含CO2盐水流体包裹体摩尔体积和组分 求解新方法

宋玉财^{0*} 胡文瑄⁰ 倪 培⁰ 段振豪⁰ 张学丰⁰

(①南京大学内生金属矿床成矿机制研究国家重点实验室,南京大学地球科学系,南京 210093;②中国科学院地质与地球物理研究所,北京 100029)

摘要 借鉴Parry方法的思路,提出求解含CO₂盐水流体包裹体摩尔体积和组分(V_m -X)的新方法. 新方法以实测包裹体气-液相CO₂部分均一温度及均一方式(T_{h,CO_2}),包裹体盐度(S)和包裹体完全 均一温度(T_h)为原始数据,构建了含 X_{CO_2} , X_{NaCl} , V_m 及F(包裹体气-液相CO₂部分均一时CO₂相的充 填度)4个未知量的4个关联方程.通过解4个方程构成的方程组,求取包裹体的 V_m -X值.前3个 方程为 X_{CO_2} , X_{NaCl} 和 V_m 的数学表达式,它们只与 T_{h,CO_2} ,S和F相关,其简化的形式可表示为 $X_{CO_2} = f_1(T_{h,CO_2},S,F)$; $X_{NaCl} = f_2(T_{h,CO_2},S,F)$; $V_m = f_3(T_{h,CO_2},S,F)$.第4个方程为包裹体完全均 一时 X_{CO_2} , X_{NaCl} , V_m 和 T_h 间的热力学关系式,简化形式为 $f_4(X_{CO_2},X_{NaCl},V_m,T_h)=0$.解方程组要 使用迭代求解法,过程如下:先给定F值代入前3个方程,可分别求得 X_{CO_2} , X_{NaCl} 和一个摩尔体 积值 V_{m1} ,然后把求得的 X_{CO_2} , X_{NaCl} 代入方程 f_4 求出另一个摩尔体积值 V_{m2} , 当 $V_{m1} = V_{m2}$, $V_{m1}(V_{m2})$, F, X_{CO_2} 和 X_{NaCl} 即为整个方程组的解,如符合地质意义,即求得了包裹体的 V_m -X值.与Parry方法 相比,该方法更易于使用,对 X_{CO_2} 的求解也更精确.新方法适用于求解CO₂气-液相部分均一时, 温度高于笼合物熔化温度,且不含固相石盐的含CO₂盐水体系流体包裹体.

关键词 含CO2盐水包裹体 摩尔体积 组分 新方法 方程

流体包裹体的摩尔体积(*V_m*)和组分组成(*X*)是其 最为重要的信息之一,是在温度-压力图解上恢复包 裹体捕获温度或压力的基础数据^[1].就目前测试技术 而言,一般是以冷热台测温或/和激光拉曼测试数据 为基础,借助热力学图解或状态方程查定或计算包 裹体的*V_m和X*.比较而言,一元或二元体系流体包裹 体的*V_m*-*X*求解简单,如纯H₂O或纯CO₂等一元体系, 只要测定包裹体的气-液相均一温度及其均一方式, 就可求得^[2]. 二元H₂O-CO₂体系,测得包裹体气-液相 CO₂部分均一时的温度和完全均一温度及其均一方 式,也能求出^[3]. 二元H₂O-NaCl体系,测出包裹体冰 点温度或水石盐熔化温度(高盐度包裹体),可先求得 流体盐度,再测出完全均一温度及其均一方式,也能 得到包裹体V_m-X值^[2].

对于三元含 CO_2 盐水体系流体包裹体(NaCl-H₂O-CO₂体系,简称NHC体系), V_m -X的求解较复杂,

* E-mail: <u>song_yucai@yahoo.com.cn</u>

收稿日期: 2005-11-21; 接受日期: 2006-01-11

国家重点基础研究发展计划(编号: 2004CB720503)和国家自然科学基金(批准号: 40673040)资助

主要难点在于此类包裹体的各组分分数难以仅仅通 过冷热台测温或/和激光拉曼测试数据直接获得. 传 统的解决方法需测量包裹体体积或估算包裹体内各 相比例. 如Bakker等^[4-6]提出根据笼合物熔化(分解) 方式及温度, 计算包括NHC体系在内的盐-水-气多组 分体系V_m-X值的方法,并编制了计算程序.这些程序 要求当笼合物完全熔化时包裹体为单相,如果出现多 相,就要估测各相所占的体积分数.同样,Brown和 Hagemann^[7]编制的MacFlinCor软件程序可以计算三 元NHC体系V_m-X值,但该方法也主要靠估测CO₂部分 均一时CO₂相的比例来进行计算. 然而, 由于包裹体 形状十分复杂,测算出的体积或估算的各相比例往 往与实际也去偏差较大181.导致计算出的组分不准确. 所求解的温压数据也不可靠. 故此, 少数学者尝试其 它求解手段, 以避开对包裹体体积或其内各相比例 的估计.如Schwarz^[9]通过理论计算,绘制出含盐度 6 wt%¹⁾的NHC体系流体包裹体在 40℃时的CO₂体积分 数-CO₂摩尔分数图解. 这意味着只要测得包裹体的 盐度(S)、气-液相CO₂部分均一温度及方式(T_{h,CO_2}) 和完全均一温度(T_h), 就可以求出盐度为 0~6 wt%该 体系包裹体的V_m-X_{CO}。值. 但该求解方法适用的盐度 范围较小,而且图中靠近CO2临界曲线的地方精度也 较差[2].

Parry^[10]提出用迭代法求解NHC体系包裹体的密 度和 X_{CO_2} .该方法不需要估测包裹体体积或相比例, 只需实测出 T_{h,CO_2} , $S 和 T_h 3$ 个参数即可通过迭代计 算求出密度和 X_{CO_2} .方法首先构建出 X_{CO_2} 与整个包 裹体密度、 ρ_{CO_2} (由 T_{h,CO_2} 求得)和S的数学关系式,然 后通过该关系式和与 T_h 相关的NHC体系状态方程^[11] 间进行迭代计算,求出包裹体密度和 X_{CO_2} 值. MacFlinCor软件程序提供的避开相比例估计的计算 手段,本质上也采用了该方法^[7].然而,Parry的工作 中,没有考虑盐水溶液中溶解CO₂的量,因此构建出 的 X_{CO_2} 的数学关系式精度不高,使得 X_{CO_2} 的求解 误差较大,所计算的压力误差就更大.同时,由于采 用的是Bowers 和Helgeson的NHC体系状态方程, 所以进行迭代计算时需要制作相图,这使得该方法 很不易操作^[9].

本文提出新的方法求解NHC体系包裹体 V_m -X 值. 新方法基本延续了 Parry 迭代法的思路,但在可 操作性和计算精确度上加以提高.包括:(1)重新厘 定迭代计算步骤;(2)重新构建 X_{CO_2} , X_{NaCl} 和 V_m 的 数学表达式,其中考虑到盐水溶液中含有一定量的 CO₂;(3)引入新的关于NHC体系的流体状态方程. 新方法要构建出含 X_{CO_2} , X_{NaCl} , V_m 及F(包裹体气-液 相CO₂部分均一时CO₂相的充填度)4 个未知量的 4 个关联方程.通过解 4 个方程构成的方程组,求取包 裹体的 V_m -X值.

1 理论分析与方程组构建

根据Bodnar的思想^[12],NHC体系包裹体内CO₂和 NaCl的摩尔分数 X_{CO_n} 和 X_{NaCl} , 及包裹体摩尔体积 V_m 分别可以用充填度 $F(F = V_{CO_1} / V, V_{CO_2}$ 表示包裹体气-液两相CO2部分均一时CO2相体积, V为整个包裹体体 积)、盐度S和能够用 $T_{h,CO}$,求得的相关物理量的函数 表示出, 其简化形式可表示为 X_{co}= $f_1(T_{h,CO_2}, S, F); X_{NaCl} = f_2(T_{h,CO_2}, S, F); V_m = f_3(T_{h,CO_2}, S, F),$ 式中T_{h,CO},和S为已知量,都可以通过冷热台测温求 得. 如果视F为未知量, 则上述方程组中含 4 个未知 量(F, X_{CO_2} , X_{NaCl} 和 V_m), 无法求解, 因此需要构建 另一相关方程.根据相律: $f = C - \Phi + 2$,f为自由度, C为体系内的独立组分数, ϕ 为体系处于平衡时的相 数,对于NHC三元体系, C=3,当包裹体即将完全均 一时(温度为 T_h),体系处于气-液平衡态, $\Phi=2$,此时f =3, 必然存在函数关系式: $f_4(X_{CO_2}, X_{NaCl}, V_m, T_h) =$ 0, 式中T_h为已知量, 通过测温获得. 这样就构成了第 4个方程,可以与前3个方程形成关联方程组进行求 解,获得所需要参数V"-X值,并为压力计算提供依据. 下面推导4个方程的具体表达式.

1.1 $X_{CO_1}, X_{NaCl}和V_m$ 的表达式

对于气-液相CO₂部分均一温度高于笼合物熔化 温度的NHC体系包裹体,当气-液相CO₂部分均一时,

¹⁾ wt%为质量分数, 下同

一般处于常温条件附近((20±11)℃左右),这时包裹 体由两相组成: CO₂相和水溶液相. 在常温条件附近, H₂O在CO₂中的溶解度很低,最高仅为 0.22 mol%¹⁾

(当温度为纯CO₂的临界温度时)^{113]}.因此,NHC体系 流体包裹体中气-液相CO₂部分均一时,可以认为 CO₂相近似为纯CO₂,不含H₂O和NaCl.但溶液相 中除了H₂O和NaCl外,还溶解有一定量CO₂,不能 忽略.

假定包裹体为恒定质量和恒定体积的微观体系 (这是包裹体研究的一般性前提),其中CO₂和NaCl的 摩尔分数 X_{CO2}, X_{NaCl}和包裹体摩尔体积V_m可分别表 示为

$$X_{\rm CO_2} = \frac{m_{\rm CO_2}}{m_{\rm CO_2} + m_{\rm NaCl} + m_{\rm H_2O}},$$
(1)

$$X_{\text{NaCl}} = \frac{m_{\text{NaCl}}}{m_{\text{CO}_2} + m_{\text{NaCl}} + m_{\text{H}_2\text{O}}},$$
(2)

$$V_m = \frac{V}{m_{\rm CO_2} + m_{\rm NaCl} + m_{\rm H_2O}}.$$
 (3)

(1)~(3)式中V表示整个包裹体的体积, m_{CO_2} , m_{NaCl} 和 m_{H_2O} 分别是包裹体中CO₂,NaCl和H₂O的摩尔数,它 们可进一步表达为

$$m_{\rm CO_2} = m_{\rm CO_2(CO_2)} + m_{\rm CO_2(aq)} = \frac{\rho_{\rm CO_2} V_{\rm CO_2}}{M_{\rm CO_2}} + \frac{\rho_{\rm aq} (V - V_{\rm CO_2})}{M_{\rm CO_2}} \frac{\frac{1 - S}{M_{\rm H_2O}} K X_{\rm CO_2(\rm H_2O)T, P} M_{\rm CO_2}}{1 + \frac{1 - S}{M_{\rm H_2O}} K X_{\rm CO_2(\rm H_2O)T, P} M_{\rm CO_2}},$$
(4)

$$m_{\rm H_2O} = \frac{\rho_{\rm aq}(V - V_{\rm CO_2})}{M_{\rm H_2O}} \frac{1 - S}{1 + \frac{1 - S}{M_{\rm H_2O}}} KX_{\rm CO_2(\rm H_2O)T, P}M_{\rm CO_2}}, (5)$$

$$m_{\text{NaCl}} = \frac{\rho_{\text{aq}}(V - V_{\text{CO}_2})}{M_{\text{NaCl}}} \frac{S}{1 + \frac{1 - S}{M_{\text{H}_2\text{O}}} K X_{\text{CO}_2(\text{H}_2\text{O})T, P} M_{\text{CO}_2}}, (6)$$

式中m_{CO₂(CO₂)}和m_{CO₂(aq)}分别表示包裹体中气-液相

CO₂部分均一时, CO₂相中和溶解于溶液相中的CO₂摩 尔数, V_{CO_2} 为此时CO₂相的体积. M_{CO_2} , M_{H_2O} 和 M_{NaCl} 分别表示CO₂, H₂O及NaCl的分子量. ρ_{CO_2} 为包 裹体中气-液相CO₂部分均一时, CO₂相的密度, 可通 过气-液相CO₂部分均一温度 T_{h,CO_2} 和均一方式求 得^[2]. S是包裹体的盐度, S=NaCl质量/(NaCl质量+H₂O 质量),可用笼合物熔化温度 $T_{m,Cla}$ (-9.6~+10°C)求取 ^[2]. $X_{CO_2(H_2O)T,P}$ 为气-液相CO₂部分均一时 1 mol H₂O 中溶解的CO₂摩尔数,可根据低温条件下CO₂在H₂O 中的溶解度公式求解^[14]. K为校正系数 (0 \leq K \leq 1), 表示盐 (NaCl)加入含CO₂水溶液中时对 $X_{CO_2(H_2O)T,P}$ 值的校正, 有

$$K = 1.0 - (11.0/3.0)S, \tag{7}$$

(7)式是由2个数据点拟合出的经验性的直线方程,当 S=0时, K=1.0; S=0.06时, K=0.78^[9]. ρ_{aq} 为包裹体中 气-液相CO₂部分均一时溶液相密度.研究显示, -20~31℃之间(纯CO₂气-液相均一温度的范围),饱 和CO₂的水溶液(不含盐)在不同温度时密度相差不 到0.006 g/cm³,在4℃时有最大值1.0014 g/cm³,这与 纯水密度几乎相当^[13].因此,少量的CO₂对盐水溶液 密度的影响可被忽略.根据Potter和Brown的盐水溶 液密度表达式^[9,15],有

$$\rho_{\rm aq}$$
 =

$$\frac{1000\rho_{\rm H_2O,T,P} + M_{\rm NaCl}W_{\rm NaCl}\rho_{\rm H_2O,T,P}}{2}$$

$$1000 + aW_{\text{NaCl}}\rho_{\text{H}_{2}\text{O},T,P} + bW_{\text{NaCl}}^{S/2}\rho_{\text{H}_{2}\text{O},T,P} + cW_{\text{NaCl}}^{2}\rho_{\text{H}_{2}\text{O},T,P}$$
(8)

式中 $\rho_{H_{2}O,T,P}$ 为气-液相CO₂部分均一时的温度(T)、压力(P)条件下H₂O的密度,据纯H₂O的相图能够求出^[2,16]. *a*, *b*, *c*为常数,分别等于 17.45, 1.71, 0.04. W_{NaCl} 表示溶液中NaCl的质量摩尔浓度:

$$W_{\text{NaCl}} = \frac{S}{\frac{(1-S)}{M_{\text{H}_2\text{O}}} KX_{\text{CO}_2(\text{H}_2\text{O})T,P} + \frac{S}{M_{\text{NaCl}}} + \frac{1-S}{M_{\text{H}_2\text{O}}}}.$$
 (9)

将(4)~(6)式分别代入(1)~(3)式,并引入充填度参数 F,整理后得出 3 个方程的数学表达式:

¹⁾ mol%为摩尔分数,下同

$$\begin{split} \frac{\rho_{\rm CO_2}F}{M_{\rm CO_2}} + \frac{\rho_{\rm aq}(1-F)}{M_{\rm CO_2}} & \frac{\frac{1-S}{M_{\rm H_2O}}KX_{\rm CO_2(\rm H_2O)T,P}M_{\rm CO_2}}{1+\frac{1-S}{M_{\rm H_2O}}KX_{\rm CO_2(\rm H_2O)T,P}M_{\rm CO_2}}, \end{split}$$
(10)
$$X_{\rm CO_2} = \frac{\rho_{\rm CO_2}F}{M_{\rm CO_2}} + \frac{\rho_{\rm aq}(1-F)}{1+\frac{1-S}{M_{\rm H_2O}}KX_{\rm CO_2(\rm H_2O)T,P}M_{\rm CO_2}} & \left(\frac{1-S}{M_{\rm H_2O}}(1+KX_{\rm CO_2(\rm H_2O)T,P}) + \frac{S}{M_{\rm NaCl}}\right), \end{cases}$$
(10)
$$X_{\rm NaCl} = \frac{\rho_{\rm cO_2}F}{\frac{\rho_{\rm CO_2}F}{M_{\rm CO_2}}} + \frac{\rho_{\rm aq}(1-F)}{1+\frac{1-S}{M_{\rm H_2O}}KX_{\rm CO_2(\rm H_2O)T,P}M_{\rm CO_2}} & \frac{S}{M_{\rm NaCl}}}{\frac{\rho_{\rm CO_2}F}{M_{\rm CO_2}}} + \frac{\rho_{\rm aq}(1-F)}{1+\frac{1-S}{M_{\rm H_2O}}KX_{\rm CO_2(\rm H_2O)T,P}M_{\rm CO_2}} & \left(\frac{1-S}{M_{\rm H_2O}}(1+KX_{\rm CO_2(\rm H_2O)T,P}) + \frac{S}{M_{\rm NaCl}}}\right), \end{cases}$$
(11)
$$V_m = \frac{1}{\frac{\rho_{\rm CO_2}F}{M_{\rm CO_2}}} + \frac{\rho_{\rm aq}(1-F)}{1+\frac{1-S}{M_{\rm H_2O}}KX_{\rm CO_2(\rm H_2O)T,P}M_{\rm CO_2}} & \left(\frac{1-S}{M_{\rm H_2O}}(1+KX_{\rm CO_2(\rm H_2O)T,P}) + \frac{S}{M_{\rm NaCl}}}\right), \end{cases}$$
(12)

(10)~(12)式即为 X_{CO2}, X_{NaCl}和V_m的具体求解方程.式 中除F以外,其他的未知量都可以通过 T_{h,CO2}和S求出. 当气-液相CO2部分均一时,部分均一温度高于笼合 物熔化温度,且包裹体中不出现固相石盐条件下这 些表达式成立.

1.2 方程f4的表达式

方程f4的表达式为

$$f_4(X_{CO_2}, X_{NaCl}, V_m, T_h) = 0,$$
 (13)

方程f4可以是能够计算处于相平衡条件下体系热力学 性质的状态方程,也可以是体系处于相平衡条件下 的实验数据. Duan等^[17]发表了最新的NHC体系流体 状态方程,该方程可以计算温度 300~1000℃、压力 0~3000×10⁵ Pa、体系处于相平衡条件下的热力学性 质.并且以该方程为基础,编制了在线计算程序 "GEOFLUIDS"(http://geotherm.ucsd.edu),这大大简 化了计算过程,因此可以将此方程作为f4用于求解. NHC体系流体相平衡的实验数据有许多,Schmidt 和 Bodnar的文章中有详细的介绍^[18].然而多数实验没 有给出流体的摩尔体积(密度)数据,这使得应用实 验数据求解方程受到很大限制.

2 迭代求解与算例

包裹体V_m-X的求解就是解 4 个关联方程. 由于

方程组比较复杂,因此要用迭代计算的方法求解,其 操作流程见图 1. 首先通过包裹体测温得到 T_{h,CO_2} , *S* 和 T_h ,然后设定一*F*值(0 \leq *F* \leq 1),连同 T_{h,CO_2} 和*S*代入 方程 f_1 , f_2 和 f_3 ,求出 X_{CO_2} , X_{NaC1} ,及一摩尔体积

图 1 含CO2盐水包裹体摩尔体积和组分求解计算流程

值 V_{m1} . 再将求到的 X_{CO_2} 和 X_{NaCl} ,同 T_h 代入方程 f_4 ,得 到另一摩尔体积值 V_{m2} .如果 $V_{m1} \neq V_{m2}$,则重新给出 新的F值,重复这一计算过程(迭代计算),直到 $V_{m1}=V_{m2}$,此时的 $V_{m1}(V_{m2})$, X_{CO_2} , X_{NaCl} 和F就是方程 组的解,也即是包裹体真实的 V_m -X值.

本文研究, 方程 f_1 , f_2 和 f_3 (即(10)~(12) 式的计算 由FORTRAN语言编写计算机程序执行. 程序开始读 入F值、CO₂部分均一温度 T_{h,CO_2} 及均一方式, 和S值(由 笼合物融化温度求得^[2,19]), 输出的结果为 X_{CO_2} , X_{NaCl} 和 V_{m1} . 其中由 T_{h,CO_2} 求 ρ_{CO_2} 根据文献[2,20], $X_{CO_2(H_2O)T,P}$ 的求解根据文献[14]. 方程 f_4 的计算应用根 据Duan等方程编制的在线计算程序"GEOFLUIDS"执 行. 下面举一实例, 详细描述迭代求解过程.

山东昌乐新生代玄武岩内产有刚玉巨晶,内含 三相流体包裹体,包裹体由气、液两相CO₂和盐水溶 液组成(图 2).激光拉曼分析(中国石油大学地球化学 与岩石圈动力学开放实验室)显示,大多包裹体内都 含有少量的N₂和/或H₂S,本文研究选择少含N₂和/或 H₂S的包裹体为研究对象.测温(南京大学内生金属 矿床机制研究国家重点实验室)显示,所选包裹体 CO₂三相点温度–56.9℃,CO₂部分均一温度 T_{h,CO_2} =31.3 ℃,均一到超临界相,笼合物熔化温度为 7.0℃,计算 盐度*S* =5.77 wt%^[2,19],整个包裹体完全均一温度 T_h =335℃.视该包裹体为NaCl-H₂O-CO₂体系对其 V_m -X值进行求解,求解数据详见表 1. 先任意给定一 F值,此例先设F为 55%,进行第 1 次迭代计算:将F 值、T_{hCO2} = 30.977℃(由于是超临界均一,故根据文 献[2], 做此修正)和S = 5.77 wt% 读入FORTRAN程序, 求得 $X_{CO_2} = 0.2087$, $X_{NaCl} = 0.0147$, 则 $X_{H_2O} = 0.7766$, *V*_{m1}=33.20 cm³/mol. 求解*V*_{m2}借助在线计算程序 "GEOFLUIDS", 输入求得的 X_{CO}, X_{NaCl}和 X_{H₂O} 值 及测得的Th值,将"计算性质"选为"相平衡计算".当 给定压力 $P=674 \times 10^5$ Pa时,体系处于"刚好均一"状 态(两相刚好消失变为一相),这时计算出V_{m2}=37.48 $cm^3/mol.$ 由于 $V_{m1} \neq V_{m2}$,因此要重新设定F值,重复 上述过程进行下一次迭代计算.表1数据显示,当设 定F = 62.34%进行到第5次迭代计算时, $V_{m1}=V_{m2}=$ 37.12 cm³/ mol. 这时方程组有解: V_m= 37.12 cm³/mol, $X_{CO_2} = 0.2594, X_{NaCl} = 0.0137, X_{H_2O} = 0.7269, 也即是$ 包裹体的V_m-X值.同时,还可求出包裹体完全均一时 的内压*P*= 885×10⁵ Pa.

图 2 山东昌乐刚玉巨晶中的三相含CO2盐水包裹体

	I_{h, CO_2}	S	T_h	F/%	$X_{\rm CO_2}$	$X_{ m NaCl}$	V_{m1}	V_{m2}	P	备注
包裹体1										
测温数据	31.3 (C ^{b)})	5.77	335							
迭代 1				55.00	0.2087	0.0147	33.20	37.48	674	
迭代 2				60.00	0.2420	0.0140	35.78	37.40	800	
迭代 3				65.00	0.2809	0.0133	38.79	36.58	1014	
迭代 4				62.00	0.2568	0.0138	36.92	37.15	873	
迭代 5				62.34	0.2594	0.0137	37.12	37.12	885	本文方法计算结果
				63.74	0.2514	0.0139	37.25	37.25	845.5	Parry 法计算结果
包裹体 2										
测温数据	$25.0(V^{c})$	6.1	350							
				54.98	0.1277	0.0171	36.54	36.54	506.3	本文方法计算结果
				55.00	0.1083	0.0175	35.72	35.72	461.2	Parry 法计算结果

表 1 新方法求解含CO2盐水包裹体摩尔体积-组分算例

a) T_{hCO},, CO2部分均一温度(℃); S, 包裹体盐度(wt%); T_h, 包裹体完全均一温度(℃); F, 气-液相CO2均一时, CO2相充填度; X_{CO}, 包裹体内

CO₂的摩尔分数; X_{NaCl}, 包裹体内NaCl的摩尔分数; V_{m1}, 包裹体摩尔体积值(cm³/mol), 当由本文方法计算时, 根据文中(12)式求得; V_{m2}, 包裹体的 摩尔体积(cm³/mol), 当由本文方法计算时, 根据文中(13)式求得, 即"GEOFLUIDS"求得; P, 包裹体完全均一时, 包裹体的内压(×10⁵ Pa); 包裹体 1 来自山东昌乐刚玉巨晶内, 包裹体 2 为假设的; (b)表示均一到超临界相; c) 表示均一到气相 如果想求出整个包裹体的体积V,则需测量出气-液相CO₂部分均一时CO₂相的直径,根据球形体积计 算公式求出它的体积V_{CO},就可得到V(=V_{CO},/F).

3 讨论

3.1 本文方法与 Parry 方法计算精确度比较

前文已述,本文方法与 Parry 的方法构建的 X_{CO_2} 表达式不同: Parry 的方法中没有考虑溶液相中 所含的CO₂,而本文则考虑到这一点,在 X_{CO_2} 表达 式中引入 K 和 $X_{CO_2(H_2O)T,P}$.根据两种方法构建出的 X_{CO_2} 表达式求解 X_{CO_2} ,并与前人数据进行比较,来 验证两表达式的精确度,求解结果见表 2(由于数据的缺乏,表中列出的是 *S*=0 和 *S*=6 wt%时,两种方法 计算出的数据和前人发表的数据,表中也列出了 V_m 值).

表 2 数据显示,本文方法构建的 X_{CO_2} 表达式 ((10)式)明显优于Parry构建的表达式.可以看出,当 S=0时,无论当F取大值或取小值, $T_{h,CO_2}(\rho_{CO_2})$ 值高 还是低,及任何均一方式条件下,用本文方法求解出 的 X_{CO_2} 数据都与前人发表的数据(根据实验数据绘 制的图解^[3])更为接近,计算得到的 V_m 和 X_{CO_2} 误差均 不超过 2%.而用Parry^[10]的表达式求出的 V_m 误差虽然 不大,一般不超过 3%,但求出的 X_{CO_2} 误差很大,甚 至达到 20%以上.当S = 6 wt%时,用本文表达式求出 的 X_{CO_2} 值与Schwarz理论计算值也基本一致^[9],而用 Parry的表达式求出的 X_{CO_2} 值与Schwarz理论计算的 相差 20%.

 X_{CO_2} 表达式构建的不同,会对最后计算出的包裹体的 V_m -X值有影响.表 1 显示,对于包裹体 1,用

本文方法和Parry方法求解出的 X_{CO_2} 和 V_m 有所差别 (用Parry方法求解时,也采用的是Duan等的NHC流 体体系状态方程^[17]),但由于其中CO₂含量高,导致 差别不大.然而,当包裹体内CO₂含量低时,如包裹 体 2,用本文方法和Parry方法最后求解出的 X_{CO_2} 明 显不同,可以相差到 20%左右,两方法求出的压力*P* 值也相差有 10%左右.这表明由Parry方法求解相对 低含量CO₂的流体包裹体时,所求得的 X_{CO_2} 可能存 在较大误差,得到的压力数据也不可靠.

3.2 求解误差分析

求解误差大小主要取决于 4 个表达式方程计算的精确度.表 2 显示,本文构建的 X_{CO_2} 和 V_m 表达式((10)~(12)式)求出的 X_{CO_2} 和 V_m ,与实验数据^[3]和理论计算数据^[9]相比都不超过 3%. X_{NaCl} 的表达(11)式可以简化为 $X_{NaCl} = S(1 - X_{CO_2})$,其中包裹体盐度S已知,故其计算误差只与 X_{CO_2} 表达式计算精确度相关,同样不会超过 3%.因此,本文构建的 3 个表达式计算精确度较高,对最后 V_m -X值求解结果影响不会很大.

方程f4计算的误差取决于实验或状态方程的精确 度.如果以实验数据编制的相图作为方程f4,产生的 误差就是实验的误差范围.然而,实验数据点有限, 迭代计算很难依靠不连续的实验数据点完成,因此 通常要用状态方程求解.Duan等^[17]发表了最新的 NHC体系流体的状态方程,以此方程为例,温度 300~1000℃、压力 0~3000×10⁵ Pa条件下,盐度低于 30wt%时该方程计算出的体系处于相平衡条件下的热 力学数据与前人发表的实验数据比较吻合.因此,应 用此方程求解时,对具较高完全均一温度和较低高盐 度的包裹体,误差较小.而对具较低完全均一温度和

表 2 由本文和Parry构建的 V_m 和 X_{CO_2} 表达式计算精确度比较^{a)}

$T_{h,CO_2}^V = 28 \degree C$, $F = 0.9$,		$\mathbf{T}_{h,\mathrm{CO}_2}^L = 15^\circ\!\!\!\mathrm{O}$	C, F = 0.5,	$T_{h,CO_2}^C = 30.9^\circ$	77°C, <i>F</i> =0.3,	$\rho_{\rm CO_2} = 0.5 {\rm g/cm^3}, F = 0.25,$		
S = 0		<i>S</i> =	0	S=	0	S = 6 wt%		备注
$V_m/\text{cm}^3 \cdot \text{mol}^{-1}$	$X_{\rm CO_2}$	$V_m/\text{cm}^3 \cdot \text{mol}^{-1}$	$X_{\rm CO_2}$	$V_m/\text{cm}^3 \cdot \text{mol}^{-1}$	$X_{\rm CO_2}$	$V_m/\text{cm}^3 \cdot \text{mol}^{-1}$	$X_{\rm CO_2}$	
88.78	0.5362	27.70	0.2785	24.60	0.1007	23.03	0.0817	据本文方法
87.31	0.5157	26.93	0.2515	23.82	0.0757	22.52	0.0640	据Parry法
87.9 ^[3]	0.53[3]	27.7 ^[3]	0.28	24.3 ^[3]	0.10^{3}	_	0.08	据文献[3,9]

a) T_{h.CO2}的上标V, L, C分别表示包裹体气-液相CO2部分均一到气相、液相和超临界相; ρ_{CO2}表示CO2部分均一时, CO2相密度; 其他符号所 示意义同表 1

4 结论

本文借鉴Parry迭代法的思路,提出了新的求解 含CO₂盐水体系流体包裹体(NaCl-H₂O-CO₂体系)摩 尔体积和组分(V_m-X)的方法.新方法重新厘定迭代计 算步骤,重新构建 X_{CO₂}, X_{NaCl}和V_m的数学表达式, 其中考虑到盐水溶液中含有一定量的CO₂,并引入新 的关于该体系的流体状态方程.这使新方法更易于 使用,求解的精度也提高,尤其对 X_{CO₂}求解的精确 度提高明显.此外,该方法还能求得包裹体完全均一 时的内压.

使用该方法,不需要估测包裹体体积和包裹体 内各相比例,只需实测出包裹体气-液相CO₂部分均 一温度及均一方式、包裹体盐度和包裹体完全均一温 度.然后依照文中图 1 所示的步骤进行计算,其中文 中的(10)~(12)式及在线计算程序"GEOFLUIDS" (http://geotherm.ucsd.edu)是计算的关键公式(程序). 同时要注意,所计算包裹体必须满足笼合物熔化温 度低于CO₂气-液相部分均一温度,并且CO₂部分均一 时,溶液中不含有固相NaCl,才能应用此方法.

参考 文 献

- Burke E A J. Raman microspectrometry of fluid inclusions. Lithos, 2001, 55: 139–158[DOI]
- 2 卢焕章,范宏瑞,倪培,等.流体包裹体.北京:科学出版社, 2004.1-487
- 3 Bakker R J, Diamond L W. Determination of the composition and molar volume of H₂O-CO₂ fluid inclusions by microthermometry. Lithos, 2000, 64: 1753–1764
- 4 Bakker R J, Dubessy J, Cathelineau M. Improvements in clathrate modeling: 1. The H₂O-CO₂ system with various salts. Geochim Cosmochim Acta, 1996, 60: 1657–1681[DOI]
- 5 Bakker R J. CLATHRATES: computer programs to calculate fluid inclusion: V-X properties using clathrate melting temperatures. Comput Geosci, 1997, 23: 1—18[DOI]
- 6 Bakker R J. Package FLUIDS. 1. computer programs for analysis of fluid inclusion data and for modeling bulk fluid properties. Chem Geol, 2003, 194: 3–23[DOI]
- 7 Brown P E, Hagemann S G. MacFlinCor and its application to fluids in Archean lode-gold deposits. Geochim Cosmochim Acta,

1995, 59: 3943—3952[DOI]

- 8 常兆山.流体包裹体各相体积测定的现状和探索.地球科学进展, 1995,10:554-561
- 9 Schwartz M Z. Determining phase volumes of mixed CO₂-H₂O inclusions using microthermometric measurements. Miner Depos, 1989, 24: 43-47[DOI]
- 10 Parry W T. Estimation of X_{CO2}, P and fluid inclusion volume from fluid inclusion temperature measurements in the system NaCl-H₂O-CO₂. Econ Geol, 1986, 81: 1009—1013
- 11 Bowers T S, Helgeson H C. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the systems H₂O-CO₂-NaCl on phase relations in geologic systems: equation of state for H₂O-CO₂-NaCl fluids at high pressures and temperatures. Geochim Cosmochim Acta, 1983, 47: 1247–1275[DOI]
- 12 Bodnar R J. A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties in inclusion fluids. Econ Geol, 1983, 78: 535-542
- 13 Sterner S M, Bondar R J. Synthetic fluid inclusions. X: experimental determination of P-V-T-X properties in the CO₂-H₂O system to 6 Kb and 700°C. Am J Sci, 1991, 291: 1—54
- Diamond L W, Akinfiev N N. Solubility of CO₂ in water from 1.5 to 100 °C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modeling. Fluid Phase Equilib, 2003, 208: 265 –290[DOI]
- 15 Potter R W, Brown D L. The volumetric properties of aqueous sodium chloride solutions from 0°C to 500°C at pressure up to 2000 bars based on a regression of available data in the literature. U S Geol Sur Bull, 1977, 1421-C: 1-36
- 16 Diamond L W. Systematics of H₂O fluid inclusions. In: Samson I, Anderson A, Marshall D, eds. Fluid Inclusions: Analysis and Interpretation. Canada: Mineralogical Association of Canada Short Course Series, 2003. 81—100
- 17 Duan Z, Moller N L, Weare J H. Equation of state for the H₂O-CO₂-NaCl system: prediction of phase equilibria and volumetric properties. Geochim Cosmochim Acta, 1995, 59: 2869— 2882[DOI]
- 18 Schmidt C, Bodnar R J. Synthetic fluid inclusions: XVI. PVTX properties in the system H₂O-CO₂-NaCl at elevated temperatures, pressures, and salinities. Geochim Cosmochim Acta, 2000, 64: 3853–3869[DO1]
- 19 Roedder E. Fluids inclusions. Reviews in mineralogy. Mineral Soc Amer, 1984, 12: 1—644
- 20 Angus S, Armstrong B, deReuck K M. Carbon Dioxide: International Thermodynamic Tables of The Fluids State. Oxford: Pergamon Press, 1976. 1–385