和龙地块的构造属性与华北地台北缘东段边界*

张艳斌 吴福元 翟明国 路孝平

(①中国科学院地质与地球物理研究所,北京 100029; ②吉林大学地球科学学院,长春 130061;③吉林省区域地质调查所,长春 130022)

摘要 应用锆石激光剥蚀等离子体分析技术(LA-ICP-MS),对吉林省东南部原华北地台和龙地 块上的百里坪岩体进行了侵位年代测定,确定岩体形成于 285~116 Ma 之间的早二叠世~早白垩 世,是由至少 4 次岩浆活动形成的复式岩体.这些年代学结果显示,百里坪岩体并不是太古宙、 元古宙或者早古生代形成的,传统认识上的以百里坪岩体为主要组成部分的金城洞花岗绿岩带 不能成立.岩石的 Sr-Nd 同位素特征与兴蒙造山带的显生宙花岗岩相似,反映其源岩为年轻的新 生地壳物质. Sr-Nd 同位素地球化学模拟结果显示,岩浆在上升或侵位过程中曾受到部分古老地 壳物质的混染,从而表明和龙地块的基底地壳物质与北侧的兴蒙造山带相似,即和龙地块的深部 并不存在大规模的前寒武纪结晶基底,区内分布的金城洞太古宙杂岩可能仅是残存在地壳浅层 次上的外来太古代岩片.因此,原定本区北部的富尔河-古洞河断裂不是华北地台与兴蒙造山带 之间的界限,其真实界限应南移 50 km 以上而位于长白山火山附近.

关键词 华北地台 和龙地块 百里坪岩体 锆石 U-Pb 年龄 Sr-Nd 同位素

位于吉林省东南部的和龙地块是我国华北地台 北缘最东段的太古宙地质单元^[1,2].根据以前的区域 地质调查成果,该地块主要由两部分组成:其一是位 于金城洞一带的太古宙变质表壳岩系和侵入其中的 太古宙TTG杂岩^[3-5];其二是位于十里坪-百里坪-广 坪一带的百里坪花岗岩^[6,7].它们两者共同组成目前 国内学术界认定的金城洞(或和龙)花岗绿岩带^[3,4,8-1]]. 然而,除目前对金城洞表壳岩及花岗岩有少量同位 素年龄以外^[5,12],对大面积分布的百里坪岩体的时代 一直存在争论.如曾庆栋等^[3]及李俊建等^[9]等认为其 形成于太古代;而后,曾庆栋等^[1]又认为其形成于古 元古代;但吉林省地质矿产局^[12]则认为其应该形成 于早古生代.因此,百里坪岩体的时代归属是确定金 城洞花岗绿岩带是否成立的关键.同时,上述两大岩 石单元北侧的富尔河-古洞河断裂被认为是华北北部 赤峰-开原深断裂的东延部分,是华北地台与其北侧 兴蒙造山带在本区的分界所在^[1,12,13].但是,如果和 龙地块中占主体的百里坪花岗岩不是太古宙或至少

²⁰⁰³⁻¹²⁻²⁹ 收稿

^{*} 国家自然科学基金(批准号: 40272045, 40234050)和中国地质调查局项目(批准号: 200113000052)资助

^{**} E-mail: zhangyanbin@mail.igcas.ac.cn

不是早前寒武纪形成的话,那么,长期形成的将富尔 河-古洞河断裂作为华北地台边界的认识就值得进一 步商榷.在本文中,我们运用锆石激光剥蚀等离子体 分析技术(LA-ICP-MS)对百里坪岩体中的花岗质岩石 进行了锆石U-Pb年龄测定,并对部分定年岩石进行 了Sr和Nd同位素研究.结果表明,和龙地块的构造属 性应重新认识,而华北地台北缘的边界也应重新界 定;这一基本地质框架认识的变化,将对毗邻的朝鲜 北部大地构造单元的划分提出新认识.

1 百里坪岩体地质特征及样品选择

百里坪岩体位于吉林省和龙市百里坪至广坪一带,为一规模巨大的不规则状岩基,其在我国的出露面积达 1800 km²(图 1). 该岩体南延在朝鲜境内被称为冠帽岩体(Kwanmosong),出露面积达 3000 km^{2[14]}.该岩体北侧侵入金城洞太古宙变质岩,西侧及西南

侧被大面积新生代玄武岩所覆盖,东侧部分被燕山 期花岗岩侵入和中生代地层覆盖.

根据目前的区调结果和我们的野外调查,百里 坪岩体的岩性较为复杂,除局部地区出现石英闪长 岩和英云闪长岩外,其主体岩性为花岗闪长岩和似 斑状二长花岗岩.由于严重的露头覆盖,各岩性之间 的接触关系不清,但主体岩性多为块状构造,并含有 较多的变质岩捕虏体.

在野外地质调查过程中,我们在岩体的不同部 位共采集了 20 余块岩石样品,这些样品基本囊括了 百里坪岩体的所有岩性.根据这些样品,可将百里坪 岩体组成岩性划分为四大类型,即中粒石英闪长岩、 英云闪长岩、花岗闪长岩和似斑状二长花岗岩.其中 石英闪长岩呈灰色,块状构造,中-细粒粒状结构,局 部出现斜长石斑晶.主要矿物组成为斜长石 (70%~75%)+钾长石(20%~30%)+石英(3%~5%)+角闪

图 1 百里坪岩体地质略图(根据 1:20 万地质图修编)

SCIENCE IN CHINA Ser. D Earth Sciences

石(0%~5%)+黑云母(5%),副矿物为锆石、榍石、磷 灰石等.英云闪长岩为灰白色,片麻状构造,半自形 粒状结构,主要矿物组成为石英(30%~35%)+斜长石 (60%~70%)+钾长石(3%~5%)+角闪石(<2%)+黑云母 (5%),副矿物有锆石、磷灰石、磁铁矿等.花岗闪长 岩为灰白色,中粒花岗结构为主,局部出现钾长石斑 晶,块状构造,矿物组成为石英(25%~30%)+钾长石 (10%~20%)+斜长石(50%~60%)+角闪石(<2%)+黑云 母(5%),副矿物有锆石、榍石、磷灰石等.似斑状二 长花岗岩:该岩石为百里坪岩体的主体岩性,灰白色 -浅肉红色,中粒花岗结构为主,并出现粗大的微斜 条纹长石斑晶,块状构造.主要矿物组成为石英 (25%~30%)+钾长石(30%~50%)+斜长石(20%~30%), 并有微量的角闪石、黑云母和副矿物锆石、榍石、磷 灰石等.

除上述岩石外,在百里坪岩体内部还出现其他 若干类型的岩体.其一是出露在百里坪岩体南部的 大洞屯闪长岩岩体,其出露面积约10km²,岩石呈深 灰色,半自形柱粒状结构,块状构造.主要由角闪石 和斜长石组成,其中角闪石含量约40%~45%,部分 蚀变为黑云母或绿泥石;斜长石的含量为60%~65%, 部分斜长石颗粒由于强烈绢云母化而使卡钠复合双 晶模糊.副矿物有磷灰石、磁铁矿等,其中磁铁矿含 量可达1%.其二是侵入于百里坪岩体中部的荒沟正 长花岗岩岩体,其出露面积约150km²,岩石呈肉红 色,粗粒花岗结构,块状构造.主要组成矿物为石英 (20%~30%)+斜长石(30%~40%)+微斜长石 (50%~60%)+黑云母(<1%),副矿物有锆石、磁铁矿等. 由于目前百里坪岩体的时代不清,我们暂时将上述 所有岩石都划为百里坪(复式)岩体.

在上述样品中,我们选择新鲜无蚀变的 8 块代表 性样品进行锆石 U-Pb 同位素年龄测定,其中狭义百 里 坪岩体的石 英闪长岩和英云闪长岩各 1 块 (YZ02-21-1 和 YZ02-12-3),似斑状花岗闪长岩-二长 花岗岩 4 块(YZ02-18-3, YZ02-22-2, YZ02-25-2 和 YZ02-27-2),大洞屯闪长岩和荒沟正长花岗岩各 1 块 (YZ02-28和 YZ02-16-1),并选择百里坪岩体的 6 块样 品进行全岩 Sr-Nd 同位素分析.

2 测试方法

本文采用近几年才发展起来的锆石激光剥蚀等 离子体分析技术(LA-ICP-MS)对锆石进行微区原位单 点U-Pb同位素定年. 目前的国内外研究表明, 该方法 具有快速、高灵敏度和低成本的特点,不仅适用于前 寒武纪高级变质锆石年代学和成因的研究[15],而且也 适合于年轻的锆石样品[16~18],甚至某些显生宙锆石可 获得与SHRIMP数据相媲美的研究成果[16.17.19]. 实验 在西北大学地质学系大陆动力学教育部重点实验室 进行,采用ComPex102 ArF准分子激光器(波长 193 nm)和带有动态反应池的四极杆Elan6100 DRC型 ICP-MS进行锆石U和Pb测定(注本实验不需要动态反 应池). 实验中采用He作为剥蚀物质的载气, 用美国 国家标准技术研究院研制的人工合成硅酸盐玻璃标 准参考物质NIST SRM610 进行仪器最佳化,采用哈 佛大学国际标准锆石 91500 作为外部校正. 样品的同 位素比值计算采用GLITTER(ver4.0 Macquarie University)程序, 年龄计算采用国际标准程序 Isoplot(ver2.49). 样品的制备与SHRIMP方法基本相 同^[20],只是减少了表面镀金这一环节,实验采用的激 光束斑直径为 30 µm. 由后面的实验数据可知, 本文 所研究的岩体为显生宙花岗岩,因此我们采用 ²⁰⁶Pb/²³⁸U年龄来限定岩石形成时代,由于实验过程 中²⁰⁴Pb信号较低,且基本与背景值相当(10),而²⁰⁶Pb 信号比²⁰⁴Pb高出几个数量级(10⁴), 故本文未进行普 通铅校正. 尽管这将会导致部分数据点偏离谐和线, 但其对²⁰⁶Pb/²³⁸U表面年龄的影响极小,可以不予考 虑.

Sr和Nd同位素测试在中国科学院地质与地球物 理研究所同位素测试中心进行,采用质谱仪为 MAT-261,同位素的分馏与测试过程参见乔广生 等^[21,22].其中Sr同位素采用⁸⁷Sr/⁸⁶Sr = 0.1194 进行标 准化,Nd同位素用¹⁴³Nd/¹⁴⁴Nd = 0.7219 标准化.

文中涉及的有关符号及其定义如下: $\varepsilon_{Nd}(t) = [({}^{143}Nd/{}^{144}Nd)_{s}/({}^{143}Nd/{}^{144}Nd)_{CHUR}-1] \times 10000,$ $f_{Sm/Nd} = [({}^{147}Sm/{}^{144}Nd)_{s}/({}^{147}Sm/{}^{144}Nd)_{CHUR}]-1,$ $T_{DM} = 1/\lambda_{Sm}ln\{[({}^{143}Nd/{}^{144}Nd)_{s}-0.51315]$ $/[({}^{147}Sm/{}^{144}Nd)_{s}-0.2137]\},$ 式中下角标s代表样品,下角标CHUR代表球粒陨石, (143 Nd/ 144 Nd)_{CHUR} = 0.512638, (147 Sm/ 144 Nd)_{CHUR} = 0.1967. 衰变常数 $\lambda_{sm} = 0.654 \times 10^{-11} a^{-1}$.

3 实验测试结果

3.1 锆石 U-Pb 测定

所测 8 个样品的锆石U-Pb同位素数据如表 1 所示,其谐和图见图 2. 对英云闪长岩(YZ02-12-3,采 样地点:128°56′12″E,42°28′46″N)样品共进行了 20 个点的分析,除两个数据点显示不谐和以外,其余 18 个数据点基本上都位于谐和线附近,但明显分为两 组,12~20 号数据点位于 2360~2500 Ma之间,其²⁰⁷Pb/ ²⁰⁶Pb表面年龄加权平均值为 2410±31 Ma,与本区太 古宙杂岩中获得的锆石U-Pb年龄 2444~2541 Ma一致 ^[5.8]; 2~10 号数据点位于 280~300 Ma之间,其 ²⁰⁶Pb/²³⁸U表面年龄加权平均值为 285±9 Ma.由于该 岩石未经历任何变质作用的影响而仅发育有片麻状 构造,我们将 285±9 Ma解释为岩体的侵位年龄. 2410±31 Ma年龄锆石的存在表明岩浆在上升侵位过 程中捕获了围岩物质或代表了源区的残留.

对花岗闪长岩(YZ02-18-3, 采样地点: 128°50′15″E, 42°20′20″N)样品共进行了 20 个点的 分析,除两个数据点偏离谐和线外,其余 18 个数据 点都落在谐和线上,其²⁰⁶Pb/²³⁸U表面年龄加权平均 值为 119±2 Ma, 代表了岩浆侵位结晶年龄.

石英闪长岩(YZ02-21-1, 采样地点: 128°47′55″E, 42°13′34″N)中的锆石也较为简单, 所获得的27个分 析数据基本都位于谐和线上, 其²⁰⁶Pb/²³⁸U表面年龄 加权平均值为116±1 Ma, 该年龄应代表了岩浆的侵 位时代.

似斑状二长花岗岩(YZ02-22-2, YZ02-25-2, YZ02-27-2, 采样地点分别为 128°49′21″E, 42°12′14″N; 128°44′58″E, 42°10′57″N 和 128°49′32″E, 42°03′10″N)的测试数据中仅极个别的数据点由于 ²⁰⁷Pb测试精度较差而偏离谐和线, 但绝大部分数据 点都位于谐和线附近, 其²⁰⁶Pb/²³⁸U表面年龄加权平 均值分别为 245±6, 245±3 和 248±2 Ma, 在误差范 围内完全一致, 表明面积巨大的二长花岗岩同时形 成于早三叠世.

对大洞屯闪长岩(YZ02-28, 采样地点: 128°54′16″E 42°04′19″N), 我们一共进行了 20 个点的U-Pb分析, 所获得的²⁰⁶Pb/²³⁸U表面年龄加权平均值为 178±2 Ma. 对荒沟正长花岗岩(YZ02-16-1, 采样地点: 128°39′38″E, 42°21′58″N), 我们进行了 15 个点的 U-Pb分析, 位于谐和线附近的 12 个数据点所获得的²⁰⁶Pb/²³⁸U表面年龄加权平均值为 187±3 Ma, 两者约 相差 10 Ma.

3.2 Sr-Nd 同位素特征

所测样品的Sr和Nd同位素数据如表 2 所示. 由 该表可以看出, 百里坪岩体岩石的Rb含量较低, 而Sr 的含量相对较高,从而导致其⁸⁷Rb/⁸⁶Sr比值相对较低, 其初始Sr同位素比值(Isr)为 0.7051~0.7068, 略高于东 北花岗岩的Isr的平均值(0.705)^[23~26],但明显低于其 北部佳木斯地块(0.7094~0.7183)和南部华北地台前 寒 武 纪 结 晶 基 底 或 变 质 岩 系 的 高 Isr 值 (0.7070~0.7174)^[27], 而与其低Isr值(0.7048~0.7070)相 $(1)^{[27]}$. 岩体具有负的 $\varepsilon_{Nd}(t)$ 值, 为-1.0 ~ -13.6, 且具 有随时代变新, 其 $\varepsilon_{Nd}(t)$ 值逐渐升高的特点. 单阶段 Nd模式年龄TDM为 963~1929 Ma, 与兴蒙造山带绝大 多数岩体具有正的 ε Nd(t)值和年轻的Nd模式年龄 T_{DM}(500~1300 Ma)略有不同^[28,29],但与造山带内的辽 源地区花岗岩特征相似(图 3),反映百里坪岩体的物 质组成既不是北部的造山带,也不是南部的华北地 台,而应是两者混合的结果.

4 讨论与结论

4.1 百里坪岩体的侵位年龄

百里坪岩体由于在其花岗闪长岩获得 2293 Ma 的锆石U-Pb年龄而被认为是本区最老的花岗岩^[30], 形成于太古宙末期^[3]或早元古宙^[7,31];另外,岩体中 获得的斜长花岗岩(英云闪长岩)中黑云母的 329 Ma 的K-Ar年龄使部分学者认为它是加里东晚期^[12]岩浆 活动的产物.但由于以上数据测试年代较早,锆石 U-Pb年龄的原始同位素数据从未曾报道,而黑云母 K-Ar体系又具有较低的封闭温度,因此上述年龄是 否反映了岩体的侵位年代无从考证.

图 2 百里坪花岗岩体锆石 U-Pb 谐和图

www.scichina.com

中国科学 D辑 地球科学

样品号	分析点号 —	同位素比值(1 σ)			年龄/Ma		
件而亏		²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²⁰⁶ Pb	206Pb/238U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²⁰⁶ Pb
	1	0.0423±7	0.303±13	0.0520±23	267±4	269±10	
	2	0.0445±8	0.442±17	0.0721±27	280±5	371±12	
	3	0.0457±14	0.329±45	0.0522±73	288±9	289±34	
	4	0.0459±9	0.330±19	0.0522±31	289±5	289±15	
	5	0.461±12	0.333±33	0.0524±53	290±7	292±25	
	6	0.0440±9	0.361±21	0.0596±35	278±5	313±16	
	7	0.0476±10	0.361±24	0.0511±37	299±6	313±18	
	8	0.0466±9	0.417 ± 20	0.0650 ± 32	294±5	354±14	
	9	0.0469±9	0.392±21	0.0607±33	295±5	336±15	
V702 12 2	10	0.0461±9	0.345±21	0.0542±33	291±5	301±16	
¥Z02-12-3	11	0.0494±9	0.662±23	0.0972 ± 34	311±5	516±14	1572±65
	12	0.449±7	9.36±20	0.1512±30	2392±31	2374±20	2360±34
	13	0.447 ± 8	9.27±27	0.1507±44	2380±36	2365±27	2354±49
	14	0.446±7	9.70±17	0.1579 ± 24	2387±29	2407±16	2433±26
	15	0.453±7	9.71±20	0.1554±29	2410±31	2407±19	2406±31
	16	0.457±7	9.54±19	0.1515±27	2427±30	2392±18	2363±30
	17	0.448±6	9.85±16	0.1595±22	2386±29	2420±15	2451±23
	18	0.377±9	8.15±41	0.1567±81	2063±43	2247±45	2420±85
	19	0.471±14	10.66±64	0.1643±102	2487±61	2494±55	2500±101
	20	0.456±9	9.79±37	0.1559±60	2420±42	2415±35	2412±64
	1	0.0184±6	0.245±25	0.0965±102	117±4	222±20	
	2	0.0186±4	0.134±11	0.0522±43	119±3	127±10	
	3	0.0182±8	0.130±25	0.0512±103	117±5	123±23	
	4	0.0192±5	0.127±19	0.0482±73	122±3	122±17	
	5	0.0186±4	0.125±11	0.0486 ± 44	119±3	119±10	
	6	0.0188±4	0.128±12	0.0496 ± 45	120±3	122±10	
	7	0.0190±6	0.226±32	0.0866±91	121±4	207±19	
	8	0.0190±5	0.128±15	0.0490 ± 60	121±3	123±14	
	9	0.0194±5	0.143±14	0.0536±51	124±3	136±12	
	10	0.0188 ± 4	0.128±11	0.0493 ± 42	120±3	122±10	
YZ02-18-3	11	0.0181±7	0.135±21	0.0540 ± 85	116±4	128±19	
	12	0.0187±9	0.127±37	0.0492±145	119±6	121±33	
	13	0.0183±4	0.138±10	0.0550±40	117±2	132±9	
	14	0.0185±5	0.135±16	0.0530±64	118±3	129±14	
	15	0.0185±5	0.123±16	0.0482±64	118±3	118±15	
	16	0.0183±8	0.133±30	0.0529±123	117±5	127±27	
	17	0.0190±7	0.128±23	0.0492±91	121±4	123±21	
	18	0.0189±7	0.127±23	0.0488 ± 89	121±4	122±21	
	19	0.0181±4	0.122±13	0.0488±51	116±3	117±11	
	20	0.0188+5	0 126+18	0.0485+70	120+3	120 ± 16	

表1 百里坪花岗岩体锆石 LA-ICPMS 同位素比值分析结果

耒	1(续)

801

投口旦	分析占是		年龄/Ma				
作而与	7月17月末 5 —	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²⁰⁶ Pb	206Pb/238U	207Pb/235U	²⁰⁷ Pb/ ²⁰⁶ Pb
	1	0.0186±5	0.135±16	0.0526±62	119±3	129±14	
	2	0.0182 ± 4	0.142±13	0.0568 ± 52	116±3	135±11	
	3	0.0179±5	0.127±14	0.0514±56	115±3	121±12	
	4	0.0181±4	0.119±11	0.0479±43	116±3	115±10	
	5	0.0183±6	0.126±18	0.0499±73	117±4	121±16	
	6	0.0177 ± 4	0.143±13	0.0587±52	113±3	136±11	
	7	0.0175±4	0.126±11	0.0523±47	112±3	121±10	
	8	0.0202±4	0.149±20	0.0534±43	129±3	141±10	
	9	0.0193±5	0.138±12	0.0520±47	123±3	132±11	
	10	0.0186±4	0.123±9	0.0478±35	119±2	117±8	
	11	0.0179±3	0.116±6	0.0472±24	114±2	112±5	
	12	0.0181±3	0.126±5	0.0503±20	116±2	120±5	
	13	0.0181±6	0.142±21	0.0571±85	116±4	135±18	
YZ02-21-1	14	0.0183±4	0.121±8	0.0478±33	117±2	116±7	
	15	0.0186+5	0.123+14	0.0481+57	119+3	118+13	
	16	0.0181+4	0.143+10	0.0573+43	116+2	135+9	
	17	0.0181+5	0.122+15	0.0489+60	115+3	117+13	
	18	0.0181+4	0.121+10	0.0487 ± 41	115+2	116+9	
	19	0.0178+3	0.120+4	0.0487 ± 18	113±2	115+4	
	20	0.0188+6	0.131+19	0.0503+73	120+4	125+17	
	20	0.0180±0	0.123+9	0.0494+38	115+2	118+8	
	21	0.0186 ± 4	0.125 ± 7 0.145+11	0.0564+44	110+3	137 ± 10	
	22	0.0180 ± 4	0.143 ± 11 0.140+31	0.0504 ± 44	119±5	137±10	
	23	0.0197 ± 9	0.140 ± 31 0.134+14	0.0566±60	110+3	133±28	
	24	0.0172 ± 3	0.134 ± 14	0.0505±51	112 2	120±12	
	25	0.0170 ± 4	0.143 ± 12	0.0395 ± 31	115±3	13/±11	
	26	0.0182±4	0.124 ± 11	0.0496±48	110±3	119±11	
	27	0.0185 ± 5	0.139 ± 13	0.0551 ± 34	117±3	152 ± 12	
	1	0.0377 ± 7	0.298 ± 14 0.271 + 15	0.0374 ± 27 0.0517+20	239±4	205±11 244±12	
	2	0.0381 ± 7 0.0367±0	0.271 ± 13 0.255±24	0.0517 ± 30	241 ± 4 222 ±6	244 ± 12 221+10	
	3 4	0.0367 ± 9	0.253 ± 24 0.262±17	0.0505 ± 49	232±0 232+4	231±19 236+4	
	5	0.0379+15	0.262 ± 17	0.0513 ± 132	232±4 240+9	230±4 241+55	
	6	0.0379 ± 10 0.0362+10	0.257+29	0.0515 ± 152 0.0516+60	229+6	232+24	
	7	0.0402±8	0.323±20	0.0565±36	254±5	277±15	
	8	0.0383±8	0.270±18	0.0512±35	242±5	243±15	
	9	0.0382±13	0.288±38	0.0547±74	242±8	257±30	
YZ02-22-2	10	0.0420±7	0.295±14	0.0510±24	265±4	263±11	
	11	0.0431±9	0.547±29	0.0921±51	272±6	443±19	
	12	0.0422 ± 10	0.296±27	$0.0510{\pm}47$	267±6	264±21	
	13	0.0399±7	$0.298{\pm}15$	0.0542 ± 28	252±4	265±12	
	14	0.0400 ± 8	0.286±16	$0.0518{\pm}30$	253±5	255±13	
	15	0.0401 ± 9	$0.284{\pm}22$	$0.0514{\pm}40$	254±5	254±17	
	16	0.0383±7	0.270±16	0.0542 ± 30	242±4	243±13	
	17	0.0364±13	0.258+61	0.0515 ± 122	230±8	233±49	
	18	0.0359±9	0.250±28	0.0506±57	227±6	227±23	
	19	0.0367±7	0.298±19	0.0589 ± 37	232±4	265±15	

中国科学 D 辑 地球科学

			同位素比值(1 σ)			年龄/Ma	
样品号	分析点号 —	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²⁰⁶ Pb	206Pb/238U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²⁰⁶ Pt
	1	0.0393±5	0.277±9	0.0512±17	249±3	249±7	
	2	0.0370±5	0.275±8	0.0538±17	235±3	247±7	
	3	0.0395±6	0.272±12	0.0500±23	249±4	244±10	
	4	0.0386±5	0.289 ± 8	0.0543±15	244±3	258±6	
	5	0.0388±5	0.268±7	0.0502 ± 14	245±3	241±6	
	6	0.0379±5	0.257±10	0.0492±19	240±3	233±8	
	7	0.0382±5	0.282±10	0.0536±19	241±3	252±8	
	8	0.0399±5	0.279±8	0.0508 ± 15	252±3	250±7	
	9	0.0100±6	0.287±13	0.0520±25	253±4	256±11	
N702 25 2	10	0.0400±5	0.286±7	0.0518±13	253±3	255±6	
YZ02-25-2	11	0.0387±5	0.276±7	0.0516±14	245±3	247±6	
	12	0.0391±5	0.283±10	0.0524±18	247±3	253±8	
	13	0.0370±5	0.313±8	0.0612±16	234±3	276±6	
	14	0.0392±5	0.275±8	0.0509 ± 15	248±3	247±7	
	15	0.0384±10	0.274±27	0.0518±51	243±6	246±21	
	16	0.0391±5	0.279±8	0.0517±14	247±3	250±6	
	17	0.0384±5	0.282 ± 8	0.0533±16	243±3	253±7	
	18	0.0393±6	0.296±14	0.05450 ± 25	249±4	263±11	
	19	0.0377±6	0.266±14	0.0512±27	238±4	239±11	
	20	0.0388±5	0.284±7	0.0530±13	246±3	254±6	
	1	0.0411±6	0.304±10	0.0535±19	260±4	269±8	
	2	0.0384±5	0.268±9	0.0506 ± 18	243±3	241±7	
	3	0.0384±6	0.277±11	0.0523±21	243±3	248±9	
	4	0.0399±7	0.282±18	0.0513±33	252±5	252±14	
	5	0.0401±6	0.296±11	0.0535±19	253±3	263±8	
	6	0.0386±7	0.264±15	0.0496 ± 28	244±4	238±12	
	7	0.0395±6	0.281±10	0.0516±19	250±3	252±8	
	8	0.0383±6	0.316±11	0.0599 ± 22	242±3	279±9	
	9	0.0392±5	0.281±9	0.0520±17	248±3	251±7	
YZ02-27-2	10	0.0392±5	0.281±10	0.0521±18	248±3	252±8	
	11	0.0383±6	0.271±11	0.0513±21	242±3	244±9	
	12	0.0388±5	0.275±9	0.0514±16	245±3	247±7	
	13	0.0383±5	0.268 ± 8	0.0507±15	243±3	241±6	
	14	0.0391±5	0.273±9	0.0507±16	247±3	245±7	
	15	0.0392±5	0.274 ± 8	0.0506 ± 14	248±3	246±6	
	16	0.0401±7	0.298±15	0.0539 ± 27	254±4	265±11	
	17	0.0394±5	0.281±8	0.0517±15	249±3	252±6	
	18	0.0396±5	0.289±8	0.0529 ± 14	250±3	258±6	
	19	0.0404 ± 5	0.299±8	0.0536±14	255±3	265±6	

						6	表 l(续)
样品号	分析点号 —	206-238-1	同位素比值(1σ)	20751 20651	206-01 /238-1	年龄/Ma	20751 /20651
	1	0.0221.5	20, Pb/200 0, 106 - 10	207 Pb/200 Pb	170 - 2	181.0	207Pb/200Pb
	1	0.0281±5	0.196±10	0.0504±27	179±3	181±9	
	2	0.0284±7	0.195±20	0.0498±53	180±5	181±17	
	3	0.0277±5	0.197±10	0.0514±27	176±3	182±9	
	4	0.0283±5	0.196±10	0.0502±26	180±3	182±8	
	5	0.0284 ± 5	0.195±11	0.0503±29	179±3	181±9	
	6	0.0282±5	0.194±10	0.0500±26	179±3	180±8	
	7	0.0287±7	0.197 ± 19	0.0497±49	183±4	183±16	
	8	0.0276±7	0.191±18	0.0502 ± 50	175±4	177±16	
	9	0.0280 ± 4	0.194 ± 9	0.0502 ± 23	178±3	180 ± 7	
YZ02-28	10	0.0274 ± 6	0.187 ± 16	0.0495 ± 44	174±4	174 ± 14	
1202 20	11	0.0271±5	0.189±11	0.0506 ± 31	173±3	176±10	
	12	0.0281±9	0.196±27	0.0505 ± 71	179±6	181±23	
	13	0.0289 ± 10	0.201±30	0.0505 ± 78	184±7	186 ± 26	
	14	0.0284 ± 5	$0.194{\pm}12$	0.0496±31	181±3	180 ± 10	
	15	0.0283 ± 5	0.178 ± 9	0.0458 ± 23	180±3	167 ± 8	
	16	0.0281±5	$0.194{\pm}12$	0.0502 ± 33	179±3	$180{\pm}11$	
	17	0.0278±5	$0.180{\pm}11$	0.0468 ± 29	177±3	168±9	
	18	0.0285 ± 7	$0.197{\pm}19$	0.0501±49	181±4	182±16	
	19	0.0277±4	0.189±9	0.0495±25	176±3	176±8	
	20	0.0284±6	0.214±17	0.0546 ± 44	181±4	197±14	
	1	0.0297±5	0.283±12	0.0691±31	189±3	253±10	
	2	0.0299 ± 4	0.208±7	0.0504±16	190±3	192±6	
	3	0.0300±4	0.265±9	0.0640 ± 22	191±3	239±7	
	4	0.0302±4	0.222±4	0.0533±8	192±2	204±3	
	5	0.0299 ± 4	0.227±5	0.0552±13	190±2	208±4	
	6	0.0293±5	0.202±10	0.0501±25	186±3	187±9	
	7	0.0284 ± 4	0.222±9	0.0566±23	181±3	203±7	
YZ02-16-1	8	0.0296±8	0.206 ± 21	0.0504 ± 52	188±5	190±17	
	9	0.0305±4	0.270±8	0.0643±19	194±3	243±6	
	10	0 0293+4	0 226+5	0.0559+13	186+2	207+5	
	11	0.0288+4	0.198+10	0.0498+24	183+3	183+8	
	12	0.0295+4	0.203+9	0.0500+21	187+3	188+7	
	13	0.0284+4	0.198+8	0.0506+20	181+3	184+6	
	14	0.0284 ± 5	0.198+12	0.0500 ± 20 0.0507+31	180+3	184+10	
	15	0.0297+5	0.170 ± 12 0.204+11	0.0498+28	188+3	188+10	
	1.7	0.04/1-5	V.4VT-11	0.0470-40	1 1 1 () ' .)	1 () () ' 1 (/	

表 2 百里坪岩体 Sr-Nd 同位素测试数据

样品号	岩性	t/Ma	$Rb/\mu g \cdot g^{-1}$	$Sr/\mu g \cdot g^{-1}$	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	$2s_{\rm m}$	I _{Sr}
YZ02-12-3	英云闪长岩	285	31.9	1240.91	0.074	0.706161	20	0.7059
YZ02-18-3	花岗闪长岩	119	56.6	697.14	0.235	0.70553	17	0.7051
YZ02-21-2	闪长岩	116	69.9	788.22	0.257	0.705969	15	0.7055
YZ02-22-1	二长花岗岩	243	85.2	1089.41	0.226	0.707184	19	0.7064
YZ02-25-2	二长花岗岩	245	78.5	741.64	0.306	0.707791	18	0.7067
YZ01-27-2	二长花岗岩	248	63.8	973.55	0.190	0.707458	18	0.7068
样品号	$Sm/\mu g \cdot g^{-1}$	$Nd/\mu g \bullet g^{-1}$	147Sm/144Nd	143Nd/144Nd	$2s_{\rm m}$	T _{DM} /Ma	\mathcal{E}_{Nd}/t	$f_{ m Sm/Nd}$
样品号 YZ02-12-3	$\frac{\text{Sm}/\mu\text{g} \cdot \text{g}^{-1}}{4.04}$	Nd/μg • g ⁻¹ 23.22	¹⁴⁷ Sm/ ¹⁴⁴ Nd 0.1052	¹⁴³ Nd/ ¹⁴⁴ Nd 0.511772	2s _m 11	<i>T</i> _{DM} /Ма 1929	<i>ɛ</i> _{Nd} ∕t −13.57	<i>f</i> _{Sm/Nd} −0.47
样品号 YZ02-12-3 YZ02-18-3	$\frac{\text{Sm/}\mu\text{g} \cdot \text{g}^{-1}}{4.04}$ 3.2	Nd/µg • g ⁻¹ 23.22 16.93	¹⁴⁷ Sm/ ¹⁴⁴ Nd 0.1052 0.1143	¹⁴³ Nd/ ¹⁴⁴ Nd 0.511772 0.512522	2s _m 11 10	<i>T</i> _{DM} /Ma 1929 963	<i>ɛ</i> _{Nd} /t −13.57 −1.01	f _{Sm/Nd} -0.47 -0.42
样品号 YZ02-12-3 YZ02-18-3 YZ02-21-1	Sm/μg • g ⁻¹ 4.04 3.2 5.36	Nd/μg • g ⁻¹ 23.22 16.93 29.05	¹⁴⁷ Sm/ ¹⁴⁴ Nd 0.1052 0.1143 0.1115	¹⁴³ Nd/ ¹⁴⁴ Nd 0.511772 0.512522 0.512412	2 <i>s</i> _m 11 10 10	<i>T</i> _{DM} /Ma 1929 963 1101	<i>ɛ</i> _{Nd} /t −13.57 −1.01 −3.15	$f_{\rm Sm/Nd}$ -0.47 -0.42 -0.43
样品号 YZ02-12-3 YZ02-18-3 YZ02-21-1 YZ02-22-2	Sm/μg • g ⁻¹ 4.04 3.2 5.36 5.85	Nd/μg • g ⁻¹ 23.22 16.93 29.05 36.78	¹⁴⁷ Sm/ ¹⁴⁴ Nd 0.1052 0.1143 0.1115 0.0961	¹⁴³ Nd/ ¹⁴⁴ Nd 0.511772 0.512522 0.512412 0.512051	2 <i>s</i> _m 11 10 10 9	<i>T</i> _{DM} /Ma 1929 963 1101 1423	$\frac{\varepsilon_{\rm Nd}/t}{-13.57}$ -1.01 -3.15 -8.34	$\frac{f_{\rm Sm/Nd}}{-0.47}$ -0.42 -0.43 -0.51
样品号 YZ02-12-3 YZ02-18-3 YZ02-21-1 YZ02-22-2 YZ02-25-2	Sm/μg • g ⁻¹ 4.04 3.2 5.36 5.85 3.79	Nd/μg • g ⁻¹ 23.22 16.93 29.05 36.78 22.39	¹⁴⁷ Sm/ ¹⁴⁴ Nd 0.1052 0.1143 0.1115 0.0961 0.1023	¹⁴³ Nd/ ¹⁴⁴ Nd 0.511772 0.512522 0.512412 0.512051 0.512064	2 <i>s</i> _m 11 10 10 9 12	<i>T</i> _{DM} /Ma 1929 963 1101 1423 1484	<i>ε</i> _{Nd} /t -13.57 -1.01 -3.15 -8.34 -8.25	$\begin{array}{r} f_{\rm Sm/Nd} \\ -0.47 \\ -0.42 \\ -0.43 \\ -0.51 \\ -0.48 \end{array}$

图 3 百里坪岩体岩石的 Sr-Nd 同位素特征 张广才岭花岗岩引自文献[25,26,29], 辽源花岗岩为作者未刊资料. 模拟 计算中的年轻地壳端元(B)引自文献[25], 参数为⁸⁷Sr/⁸⁶Sr = 0.704, Sr = 150 ppm, ε_{Nd} = +8, Nd = 15 ppm; 太古宙地壳端元(A)为文献^[27]实测值之 平均值, 参数为⁸⁷Sr/⁸⁶Sr = 0.708, Sr = 800 ppm, ε_{Nd} = -22, Nd = 52 ppm

本文对百里坪岩体 8 个样品中自形晶锆石进行 的 U-Pb 同位素测定表明,获得的数据点均位于 U-Pb 谐和线上,表明这些年龄具有确切的地质含义,应代 表岩浆侵位结晶年龄.而由不同岩性样品获得的年 龄值相差很大,表明百里坪岩体应为一规模巨大的 复式岩体,形成于285~116 Ma的晚二叠世~早白垩世, 其中英云闪长岩形成最早,为晚二叠世,之后是形成 于早三叠世的二长花岗岩和中侏罗世的闪长岩、钾长 花岗岩, 而花岗闪长岩和闪长岩形成最晚, 为早白垩 世. 由此可见, 百里坪岩体既不是早期所认为的晚太 古代、早元古代花岗岩,也不是加里东晚期花岗岩, 它是晚二叠世~早白垩世岩浆活动的产物,但其主体 岩性形成于中生代初期.因此,本文的年代学研究结 果不支持所谓的的金城洞花岗绿岩带,金城洞一带 的太古宙变质岩只是显生宙花岗岩"海洋"中的一丝 残片而已.

4.2 和龙地块的基底性质

早期研究认为百里坪岩体是绿岩中变质镁铁质 火山岩深部部分熔融的产物^[5,8],但从新获得的Nd同

位素数据来看,百里坪岩体的T_{DM}值较小,为 963~1929 Ma(表 2; 图 4), 而吉林省南部地区隶属于 华北地台的太古代TTG片麻岩及前寒武纪斜长角闪 岩的TDM1值为 2100~3800 Ma (图 4)^{[27]1)},明显不同于 百里坪岩体的T_{DM}. 这表明百里坪花岗岩的源岩物质 既不是太古代的TTG片麻岩,也不是早前寒武纪的 斜长角闪岩. 相反, 百里坪岩体具有与兴蒙造山带南 段辽源地区花岗岩相同的Nd同位素特征(图 4). 近几 年的研究表明[25~27]1),包括辽源地区在内的整个张广 才岭地区花岗岩的源岩物质为年轻的地壳, 且整个 中亚造山带花岗岩都显示与其相似的特征[28].因此我 们有理由推测, 百里坪岩体的源岩也应是非常年轻的 地壳物质. 这种地壳来源的花岗岩浆在早期上升过程 中由于受到太古宙岩石的混染作用而使其Nd同位素 模式年龄发生部分降低,英云闪长岩(YZ02-12-3)中太 古代锆石的出现是这一推论的最佳例证.

图 4 百里坪岩体岩石 Nd 模式年龄及与相关地区岩石的 对比 辽吉地区早前寒武纪斜长角闪岩成分引自本页脚注 1)

为进一步确定上述地壳物质的混入比例,本文以 年轻地壳及华北地台太古代TTG作为端元组分,对源 岩进行了简单的混合计算.从*ε*_{Nd}(*t*)-*I*_{Sr}图(图 3)可以看 出,二叠纪花岗岩中太古宙地壳混入的比例大约在 40%左右,百里坪岩体主体的早三叠世花岗岩中太古

1) Wu F Y, Zhao G C, Wilde S A, et al. Nd isotopic constraints on the crustal formation of the North China Craton. J Asian Earth Sci, in press

宙地壳(按 240 Ma 计算)的混入比例小于 30%, 而早白 垩世花岗岩中太古宙地壳的混入比例不到 15%, 很显 然,百里坪岩体的源岩以年轻地壳为主. 另外, 从这 一模拟中还可以看出, 从早二叠世的英云闪长岩、早 三叠世的似斑状二长花岗岩到早白垩世花岗闪长岩和 闪长岩, 太古代地壳物质混入的比例逐渐降低.

由于花岗质岩浆来源于深部地壳的部分熔融, 其Sr-Nd同位素特点势必反映了其较大范围内地壳深 部岩石的状况.因此,以百里坪岩体为主要组成部分 的和龙地块的基底应为年轻的地壳增生物质,而不 是与金城洞一带太古宙岩石相当的古老地壳物质. 结合后文将要讨论的与本区毗邻的朝鲜冠帽地块内 出现造山带型的古生代地层,我们有理由认为和龙 地块可能并不是华北地台的组成部分,它充其量只 是卷入北部显生宙造山带中的一个古老岩石残片.

4.3 富尔河-古洞河断裂作为华北地台北缘边界 的可能性

传统上华北地台的北界为赤峰-开原断裂,该断 裂带向东经吉林省海龙、桦甸、夹皮沟而进入本研究 区. 目前国内学术界基本上都将位于和龙县卧龙至 龙井县白金段的富尔河-古洞河断裂当作上述断裂的 东延所在,并被认为是华北地台与北侧兴蒙造山带 的分界. 其主要依据是断裂带南北两侧的地质发展 历史截然不同[12],其中金城洞太古宙花岗绿岩带的 厘定是对上述立论的重要阐述. 然而, 这一划分存在 一个明显的问题, 那就是在夹皮沟以西, 华北地台与 兴蒙造山带具有明确的构造边界,其南部基本缺失 或不发育显生宙花岗岩,而本区显生宙花岗岩却极 为发育. 而且, 富尔河-古洞河断裂南侧的百里坪岩 体具有与北侧兴蒙造山带中显生宙花岗岩相似的 Sr-Nd同位素地球化学特征,从而表明该断裂两侧在 基底属性上是类似的, 且以年轻地壳为主, 不应作为 华北地台与兴蒙造山带的边界断裂处理,真正的地 台北界应南移至百里坪岩体出露区以南,即此界线 至少南移50km以上而位于长白山火山以东或其附近. 目前所见到的金城洞一带的太古代物质可能是从华 地台推覆至此的太古代岩片或卷入兴蒙造山带造山 作用的古老块体.

上述认识对南部与本区毗邻的朝鲜北部的大地 构造单元划分提出新的问题. 传统上, 朝鲜北部的构 造单元由西向东依此划分为狼林(Rangnim)地块、冠 帽(Kwanmo)地块和图们江(Tumangang)褶皱带^[14],其 中冠帽地块和图们江褶皱带之间的界限(在朝鲜称 Susongchon断裂)为上述富尔河-古洞河断裂在朝鲜北 部的延伸. 但前几年, 朝鲜学术界对这一地区的构造 问题存在激烈争论[14]. 第一, 冠帽地块和图们江褶皱 带之间的Susongchon断裂并不具有构造块体边界的 特点. 它只是表现为逆冲推覆性质; 其二, 在冠帽地 块中出现大量与图们江褶皱带相同的古生代地层(图 们系)与古生代-早中生代岩浆岩组合,即两者在地层 建造和岩浆作用方面并不存在明显差别.因此,不少 学者认为冠帽地块和图们江褶皱带是一个统一的整 体,均为蒙古-鄂霍茨克褶皱带(实际为中亚造山带) 的组成部分, 而这一认识与本文的研究结果完全一 致.因此.传统的华北地台北缘边界问题应重新考虑. 同时,如果本文的结论成立的话,中亚造山带或本区 的兴蒙造山带在经过吉林省以后并不是一直向东延 伸,而是转向南部延伸,其中日本的飞驒(Hida)地体 可能就是上述南延所在[28,32,33],这有可能表明,亚洲 东部的大地构造格局应根据新的资料重新审视.

致谢 感谢西北大学地质系大陆动力学教育部重点 实验室柳小明和袁洪林老师在实验过程中给予的极 大帮助.

参考文献

- 徐公愉.关于吉林省的若干基础地质问题.中国区域地质, 1995,1:6~14
- 2 毕守业,王德荣,贾大成,等.吉林省地体构造的基本特征.吉 林地质,1995,14(1):1~14
- 3 曾庆栋, 沈远超, 刘世臣. 吉林省金成洞绿岩带构造变形序列. 吉林地质, 1994, 13(1): 60~68
- 4 李俊建, 沈保丰, 李双保, 等. 辽北-吉南地区太古宙花岗岩-绿 岩带地质地球化学. 地球化学, 1996, 25(5): 458~467
- 5 刘洪文,邢树文.和龙地区太古宙变质深成侵入体的地质地球 化学特征.吉林地质,2001,20(2):10~17
- 6 沈保丰,李峻建,毛德宝.华北地台绿岩带地质特征类型和演化.前寒武纪研究进展,1997,20(1):2~11
- 7 曾庆栋, 沈远超, 戴新义, 等. 吉林省金成洞地区元古宙花岗 岩地质地球化学特征. 地质与勘探, 2001, 37(1): 79~81
- 8 张景枝, 张永焕. 吉林省早前寒武纪地质研究. 吉林地质, 1998, 17(3): 22~31
- 9 李俊建, 沈保丰, 李双保, 等. 辽北-吉南早前寒武纪大陆壳的

地质特征和演化. 中国区域地质, 1998, 17: 30~38

- 10 李俊建, 沈保丰, 李双保, 等. 辽北-吉南地区太古宙绿岩带. 华北地质矿产杂志, 1999, 14: 27~34
- 11 伍家善, 耿元生, 沈其韩, 等. 中朝古大陆太古宙地质特征及 构造演化. 北京: 地质出版社, 1998. 1~212
- 12 吉林省地质矿产局.吉林省区域地质志.北京:地质出版社, 1988.1~698
- 13 赵春荆,彭玉鲸,党增欣,等.吉黑东部构造格架及地壳演化. 沈阳:辽宁大学出版社,1996.1~186
- 14 Institute of Geology, State Academy of Sciences, DPR of Korea. Geology of Korea. Pyongyang: Foreign Languages Books Publishing House, 1996. 1~631
- 15 关 鸿,孙 敏,徐 平. 阜平杂岩中几种类型片麻岩的锆石 激光探针等离子体质谱年代学研究. 岩石学报, 1998, 14(4): 460~470
- 16 Li X H, Liang X R, Sun M, et al. Precise ²⁰⁶Pb/²³⁸U age determination on zircon by Laser ablation microprobe-inductively coupled Plama-mass spectrometry using continuous linear ablation, Chem Geol, 2001, 175: 209~219[DOI]
- 17 Ballard J R, Plain J M, Williams I S, et al. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology, 2001, 29: 383~386[DOI]
- 18 梁细荣,李献华,刘勇康,等.激光探针等离子体质谱法 (LA-ICPMS)用于年轻锆石 U-Pb 定年.地球化学,2000,29(1): 1~5
- 19 Yuan H L, Wu F Y, Gao S, et al. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 2003, 48(22): 2411~2421
- 20 宋 彪,张玉海,万渝生,等. 锆石样品靶制作、年龄测定及有 关现象讨论. 地质论评,2002(增刊),5:26-30
- 21 乔广生, 王凯怡, 郭起凤, 等. 冀东早太古代岩石 Sm-Nd 同位

素年龄测定. 地质科学, 1987, (1): 86~92

- 22 乔广生, 翟明国, 阎月华. 鞍山地区太古代岩石同位素地质年 代学研究. 地质科学, 1990, (2): 158~165
- 23 吴福元,江博明,林 强.中国北方造山带造山后花岗岩的同 位素特点与地壳生长意义.科学通报,1997,42:2188~2192
- 24 吴福元,孙德有,林 强.东北地区显生宙花岗岩的成因与地 壳增生.岩石学报,1999,15(2):181~189
- 25 Wu F Y, Jahn B M, Wilde S, et al. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 2000, 328: 89~113[DOI]
- 26 Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol, 2002, 187: 143~173 [DOI]
- 27 吴福元, 葛文春, 孙德有, 等. 吉林南部太古代花岗岩 Sm-Nd, Rb-Sr 同位素年龄测定. 岩石学报, 1997, 13: 499~506
- 28 Jahn B M, Wu F Y, Chen B. Massive granitoid generation in central Asia: Nd isotopic evidence and implication for continental growth in the Phanerozoic. Episodes, 2000, 23: 82~92
- 29 Wu F Y, Jahn B M, Wilde S A, et al. Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 2003, 67: 191~204[DOI]
- 30 李之彤,赵春荆,朱 群.吉黑东部花岗岩类的形成和演化. 见:中国地质学会编"七五"科学技术重要成果学术交流会议论 文选集.北京:北京科学技术出版社,1992.237~240
- 31 方文昌.吉林省花岗岩类及成矿作用.长春:吉林科学技术出版社,1992.1~271
- 32 Tazawa J I. Middle Permian brachiopod faunas in East Asia and their zoogeographic significance. J Geol Soc Japan, 1992, 98: 483~496
- 33 Tazawa J I. Occurrence of the Boreal-type brachiopod Yakovlevia from the middle Permian of the Hida Gaien and south Kitakami belts, Japan and its tectonic implications. J Geol Soc Japan, 1999, 105: 227~230