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Abstract

We present a modification of the well-knowidden number problerfHNP) which we refer to as @ne-time
HNP (OT-HNP). We also present an algorithm for s@such a problem together with its formal analysie
show then that carefully designed instances of QIRHan be used to break certain flawed implememsitof
public key schemes efficiently. We work, for ingtanwith Nguyen’s attack on El Gamal’s signaturieesae in

the GNU Privacy Guard of version 1.2.3. The techai@mployed there was not based on HNP, sincest wa
supposed that more than one signature would bess&ge which seemed to be a wastage. We will seeever,
that by using OT-HNP one signature is still far egio, while retaining certain elegance of the HNPrapch.
We also present an experimental confirmation of tasult.

Keywords: cryptanalysis, public key cryptography, El GamagA) hidden number problem, lattice,
implementation, side channels.

1 Introduction

It is a well-known fact that cryptanalytical techoes can only get better. And as we can see, thegdy do.

Sometimes faster, sometimes only in, let us saydbimprovements. One of those areas still desgraiclose
attention are cryptanalytical methods aimed atlinggEl Gamal’'s [5] and the other DSA-like signawchemes
[10] through their extraordinary sensitivity to arpal information leakage of secret temporary msnosed
during a signing operation. An attacker can gaim thformation in either a-priori way due to thelisturbed

probabilistic distribution or in a-posteriori wayiel to their leakage through various side chantielge ignore

the discrete-log part of these schemes, we cathsayryptanalytical techniques (cf. mainly [133],[[3]) exist

allowing an attacker to practically break the scheatmost as soon as the corresponding mathempticialem

becomes solvable from an information-theoretic pofrview. Looking on it from security architectsnspective,
such a property shall be alarming.

There seem to be basically two elementary kinddgirithms used: The lattice-based ones [13],d8H special
searching techniques [3], [2]. Special techniquaegently hold the public record in how small amowft
information is enough — it is 1 bit of each DSA prary nonce [2]. However, their drawback is theoan of
signatures needed — it is a number of ordér Phis far more than what is needed for latticeebamethods
which, on the other hand, are consuming more indtion — they seem to need at least 3 bits of eanhen[13].
The main cryptanalytical advances we can expe& asr lowering the amount of information or the hemof
signatures needed. This seems to be a difficltt &isce, for instance, the minimum information aee for the
lattice-based methods is mainly given by the faat tve can only get some approximate solutionsiéddttice
problems employed. On the other hand, some brigiw ideas on how to arrange the corresponding
cryptanalytical problems can make many things fdessi

In the following text, we expect that the readeffamiliar with the elementary geometric number tiye[9]
together with basic properties of lattices andrtlagiplications in cryptanalysis [14]. Very inteliagt lattice-
based methods that seem to be perfectly adjustesofeing the cryptanalytical problems arising withwed
implementations of DSA-like signature schemes armected with théidden number problefHNP). Roughly
speaking, the task is to find a secret integsatisfying certain approximations in a fortix ¢ u;) modN < 4. For
the first time, it was formulated and used in 1986Boneh and Venkatesan [4] to prove security ef fost
significant bits for Diffie-Hellman key agreementopocol. In 1999, Nguyen pointed out [11] a conimtt
between solving HNP and breaking flawed implemématof DSA [6]. The work was then extended togethe
with Shparlinski in [13]. Our article contributes this area by introducing a modification of HNRIez one-
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time HNP (OT-HNP) that allows us to utilise a dir@@formation onx itself, which was not covered by HNP.
OT-HNP can be regarded as a tool for finding a bm#dgral solutionx of a single modular inequality in the
form (tx —u) mod N < J, where 0 <x < X. Note that HNP assumes only that & < N, which leads to an
unnecessary loss of information whr< N. Allowing x itself to be bounded by a certain estimgfeX < N,
together with using only one modular inequality Hre main ideas behind the transition from HNP olINP.
Roughly saying, provided thal < N (cf. Theorem 1 for precise statement), we can &xgach a solution to
be probably unique and findable by an algorithnsented here (cf. experimental results present&3.®). We
then show how OT-HNP connects with the cryptanadytproblem discussed in [12].

A formal description of OT-HNP together with an @lfighm to solve it and its basic analytical propestare
presented in 82. In §3, we show how to use OT-HB|Brealternative method to break flawed implemeénaif
El Gamal’s signature scheme investigated in [1Rjalfy, we conclude in §4.

2 One-Time HNP

Definition 1 One-time hidden number problem (OT-HNP. Let x be a particular secret integer satisfying
0<x< X, where X, Xd Q, is known. Furthermore, let us be given a quadrtfil u, J, N), where t, uJ Z,
NON, X<N, andd O Q, satisfying(tx —u) modN < J, t mod N # 0. The one-time hidden number problem is
then to find x and its particular instance is spiied as the quintupldt, u, J, N, X).

There is a straightforward generalization of OT-HfgRts multidimensional variant where we are gieeset of

d inequalities, each determined by a particular qualét ¢, u, 4, N)), 1 < i < d. The following algorithm
together with its justification can be then extethder such a generalization as well. For the sdksiroplicity
and clear connection with solving the cryptanabitiproblem in 83, we will, however, do without this
generalization here. Even the words “one-time’hi@a hame of the problem express our motivation t@lde an
HNP-rooted method for solving the problems like tme stated in 83 having only one signature, inty one
independent inequality fot.

Definition 2 L(t, N, ). LettO0 Z, NO N, ando Q. By L(t, N,)) we mean a two-dimensional full-rank lattice
spanned by the base vectbis= (N, 0) andb, = (¢, )), i.e. L(t, N, ) = {z*b, + z*b,: (7, 2) O Z%}.

Algorithm 1 Solving OT-HNP.
Input: Instance of OT-HNP specified by, o, N, X).
Output: Solution candidate.
Computation:
1. Lety=dX
2. Set up a rational vector= (v, V,), wherevy =u + d2,v, = d2.
3. Computev [0 L(t, N, )), w = (wg, W,), which is the (approximately) closest vectot @f N, ) tov.
4. Letx = (w./y) modN, where we apply a standard division@rand expect the result to bedn
5. Returrx.
]

As was stated in the description of Algorithm %, riésult is to be regarded as a soluttiandidateof the given
instance of OT-HNP. The following statements elab®rits correctness formally. Their purpose is iyaio
illustrate the reasoning behind the compositioAlgforithm 1 together with showing the connectiortvirzen
HNP and OT-HNP. Therefore, our elaboration corrasigoclosely with the description given by Nguye an
Shparlinski in [13] and somehow also with the fgttdy of HNP by Boneh and Venkatesan in [4]. Nbg&& our
algorithm relies heavily on an access to a metboddlving the approximate closest vector problena@ertain
lattice (cf. [14] for an overview). One can use, iftstance, the well-known Babai's nearest plagerhm [1].
Our expectation on the particular approximationtdacof such an algorithm is stated by the following
proposition. Note that the overall time complexafyAlgorithm 1 depends mainly on the algorithm u$edthe
closest vector approximation and can be essentedjgrded as being polynomial.

Proposition 1 Approximate solution of the closestector problem[1]. Let L be a lattice of dimension d and
let us be given a vectar( R®. We assume there exists a polynomial time alguritthich finds a lattice vector
w O L, such thaf|v—w || < 2** ming|[v=b ||
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In the following elaboration, we will work with aassumption that the moduldkis a prime. This is because we
want to stay focused on showing clearly the magagdbehind OT-HNP, while the formal elaboration mvNds

a composite would require deeper justificationshef probability distributions used in Lemma 1 tdgetwith a
slightly different approach to a uniqueness ofgbkition in Theorem 1. On the other hand, we cgeeixthat
very similar results will also hold for compositeoduli, as well. Experiments done in 83 fully suppthis
hypothesis.

Lemma 1 On short vectors inL(t, N, ). Let N be a prime, t integer uniformly distributed<dl, N), andy; o0
Q, such thad < < N/3, 0 <), and95%y* < (N — 1). Then with a nonzero probability=1 — BN — 1)) all
AUOL(t, N, ) satisfying|| 4 |} < 3d2 are in the formA4 = (0, zN), where 21 Z.

Proof. Let us recall that by Definition 2 it hold= (aN + &, £y), where @, £ 0 Z2

Next, we observe thag® = zN implies aN + &t = 0, since it must holddN + £t | = [N(a + zf) | £ 392 < N/2.
Therefore, we can focus only on elaborating thdabdity P of the evenjf =zN We haveP = 1 — Pr modN
# 0]. If #modN # 0 then the following inequalities must hold:

0<|aN+ A |<3d2 <N/2,
0<|Byl<3d2, ie 01 =<3'd2,0)0 (0, 3y d2>.

We select an integef from the interval and denotg(f) the probability that the first inequality is sdited. If
there is no such integgonl, we setp(f) = 0. Otherwise, let us observe that the firstiradity implies (&t mod
N) O (0, 392> 0 <N — 3d2, N), sincet must be within a distance of up td&/3 from an integral multiple dX.
Furthermore, we assuméo be uniformly distributed on <), which implies the uniform distribution of
mod N) on the same interval, since gB8d{) = 1. From here, we can writgf) < 3d(N — 1). Finally, we do a
rough but sufficient estimation #nodN # 0] < Xz p(B) < 90%(UN — 1))* giving P > 1 — 90%(KN — 1))™.

Theorem 1 On the solution candidates returned by Ajorithm 1. Let us be given an OT-HNP instar(teu, J,

N, X), where N is a prime, t is uniformly distributed oh, N), and X andd satisfyd< N/3 and9JX < (N — 1).
Then with a nonzero probability 21 — 9X(N — 1)* Algorithm 1 returns the correct unique solution of the OT-
HNP problem instance.

Proof. By the definition of OT-HNP, there must bex 0 Z satisfying O< tx—u+cN<J, so [tx—u—Jd2 +cN |
< d2. Furthermore, we hay®< x< X, so [jx— d2 | <d2, wherey= dX.

Let us sev = (U + d2, J2) and consider the lattidgt, N, )). Observe that there is a vectof] L(t, N, }), such
thath = (tx + cN, }x) and |h —V |, < 2. In [13], they calh as ahidden vectarsince it discloses the value of the
hidden numbek directly. The next step is to use a suitable atigar for solving the closest vector problem for
L(t, N, )) andv. Let the result be denoted ws According to Proposition 1, we assume that4{w || < 2+
MinyoLe n, pllV =D [|< 272 ]|V = h || < 22" v —h |, < & Furthermore, there exists0 L(t, N, )), 4= h —w.

By the triangle inequality, we get4|ll. < [|h =V |L + |[v—w ||, £ J2 + o< 3d2. Applying Lemma 1, we get that
with a probabilityP = 1 — 9X(N — 1)* the latticeL(t, N, ) has such a structure that eash|| 4 |}, < 3d2,
satisfies4 = (0, zN) which impliesyx —w, = h, —w, = 4, = zNy. Therefore, with the probabilit, we can
recover the hidden numbeifrom x = (w./)) modN. This is done in step 4 of Algorithm 1. Note thatording to
the definition ofL(t, N, J) it must hold Y/)) O Z.

For the purpose of uniqueness proving, let us rélzal we are assuming the event that eA¢hL(t, N, ), such
that ||4 |} < 3d2, is in the formA = (0, zNj. Now, let us consider that there is another smhutlescribed by,
X together with its corresponding hidden vedbtdrUsing the definition of OT-HNP, it is easy toesthat then
[[h =h" |, < dwhich under the event (structureldf, N, })) assumed implieks —h’ = (0,zN)), so we geyx — )x’
= zNyfurther implyingx =X’ (mod N). By the definition of OT-HNP we hawe X O (0, N), so it holds directly
thatx =X
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3 GPG-Flawed El Gamal Revisited

3.1 Motivation

Let us briefly recall basic properties of EI Garmaignature scheme [5], [10]. Its public parameterssist of a
primep and an integeg which is a generator dfp*. The private key is an integerO <x <p — 1, and the public
key is computed ag = g“ modp. To sign a messags, we compute its hash code and format it as agénte
satisfying 0 <H < p — 1. Specifically, in the implementation attacled12], the formatting rules from PKCS#1
v1.5 [15] were used, but it is unimportant for @séh It suffices to note that there is no secrptiirduring the
computation oH, so anybody who knows is able to computél trivially. Next, we generate a secret random
numberk, 0 <k <p — 1, such that gcll(p — 1) = 1. Since we need a freshly generatéat each signature, we
usually call it a nonce (as a number-used-once&).sidnature itself is then a pair of integets), such that:

r =g“modp,
s= (H —xr)k* mod p — 1), where&kk® = 1 (modp — 1).

The main issue of El Gamal’s signature scheme imeigation in GNU Privacy Guard (also denoted as JGiH#G
versions 1.0.2 — 1.2.3 was the following: Aiming fepeeding up certain private key operations, tects
decided to lower the sizes of nondeand the private key significantly. Specifically, their maximum bitletits
were both restricted togg/2, whereq,; was a function of the length of prirpeand it was primarily meant to be
a threshold for prime factors ip € 1)/2. The particular values are presented inelafp12].

Bitlength | 512 | 768 | 1024 1280 1536 1792 2048 2304 2560 2816 2 303328| 3584| 384(
ofp

Obit 119 | 145 | 165 | 183| 198 212 225 23y 249  25%9

N

69 279 8 2896

[Bqu/2] | 179 | 218 | 248 | 275| 297| 318 338 35p 374 389

N

D4 419 4344

Table 1: Security boundaries used for El Gamagjaatiure computation.

It was deemed that such a modification will noieaffsecurity of the signature scheme, since theajarikey
together with the nonces seemed to be still lormugh. However, as was shown in [12], this “relaiveugh”
was definitely not enough from a cryptanalyticaéwpoint. An attack was presented allowing computimg
whole private key from just only one signature knowhe technique used for the attack was also bnilattice
algorithms,however a different approach than an HNP-based was employedOn one hand, this is a quite
common situation, since there is a plenty of lattiased techniques, so we can choose freely whpatsiverant.
On the other hand, it was a bit surprising, sind&PHencapsulates benefits of several other techsigery nicely
in a way that is perfectly tailored for the crypmbytical problems arising in flawed implementatioof El
Gamal's and other DSA-like sighature schemes. Hasaon was, perhaps, that existing HNP-based tagmiq
were unable to use partial knowledge of the prikatex itself, so it seemed that more than one signatndd
be necessary. As we will show, however, a sma#resibn of HNP to OT-HNP allows solving the problesith
just only one signature, too. Furthermore, we Ielithat retaining the connection of the attack wlita HNP-
based methods is beneficial from both theoretindleducational viewpoints.

3.2 Using OT-HNP

The cryptanalytical problem which stays behind ki@ the implementation we recalled in §3.1 is exfass
follows: We are given an El Gamal signatures| of a known messaga computed according to the description
given in 83.1. Furthermore, we know that, becadse aertain unfortunate optimization, it holds tBat k < B,
and 0 <x < B, whereB is given by Table 1 and generaBy< p*®. The task is to find the private keyWe will
show how OT-HNP can be used for such a purpose.

We start with the basic congruence sor
H —xr =sk(modp — 1),

whereH, r, ands are known values. Using the extended Euclideaorititgn, we find integers, b satisfyingas +
b(p — 1) = gcd$, p— 1) =c. Multiplying the congruence by, we get
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a(H —xr) =ck (modp - 1),

whereck < cB and with a high probability stitB < p*®. Settingt = —arx mod p — 1),u=-aHmod p—1),N=p
—1,0=cB, andX =B, we can finally write:

(tx—u) modN <9, 0 <x<X.

In this way, we get the OT-HNP instan¢eu, J, N, X), whered X < (N + 1)** << N, which we then try to solve
by Algorithm 1 from §2. With respect to the fornghboration given there, we have two obstacles:fifsieone
is thatN is not a prime and the second one that we dighrmte a uniform distribution df Therefore, we regard
Theorem 1 as a heuristic argument only, here. @mther hand, it is reasonable to expect simileortbm to be
provable for the instances of OT-HNP we have. Haxewe decided to use an experimental verificatibaur
approach instead, partly due to a well-known angloirtant fact that lattice algorithms perform mudttér on a
typical cryptanalytical problems in this area thetmat is guaranteed formally. The results preseimtes8.3 fully
support the hypothesis, that the instances of ORkilé have here, are practically solvable almosboas as it
holdsdX <N.

3.3 Practical Experiments

The results obtained for a randomly generated Ei&@anstances and signatures according to a flawed
implementation described in §3.1 are presentedainlel2. Next, a rough study on how close to the eizthe
value ofp — 1 can the sum of bitlengthsxoindk be is given in Table 3. As we can see, we can geevver the
size ofp — 1. However, as we can expect, a closer inspestiows that the performance is then roughly theesa
as trying to guess several most significant bitgs ahdk directly and then to solve the “downsized” problEm
each guess separately. The experiments were progrdrim C++ supported by the well-known Shoup’s NTL
library [16]. Basic parameters of the computingtfplan employed were the following: Windows 2000/8P
Intel Celeron/2.20 GHz, 256 MB of RAM.

Bitlength of p Bitlength of x, k Probability of Success Time (in seconds)
512 179 1 0.26
768 218 1 0.88
1024 248 1 2.23
1280 275 1 4.28
1536 297 1 9.26
1792 318 1 14.53
2048 338 1 22.47
2304 356 1 44.02
2506 374 1 66.36
2816 389 1 84.4
3072 404 1 116.67
3328 419 1 151.56
3584 432 1 333.12
3840 444 1 356.01

Table 2: Experimental verification of OT-HNP-bassthck on the GPG-flawed ElI Gamal.

Bitlength of p

Bitlength of x, k

Probability of Success

Time (in seconds)

1024

500

1

4.97

1024

508

0.99

5.08
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1024 509 0.96 5.15
1024 510 0.88 5.25
1024 511 0.7 5.35
1024 512 0.37 4.99
1024 513 0.09 5.38
1024 514 0.03 4.97
1024 515 0.003 4.99
1024 516 0.001 5.19

Table 3: Experimenting with the sizexoandk.

4 Conclusions

One-time HNP is a useful modification of HNP presenin [4] and further refined in [13]. It shows e@asy and
efficient way on how to utilise direct partial imfoation on the hidden number being search for, lrwability to
use such information was outperforming, otherwiesy/\elegant and efficient, HNP-based attacks whertask
was to break certain flawed implementations of Bhfal's signature scheme using just only one sigedfip].
We show that OT-HNP overcomes this obstacle. Itemsonable to expect that similar results are htgic
achievable for other DSA-like schemes which impletagons are flawed in a similar way as well. Farthore,
OT-HNP also uncovers new promising directions totHer refinements of the HNP-based approach itself
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