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Abstract. In this paper we introduce the general form of generating func-
tions. By using the generating function we obtain the terms of different
polynomials. Also we calculate the n-th term an of the polynomial.
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1 Introduction

In solving many problems of theoretical and mathematical physics one is led to use
various special functions. Such problems arise, for example, in connection with heat
conduction, the interaction between radiation and matter, the propagation of electro-
magnetic or acoustic waves, the theory of nuclear reactors, and the internal structure
of stars. In practice, special functions usually arise as solutions of the following dif-
ferential equations [1-5],

U ′′(x) +
τ(x)
σ(x)

U ′(x) +
λ(x)
σ2(x)

U(x) = 0(1.1)

where σ(x) and λ(x) are polynomials of the degree at the most 2, and τ(x) is poly-
nomial of degree at the most 1.

Among the solutions of equations of the form (1.1), there are several classes of
special functions: the classical orthogonal polynomials (Jacobi, Laguerre, Hermite),
Spherical harmonics, Bessel and Hypergeometric functions. These are often refferred
to as the special functions in mathematical physics. So the natural approach for
mathematical physics is to deduce the properties of the functions directly from the
differential equations. But here we will try to deduce the properties of the special
functions from Generating function. For this reason we have developed a method
which makes it possible to present the theory of special functions , starting from
general form of Generating functions.

2 Generating functions

Here we try to introduce the general form of generating function. Also we obtain the
polynomial functions and their coeffients which is important in structure of special
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functions.

G(x, t) =
∞∑

n=0

Fn(x)tn,(2.1)

where G(x, t) and Fn(x) are generating and polynomial functions respectively.
From Tylor expansion we have following expression for G(x, t)

G(x, t) =
∑
n=0

1
n!

tn
∂nG(x, t)

∂tn
.(2.2)

In order to obtain the Fn(x) using equation (2.2) in (2.1) so we arrive at

Fn(x) =
1
n!

∂nG(x, t)
∂tn

|t = 0(2.3)

where equation (2.3) is general form for obtainning the different polynomial.
The next step here is to obtain the coefficents of an, which are important in special

function. We rewrite the polynomial Fn(x) as follows:

Fn(x) =
∞∑

n=0

anxn(2.4)

also we have

Fn(x) =
∑
n=0

xn

n!
∂nFn(x)

∂xn
.(2.5)

Finally from equation (2.2) and (2.4) we obtain following expression;

an =
1

n!2
∂2nGn

∂xn∂tn (x=0,t=0)
=

1
n!

∂nFn(x)
∂xn (x=0)

(2.6)

3 Various special functions

As mentioned in Refs. [1,4], the generating function corresponding to the Legendre
polynomial is,

G(x, t) =
1√

1− 2xt + t2
=

∑
Pn(x)tn,(3.1)

where Pn(x) is Legendrre polynomial.
Now in order to extract the Legendre polynomial, we use the equation (2.3) and

we get:

P0(x) = 1

P1(x) =
∂G

∂t
|t=0 = x

P2(x) =
1
2!

∂2G

∂t2
|t=0 =

1
2
(3x2 − 1)

P3(x) =
1
3!

∂3G

∂t3
|t=0 =

1
3!

(15x3 − 9x)
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P4(x) =
1
4!

∂4G

∂t4
|t=0 =

1
4!

(105x4 − 90x2 + 9)

P5(x) =
1
5!

∂5G

∂t5
|t=0 =

1
5!

(945x5 − 1050x3 + 225)(3.2)

And also in order to obtain the general coeffients of Legender polynomial we have to
use the equation (2.6) to have:

a0 = 1

a1 =
1

(1!)2
∂2G

∂x∂t
= 1

a2 =
1

(2!)2
∂4G

∂x2∂t2
=

3
2

a3 =
1

(3!)2
∂6G

∂x3∂t3
=

5
2

a4 =
1

(4!)2
∂8G

∂x4∂t4
=

35
8

a5 =
1

(5!)2
∂10G

∂x5∂t5
=

63
10

(3.3)

Generally using the relation (7), concludes the following expression,

an =
(2n)!

2n(n!)2
(3.4)

In the second example we discuss the Chebyshev polynomial. In this case we have
two types of polynomials, where the first one is

GI(x, t) =
t(x− t)

1− 2xt + t2
(3.5)

Similiar to the previous case, here also use the equation (2.3) to have:

T0(x) = 1

T1(x) =
1
1!

∂GI

∂t
|t=0 = x

T2(x) =
1
2!

∂2GI

∂t2
|t=0 = 2x2 − 1

T3(x) =
1
3!

∂3GI

∂t3
|t=0 = 4x3 − 3x

T4(x) =
1
4!

∂4GI

∂t4
|t=0 = 8x4 − 8x2 + 1(3.6)

Now using the equation (2.6) for this Chebyshev polynomial we shall obtain the
following expressions;

a0 = 1

a1 =
1

(1!)2
∂2GI

∂x∂t
= 1
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a2 =
1

(2!)2
∂4GI

∂x2∂t2
= 2

a3 =
1

(3!)2
∂6GI

∂x3∂t3
= 4

a4 =
1

(4!)2
∂8GI

∂x4∂t4
= 8

a5 =
1

(5!)2
∂10GI

∂x5∂t5
= 16(3.7)

These results imply that the coefficents an for the first type of Chebyshev polynomial
become as:

an = 2n−1 n ≥ 1

and
an = 1 n = 0

The generating function for the second type of Chebyshev polynomial is

GII(x, t) =
1

1− 2xt + t2
(3.8)

in this case also we have;

U0(x) = 1

U1(x) =
1
1!

∂GII

∂t
|t=0 = 2x

U2(x) =
1
2!

∂2GII

∂t2
|t=0 = 4x2 − 1

U3(x) =
1
3!

∂3GII

∂t3
|t=0 = 8x3 − 4x

U4(x) =
1
4!

∂4GII

∂t4
|t=0 = 16x4 − 12x2 + 1(3.9)

and the coefficents are:

a0 = 1

a1 =
1

(1!)2
∂2GII

∂x∂t
= 2

a2 =
1

(2!)2
∂4GII

∂x2∂t2
= 4

a3 =
1

(3!)2
∂6GII

∂x3∂t3
= 8

a4 =
1

(4!)2
∂8GII

∂x4∂t4
= 16

a5 =
1

(5!)2
∂10GII

∂x5∂t5
= 32,(3.10)
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here also the general coeffiecent can be drawn easily as an = 2n.

The third example is Laguerre polynomial, where its generating function is;

G(x, t) =
e−

xt
1−t

1− t
=

∞∑
n=0

Ln(x)tn(3.11)

Here also we follow the same procedure, i.e we use equations (2.3) and (2.6),

L0(x) = 1

L1(x) =
1
1!

∂G

∂t
|t=0 = 1− x

L2(x) =
1
2!

∂2G

∂t2
|t=0 =

1
2
(x2 − 4x + 2)

L3(x) =
1
3!

∂3G

∂t3
|t=0 =

1
6
(−x3 + 9x2 − 18x + 6)

L4(x) =
1
4!

∂4G

∂t4
|t=0 =

1
24

(x4 − 16x3 + 72x2 − 96x + 24)

L5(x) =
1
5!

∂5G

∂t5
|t=0 =

1
120

(−x5 + 25x4 − 200x3 + 600x2 − 600x + 120)(3.12)

and

a0 = 1

a1 =
1

(1!)2
∂2G

∂x∂t
= −1

a2 =
1

(2!)2
∂4G

∂x2∂t2
= 1

a3 =
1

(3!)2
∂6G

∂x3∂t3
= −1

a4 =
1

(4!)2
∂8G

∂x4∂t4
= 1

a5 =
1

(5!)2
∂10G

∂x5∂t5
= −1(3.13)

These results also imply that
an = (−1)n

Also for the case of associated Laguerre, we have

G(x, t) =
e−

xt
1−t

(1− t)k + 1
=

∞∑
n=0

Lk
n(x)tn.(3.14)

We use also equations (2.3) and (2.6) one can obtain
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Lk
0(x) = 1

L1(x)k =
1
1!

∂G

∂t
|t=0 = −x + k + 1

Lk
2(x)k =

1
2!

∂2G

∂t2
|t=0 =

1
2
x2 − (k + 2)x +

1
2
(k + 1)(k + 2)

Lk
3(x)k =

1
3!

∂3G

∂t3
|t=0 =

1
6
[−x3 + (3k + 9)x2 − (3(k + 1)2 + 9k + 15)x

+2k + 2 + (k + 1)3 + 3(k + 1)2]

Lk
4(x)k =

1
4!

∂4G

∂t4
|t=0 =

1
4!

[x4 − (16 + 4k)x3 + (30k + 66 + 6(k + 1)2)x2

−(4(k + 1)3 + 24(k + 1)2 + 44k + 68)x
+(k + 1)4 + 6(k + 1)3 + 6k + 6 + 11(k + 1)2]

(3.15)

and

a0 = 1

a1 =
1

(1!)2
∂2G

∂x∂t
= −1

a2 =
1

(2!)2
∂4G

∂x2∂t2
=

1
2!

a3 =
1

(3!)2
∂6G

∂x3∂t3
= − 1

3!

a4 =
1

(4!)2
∂8G

∂x4∂t4
=

1
4!

a5 =
1

(5!)2
∂10G

∂x5∂t5
=
−1
5!

(3.16)

so we have an = (−1)n

n! .
The fourth example is Hermite Polynomial where its generating function will be:

G(x, t) = e2tx−t2 =
∞∑

n=0

Hn(x)
tn

n!
(3.17)

Here the same proccess is applied, and also we have

H0(x) = 1,
H1(x) = 1

1!
∂G
∂t |t=0 = 2x,

H2(x) = 1
2!

∂2G
∂t2 |t=0 = 4x2 − 2,

H3(x) = 1
3!

∂3G
∂t3 |t=0 = 8x3 − 12x,

H4(x) = 1
4!

∂4G
∂t4 |t=0 = 16x4 − 48x2 + 12,

H5(x) = 1
5!

∂5G
∂t5 |t=0 = 32x5 − 160x3 + 120x

(3.18)
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and
a0 = 1, a1 = 1

(1!)2
∂2G
∂x∂t = 2

a2 = 1
(2!)2

∂4G
∂x2∂t2 = 4, a3 = 1

(3!)2
∂6G

∂x3∂t3 = 8

a4 = 1
(4!)2

∂8G
∂x4∂t4 = 16, a5 = 1

(5!)2
∂10G

∂x5∂t5 = 32,

(3.19)

and finally we have an = 2n.

Note that the proccess may be easily applied for the case of Jacobi and Gegenbauer
(Ultra Spherical) polynomials, though the application for the Bessel polynomial may
be cumbersome.
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