)これを画像全体に適用し,枯損被害,倒木被害,無被害 という3カテゴリの分類を行うことで,被害検出結果を得 るアプローチを行うことにした。Fig.2に本研究での被害 検出の流れを示す。被害検出結果を得るまでの段階として は,観測データを基に対象森林域を枯損被害,倒木被害, 無被害の3カテゴリで分類するための説明変数の作成と, Multinomial Logit Model(以下, MLM)による被害検出モ デルの構築と画像全体への適用の2段階に分かれる。

3.1 観測データから説明変数作成

高解像度衛星画像とLiDAR データから,それぞれ MLM の説明変数となるデータを作成する。高解像度衛星画像か らは,枯損による葉の色の変化や倒木することによる土壌 や幹などの露出から,赤色波長帯のバンドの輝度値に大き く影響があることが考えられるため、これを説明変数とし て採用する。また、枯損することによる活性度の低下や、 上空から見た地表面が樹冠から幹や土壌に変化することに よって、近赤外の波長帯における反射が低下することが考 えられるため、近赤外のバンドの輝度値も説明変数として 採用する。

一方, LiDAR データからは、フィルタリング処理で作成 した DSM と DEM を用いて、ギャップ抽出データを作成 する。抽出手法は、倒木することによって樹冠と倒木域の 境界部において、高さの変化が大きくなり、DSM の傾斜 が大きくなる特徴を考慮した筆者らの手法⁸⁾を採用する。 このデータは、ギャップの画素値を1とし、他を0とした 2 値化データである。また、高解像度衛星画像の解像度に 合わせるため、最近隣法を用いてリサンプリングを行う。

3.2 MLM による被害検出モデルの構築と画像全体への適用

MLM は、カテゴリのような質的データへの判別手法で ある離散選択モデルの1つである。筆者らが冠雪害の検 出⁵⁾に用いた、2群のみに対応する Logit Model と比較す ると、今回使用する MLM は3群以上に適用可能なモデル である。さらに、MLM のような離散選択モデルは、2 値化 されたデータをダミー変数として取り込むことが可能であ る。また、観測誤差等の不確実性を考慮し、カテゴリの選 択が確率で表現されることから、結果を直感的に理解でき る方法である。リモートセンシングデータへの適用につい ては、Seto and Kaufmann⁹⁾が実際に衛星画像に適用し、最 尤法と同程度の精度があることが報告されており、適用可 能であることが示されている。

MLM では、観測データからカテゴリごとに効用(U)が 求められ、最大効用のカテゴリへ選択されると仮定する。 従って、リモートセンシングデータから各画素でカテゴリ ごとの効用が計算され、ロジット変換によって選択確率が 1から0の間で求められ、最大確率のカテゴリへ選択され る。被説明変数のカテゴリ*i*を、画素*n*におけるカテゴリ*i* の効用(U_{in})は、以下に示す式(1)で求められる。

$$U_{in} = \beta_1 x_{1in} + \beta_2 x_{2in} + \dots + \beta_k x_{kin} + \varepsilon_{in} \tag{1}$$

k は説明変数の数を表しており $x_{1in}\cdots x_{kin}$ は観測データで ある。 $\beta_1\cdots\beta_k$ は効用を求めるために推定されるパラメータ で、教師データを利用して最尤推定法によって求められ る。また、式(1)は、観測データで表現可能な確定項(V_{in}) と、確率的に変動する誤差項(ε_{in})に分けることができる。 この確定項(V_{in})は、観測データとパラメータを乗じた項 の和である。誤差項(ε_{in})は観測不可能な要因を表してお り、正規分布に近いガンベル分布になると仮定する。そし て、画素 n におけるカテゴリiへの選択確率 P_{in} は効用の 確定項から、式(2)によって求められる。

$$P_{in} = \frac{e^{V_{in}}}{e^{V_{0n}} + e^{V_{1n}} + \dots + e^{V_{in}}}$$
(2)

それぞれの画素は、カテゴリごとに求められる効用から 確率 *P*_{in} を求め、最も確率の高いカテゴリへ選択される。

本手法では、カテゴリを無被害 (i=0)、倒木被害 (i=1)、 枯損被害 (i=2) と設定する。また、説明変数としては、 ギャップ抽出データ、高解像度衛星画像の赤色系バンドの 輝度値、近赤外系バンドの輝度値を使用するため、k=3 で ある。誤差項を表す (ε_{in})は、大気の状態やセンサの状態な ど、データとして提供されるまでに観測不可能な様々な要 因が、確率的に影響すると仮定する。

選定された教師データを基に MLM で推定されたモデ ルは,説明変数の有効性を評価するため、カテゴリで説明 変数項目ごとの Wald 統計量のカイ2乗値を求め、検定す ることで評価する。また,疑似決定係数 R²で当てはまりを 評価する。そして,教師データ自身の検出精度を求める。 これらの評価を踏まえた上で,画像全体へ適用する。

本手法は, Fig. 1 に示したように, 無被害, 枯損被害, 倒 木被害の3つの形態をカテゴリとし, 被害検出を行ってい る。しかし, 被害が発生していないにもかかわらず, 林床 が見えている場合や, 使用するリモートセンシングデータ の空間解像度よりも小規模な被害の場合, 誤検出や未検出 が発生する可能性がある。このような場合, リモートセン シングデータのみで除去するのは困難であり, 他のデータ を参照して除外するなどの処理が必要である。従って, 除 外が困難な場合, 検出結果には未検出や誤検出が含まれる 可能性があることを考慮する必要がある。

4. 対象地と使用データ

対象地は岐阜県郡上市美並町周辺の森林域で,南北 3,000 m,東西 2,600 m の領域とした。この地域では,2002 年 1 月 上旬に広範囲に冠雪害による倒木被害が発生したエリアで ある¹¹⁾。また,松枯れによる枯損が各所に混在しているこ とを現地調査で確認している。

説明変数を作成するための高解像度衛星画像としては, 2003 年 5 月下旬に撮影された IKONOS マルチスペクトル 画像(解像度 4 m,以下 IKONOS 画像)を使用した。この 画像は、地形データを基にオルソ補正がなされており、水 平誤差は 1 画素程度である。赤色の波長帯としてバンド 3, 近赤外の波長帯としてバンド 4 をそれぞれ使用し、Space Imaging 社の示した変換式*1によって、DN 値から絶対放 射輝度に変換した。これまでの研究で、地形の斜面方位に よって輝度値が異なることによる補正の必要性が指摘され ている¹²⁾。しかし、今回使用したデータは 5 月下旬に撮影 されており太陽高度角は高く、目視では斜面方位によって 輝度値が異なることが確認できなかった。また、後に示す 検出結果が、斜面方位によって結果が異なることが確認で

^{**1}Space Imaging, 2001. Space Imaging Document "IKONOS relative spectral response and radiometric calibration coefficients" http:// www.spaceimaging.com/products/ikonos/spectral.htm (accessed 21 Jan. 2007)

Table 2 Specifications of LiDAR data.

Specification	Value	
Instrument	RAMS (EnerQuest Systems)	
Altitude	2100m	
Scan angle	22°	
Scan rate	15000Hz or 24000Hz	
Positional Accuracy	Horizontal ± 30cm	
(Nominal)	Vertical ± 15cm	
₩ in this study area, two planes observed		

きなかったため、IKONOS 画像に対して斜面方位による 輝度補正は行わなかった。

LiDAR データは、2004 年春季から夏季にかけて岐阜全 県で取得されたデータを使用した。LiDAR データの観測仕 様を Table 2 に示す。このデータから、フィルタリング処理 を行って、メッシュサイズが 1 m の DSM を作成した。 な お、DEM はこの LiDAR データを使用して作成された岐阜 県所有のデータがあり、これを使用した。この DEM の精 度は、渡辺ら¹⁰⁾ によって検証が行われ、標高精度は県が定 めた±1.7 m 以内となっており、十分な精度を保持してい ると判断した。

また、本研究で検討した手法の評価のための検証用デー タとしては、2004 年 8 月に撮影されたカラー空中写真を用 いた。検証データの作成方法と評価方法については、5.3 に て述べることにする。

本手法で森林被害を検出する場合,理想的には IKONOS 画像とLiDAR データが同時期に撮影されることが望まし いが、現実的には、今回使用したデータのように、撮影及 び取得時期に差が生じることがある。今回は, IKONOS 画 像の撮影時期と LiDAR データの取得時期の間において, 新たな倒木被害は発生しておらず、また、皆伐等の施業が なされていないことも現地調査から確認している。した がって、LiDAR データが1年後に取得されたデータを使 用しても、問題はないと判断した。次に、検証に使用する 空中写真の時期についても検討を行った。この空中写真は 2004年8月に撮影されており、倒木被害の発生から2年7 ケ月経過している。一方, 枯損被害は IKONOS 画像が撮 影された 2003 年 5 月から1 年 3 ケ月経過しており、その 間に被害が拡大している可能性がある。倒木被害について は、空中写真の撮影直後の2004年9月に現地調査を行っ ており、ほとんどの被害林分は処理されておらず、空中写 真から判読可能であった。また、枯損被害は、IKONOS 画 像と空中写真を重ね合わせて判読した結果、枯損の拡大が 対象地内で数箇所程度,確認された。そのため,倒木被害 については,空中写真の判読結果をそのまま検証データと して用いることは問題ないと判断した。一方、枯損被害に ついては,被害域の拡大が影響しないために,検証データ の作成後, IKONOS 画像と空中写真を重ね合わせ, 新たに 発生した枯損被害を含まないよう、確認を行うことにした。

Fig. 3 には、テストエリアの外観を示す。なお、これらの データは、林小班のポリゴンデータを使用し、マスキング 処理によって森林域のみを抽出した。

5. 検出結果と評価

5.1 被害検出モデルの構築と評価

まず,画像上から,それぞれの被害がまとまって発生した箇所を抽出し,2004年8月に撮影された空中写真を参考に教師データを作成した。Fig.3には教師データを取得した箇所を示した。なお,教師データを取得した箇所は,無被害が含まれるようにエリアを選定している。

次に,取得した教師データからパラメータの推定を行った。Table 3 に推定結果を示す。枯損被害と倒木被害の両方でバンド 3 に乗ずるパラメータが正となっており,被害箇所において赤色系の反射が強まることに一致している。また,ギャップに乗ずるパラメータが正となっており,倒木被害による DSM への影響がパラメータに反映されていることがわかる。なお,Wald 統計量は全てのパラメータにおいて,0.01%水準で有意となっており,また,擬似決定係数は0.812 となっていることから,適合度の高いモデルを推定できたと判断した。

次に, Table 4 に教師データ自身の検出精度の検証結果 を示す。表によると、枯損被害と倒木被害の的中率は7割 前後だった。次に、教師データと推定結果を Fig. 4 に示し た。比較すると、被害域の中心付近では高い確率で的中し ていることが確認できるが、無被害と被害の境界部で未検 出や誤検出が発生している。これは、境界部では1画素内 に被害と無被害が混在し、 ミクセルとなってしまうことが 原因である。特に、倒木の被害域に隣接した画素では、枯 **損被害と判別された画素が存在する傾向があった。これは** ギャップ抽出データを4mの解像度へ最近隣法でリサンプ リングし、倒木被害のミクセルを考慮しなかったことが原 因である。そのため、倒木被害が画素内に存在するものの、 ギャップ抽出データでは0である場合,倒木被害による赤 色の反射が影響し、枯損被害と誤判別されたと考えられ る。また、ミクセル以外の要因としては、IKONOS 画像の 水平誤差を考慮すると、レジストレーションのずれが影響 する可能性がある。さらに、使用した IKONOS 画像は、オ フナディア角による倒れ込みの影響も含まれている可能性 がある。したがって、 ミクセルが要因となる場合と同様に、 境界部において1画素程度のエラーが発生した可能性があ る。本手法では、ピュアピクセルの検出を重視するため、 倒木被害と判別された画素に隣接する枯損被害は、上記要 因によるエラーとして無被害とし、誤判別の発生した画素 を除去することにした。

以上の考察から,推定した統計モデルは被害箇所の中心 付近は確実に的中していることから,このモデルと誤判別 の除去手法を画像全体に適用することにした。

5.2 検出結果

画像全体に適用した結果を Fig. 5 に示す。図より、枯損 被害と倒木被害が画像全体に広く検出されていることが確 認できる。この中から検出結果を拡大し、詳細に示すこと

Fig. 3 Test site and IKONOS imagery.

Table 3 Estimated parameters.

	Intercept	Band 3	Band 4	Gap
Withered	-68.303	303.070	-31.103	-4.346
(Wald statistics)	(384.7**)	(442.8**)	(361.4**)	(15.41*)
Fallen	-49.514	240.399	-32.915	2.355
(Wald statistics)	(155.2**)	(223.9*)	(238.3*)	(48.8**)
			* 0.01% signi	ficance level

Table 4 Accuracy assessment of training data.

			C	Choice Resul	lt	
		Withered	Fallen	No damage	Sum	Accuracy
10	Withered	283	1	94	378	74.8%
Training	Fallen	36	132	48	216	61.1%
data	No damage	54	13	2595	2662	97.5%
	Sum	373	146	2737	3256	

にする。

Fig. 6 には、空中写真(右上)で枯損被害と倒木被害の両 方が、広い面積で発生していることが確認できる箇所を示 した。IKONOSのカラー合成画像(左下)では、枯損被害 と倒木被害の判別は難しい。しかし、ギャップ抽出データ (右下)では明確に倒木箇所が現れている。そのため、この 2つのデータを統合処理した本手法による検出結果(左上) では、明確に分離されて検出されていることが確認できる。

次に、2つのデータを統合処理した有効性について、示 していくことにする。Fig.7で黄色い円で囲んだ箇所は、 ギャップ抽出データ(右下)では、倒木被害として検出さ れている。しかし、空中写真(右上)によると、樹高の低 い林分となっている。この箇所は、IKONOS 画像(左下) では健全な樹冠の反射であることから、本手法の検出結果

Fig. 4 Comparison of training data and results.

では無被害となっている。つまり,統合処理したことで誤 検出を抑制できることが示された。

次に,統合処理を行ったことの有効性を説明するため に, Fig. 8 には倒木被害が広い面積で発生した箇所につい て, IKONOS 画像のみを説明変数として同じ教師データ から MLM を構築して検出し(左),本手法による検出結果 (右)と比較した。その結果, IKONOS 画像のみで検出し た結果では,中心部では倒木被害と枯損被害が混在してし まっている。これは先述したように,両方の被害とも赤色

Fig. 5 Result of the test site.

Fig. 6 Comparison of a result and other data. Result of this study (top left), Aerial Photograph (top right), IKONOS (bottom left) and gap data (bottom right). Legend of the result (top left) is same as Fig.5.

Fig. 7 Comparison of a result and other data. Result of this study (top left), Aerial Photograph (top right), IKONOS (bottom left) and Gap data (bottom right). Legend of the result (top left) is same as Fig. 5. Yellow circles show low tree height area.

IKONOS + Gap data (this study)

Fig. 8 Comparison of result used only IKONOS band 3 and 4 (left) and result of this study (right). Legend of the results is same as Fig. 5. Yellow circles show significant difference between left and right image.

系の反射が強いことで,明確な分離が困難なためである。 しかし,ギャップ抽出データを加えることで,倒木被害と 枯損被害が明確に分離されることが確認できる。

なお、本対象地では皆伐された箇所があり、その箇所は 倒木被害として誤検出された。また、林小班データで除外 しきれていない林道でも、倒木として誤検出された箇所が 存在した。このような箇所は LiDAR データからギャップ として誤抽出される可能性があり、また反射特性が類似す る場合があるため、リモートセンシングデータのみでは除 去することが困難である。そのため、伐採履歴を参照する ことや、他の空間データ等を参照し、除外する必要がある。

5.3 精度評価

本手法による検出結果を、「空振り」と「見逃し」の観点 から精度検証を行った。「空振り」は、本手法で検出した画 素を検証データと比較し、的中率を求める方法である (User's accuracy)。検出結果から50 画素をランダムに選択 し、空中写真と比較して的中画素をカウントした。「見逃 し」は、空中写真で被害が確認された箇所から50 画素をラ ンダムに選択し、それが本手法による検出結果と比較した 上で、的中率を求める方法である(Producer's accuracy)。 分散して検証地点を決定するように、画像全体をメッシュ に分割し、各メッシュにつき1点任意に被害箇所を抽出 し、本手法による検出結果と比較して的中率を求めた。 Table 5 に的中率を示した。枯損被害は75% 前後の的中 率、倒木被害は80%を超える的中率だった。

以上で述べてきたとおり,本手法で検出された被害検出 結果は,被害の中心部は高い確率で的中しており,また的 中率は7割から8割であることから,本研究で検討した手 法の有効性が確認できた。一方,的中率を低下させる誤検 出及び未検出の要因としては,5.1で述べたように,被害 と無被害の境界部でのミクセルがあげられる。本手法で は、ピュアピクセルの検出を重視したが、この要因につい てはギャップ抽出データのリサンプリング手法の改善や, ミクセルを考慮した手法を導入することで軽減できる可能

Table 5 Accuracy assessments.

	Withered	Fallen
User's	39/50	41/50
Accuracy	78%	82%
Producer's	37/50	42/50
Accuracy	74%	84%

性があり、今後の課題といえる。また、皆伐、間伐が行わ れているような疎な林分においては、誤検出や未検出が発 生する可能性があることから、施業履歴等の他のデータを 併用することが望ましい。

6. おわりに

本研究では、高解像度衛星画像とLiDAR データを用い て、枯損被害と倒木被害という2つの森林被害を分離して 検出する手法の開発を行った。その方法として、高解像度 衛星画像とLiDAR の被害検出における長所と欠点を指摘 し.2つのデータを組み合わせることで、枯損被害と倒木 被害を分離して検出可能であることを示し、MLM で統合 処理を行う被害検出手法を検討した。森林被害検出手法は 岐阜県郡上市の対象地に適用し、被害箇所の中心付近ほど 確実に検出されていることを確認した。また、空振りと見 逃しの観点から精度検証を行い、7割から8割を超える的 中率を達成した。そして、単独のデータによる検出と比較 し、統合処理の有効性を確認した。未検出や誤検出の要因 としては、被害と無被害の境界部におけるミクセルの影 響、ギャップ抽出データのリサンプリングなどを挙げた。

本研究で開発した手法の特徴としては、1) 高解像度リ モートセンシングデータから、枯損被害と倒木被害という 2つのカテゴリの検出に主眼を置いた点、2) 高解像度衛星 画像と LiDAR データの持つそれぞれの特徴を生かし、 被 害を検出するアプローチを採用した点、3) 2つのデータ を、MLM によって統合処理を行った点が挙げられる。

今後の課題としては, 誤差要因の軽減が挙げられる。ミ クセルを考慮した手法の開発, ギャップ抽出データのリサ ンプリング方法の改善, 他の統計モデルの適用が挙げられ る。また, 今回は高解像度衛星画像を使用したが, 航空機搭 載型の光学センサ画像を適用し, 有効性の評価を行うこと を検討したい。さらに, 本研究では枯損被害と倒木被害の 発生要因については明らかにしていない。被害の発生要因 が明らかとなり, 要因に関する空間データが整備可能であ れば, MLM へ新たな説明変数として加えることで, さら に付加価値の高い被害検出結果が得られる可能性がある。

本手法で開発された手法が,森林被害のモニタリングに 生かされ,行政が整備している森林 GIS と組み合わせら れ,効率的な被害復旧や管理計画などに貢献されることを 期待したい。

謝辞:本研究は、平成16年度から18年度に行われた、慶 應義塾大学 SFC 研究所ジオインフォマティクスラボラトリ と岐阜県森林研究所との共同研究「高解像度リモートセン シングと森林 GIS による森林管理システムの開発」の一環 として行われたものである。関係各位に感謝の意を表する。

引用文献

- 1)藤森隆郎:新たな森林管理一持続可能な社会に向けて一. 社団法人全国林業改良普及協会,東京,2004.
- 2)河邑 眞, 辻野和彦, 辻子祐二:高分解能衛星画像を用い たディシジョンツリー法に基づく樹種分類法の開発,写 真測量とリモートセンシング,44 (2), pp. 54-67, 2005.
- 3)加藤正人:高分解能 IKONOS 画像による単木判読可能性の比較,日本林学会誌,84(4),pp.221-230,2002.
- 4)米 康充,小熊宏之,山形与志樹:京都議定書に関わる吸 収源計測システムの開一航空機 LiDAR によるカラマツ 林の樹冠計測と材積・炭素重量計測精度の検証一,日本 リモートセンシング学会誌,22 (5),pp. 531-543, 2002.
- 5) 田口 仁, 臼田裕一郎, 福井弘道, 古川邦明:高解像度光 学センサ衛星画像とLiDAR データを組み合わせた森林 域の冠雪害検出手法の開発, 写真測量とリモートセンシ ング, 45 (1), pp. 14-21, 2006.
- 6) J. C. White, M. A. Wulder, D. Brooks, R. Reich and R. F. Wheate : Detection of red attack stage mountain pine beetle

〔著者紹介〕

●田口 仁 (タグチ ヒトシ)

東京大学生産技術研究所,慶應義塾大学 SFC研究所訪問研究員。1981年4月生。 2004年3月,慶應義塾大学総合政策学部 卒業。2006年3月,慶應義塾大学大学院 政策・メディア研究科修士課程修了(政 策・メディア修士)。同年4月,東京大学 大学院工学系研究科社会基盤学専攻博士

課程入学。森林被害検出に関する研究,リモートセンシング データと生態プロセスモデルの統合に関する研究など,空間 情報科学のアプローチによる森林に関する研究に従事。本学 会の他,日本写真測量学会,地理情報システム学会に所属。 E-mail:tagchan@iis.u-tokyo.ac.jp

●臼田 裕一郎(ウスダ ユウイチロウ)

(独)防災科学技術研究所研究員。1973年 11月生。(財)リモート・センシング技術 センター研究員,慶應義塾大学大学院助手 を経て,2006年4月より現職。空間情報科 学(Geo-Informatics),環境情報学専攻。 2006年3月,慶應義塾大学博士(政策・メ ディア)。現在は、地域防災力の向上に資

する地域コミュニティのあり方と災害リスク情報の活用,リス クコミュニケーション,リスクガバナンスに関する研究に従 事。所属学会は、本学会の他、日本写真測量学会、地理情報シス テム学会、日本国際地図学会、日本リスク研究学会。本学会で は現在,企画委員を務める。 E-mail:usuyu@bosai.go.jp infestation with high spatial resolution satellite imagery. Remote Sensing of Environment, 96, pp. 340-351, 2005.

- M. Schwarz, C. Steinmeier, F. Holecz, O. Stebler and H. Wagner : Detection of windthrow in mountainous regions with different remote sensing data and classification methods, Scandinavian Journal of Forest Research, 18 (6), pp. 525– 536, 2003.
- 8) 田口 仁, 臼田裕一郎, 福井弘道: LiDAR による冠雪害 検出一小特集 (LIDAR による森林計測)一, 写真測量と リモートセンシング, 44 (6), pp. 22-25, 2005.
- K. C. Seto and R. K. Kaufmann : Using logit models to classify land cover and land-cover change from Landsat Thematic Mapper, International Journal of Remote Sensing, 26 (3), pp. 563–577, 2005.
- 渡辺一博,武田浩志,大石 哲,木村聡洋,渡邊孝三,峰 島貞治:広域 DEM データの品質評価,応用測量論文集, 16, pp. 41-50, 2005.
- 茂木靖和,横井秀一,渡邉仁志:下呂実験林のスギ挿し木 林分における冠雪害の発生状況と立木密度の関係,岐阜 県森林研研報,32, pp. 21-26,2003.
- 12) J. R. Dymond and J. D. Shepherd : Correction of the topographic effect in remote sensing, IEEE Transactions on Geosciences and Remote Sensing, 37 (5), pp. 2618–2619, 1999.

●福井 弘道(フクイ ヒロミチ)

慶應義塾大学総合政策学部,政策・メディ ア研究科教授。理学博士。1956年10月生。 名古屋大学大学院理学研究科地球科学専 攻,(社)環境アセスメントセンター,(株) 住信基礎研究所を経て,1996年慶應義塾 大学総合政策学部助教授,2001年より現 職。現在,慶應義塾大学グローバルセキュ

リティ研究所副所長,(社)環境情報科学センター理事,地理情報システム学会事務局長,中国科学院客員教授,ISPRS ICWG VII/IV 共同議長,ISDE (International Society for Digital Earth) 理事などを兼務。専門分野は,地球環境学,国土学,空間情報科学で,最近は文部科学省学術フロンティア事業「デジタルアジ ア地域戦略構想センター」の研究代表をつとめ,地球環境コ ミュニケーションの基盤としての「デジタルアースの構築」に取り組んでいる。

E-mail : hfukui@sfc.keio.ac.jp

●古川 邦明 (フルカワ クニアキ)

岐阜県森林研究所森林環境部長。1959年 2月生。1981年4月岐阜県採用。1999年岐 阜県森林科学研究所(現岐阜県森林研究 所)配属,2004年4月育林研究部長,2006 年4月より現職。森林資源の生産システ ムとGISによる森林資源管理の研究に従 事。日本森林学会,森林利用学会,地理情

報システム学会の会員。 E-mail : furu@forest.rd.pref.gifu.jp