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Abstract  Many applications of principal component analysis (PCA) can be found in dimensionality reduction. 
But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on im-
proved input training neural network (IT-NN) is proposed for the nonlinear system modelling in this paper. Mo-
mentum factor and adaptive learning rate are introduced into learning algorithm to improve the training speed of 
IT-NN. Contrasting to the auto-associative neural network (ANN), IT-NN has less hidden layers and higher training 
speed. The effectiveness is illustrated through a comparison of IT-NN with linear PCA and ANN with experiments. 
Moreover, the IT-NN is combined with RBF neural network (RBF-NN) to model the yields of ethylene and propyl-
ene in the naphtha pyrolysis system. From the illustrative example and practical application, IT-NN combined with 
RBF-NN is an effective method of nonlinear chemical process modelling. 
Keywords  chemical process modelling, input training neural network, nonlinear principal component analysis, 
naphtha pyrolysis 

1  INTRODUCTION 
In the chemical process field, many analytical or 

measuring instruments can easily acquire values of 
many process variables in a very short period of time. 
In this way, one has to face multidimensionality prob-
lems. The multidimensionality complicates the data 
interpretation, increases the complexity of the con-
structed models and even worse, makes data visuali-
zation difficult. Therefore, the first step in chemical 
process modelling is to reduce data dimensionality. 
There are many methods which help to achieve this 
goal. The best known is principal component analysis 
(PCA)[1]. However, linear PCA by definition cannot 
deal efficiently with nonlinearly correlated variables. 
Nonlinear PCA is the best remedy to overcome such 
deficiency, which deals with both types of relations 
between variables: linear and nonlinear ones. Most 
nonlinear PCA methods, which are developed in re-
cent years, are the extensions of linear PCA. The dif-
ference between linear PCA and nonlinear PCA is that 
projection function of linear PCA is linear while that 
of nonlinear PCA is nonlinear. To trace the past, the 
most common nonlinear PCA methods are principal 
curves or principal surface[2], auto-associative neural 
network (ANN)[3], and input training neural network 
(IT-NN)[4―7]. However, principal curves or principal 
surface can only represent several input linear models 
and cannot be commonly applied to all nonlinear sys-
tems. The ANN compresses the original variables to 
few features, and therefore it is possible to visualize 
the data set structure in form of the continuous projec-
tions. Additionally, it is possible to predict the proper-

ties of new samples[8] once the network is trained. But 
ANN has a complicate net structure, one input layer, 
one output layer and 3 hidden layers (mapping layer, 
bottleneck layer, de-mapping layer), which makes it 
much difficult to be trained. ANN is a kind of error 
back propagation forward neural network. Generally, 
the performance of back propagation deteriorates 
while the number of hidden layers get larger. To 
overcome this limitation of ANN, Tan and Mavro-
vouniotis presented a 3-layer IT-NN composed of in-
put layer, de-mapping layer, and output layer. Three 
layers of IT-NN are analogical to layers of ANN: bot-
tleneck layer, de-mapping layer, and output layer. 
Since the simplified neural network has only one hid-
den layer, IT-NN is easier to train than ANN. For these 
reasons, IT-NN seems to be a very attractive alterna-
tive to the well-known nonlinear approaches. Here, we 
explore the basic theory of IT-NN being used as a 
nonlinear PCA method, present its applications in the 
data reduction of the nonlinear system, and make the 
comparison among linear PCA, ANN, and IT-NN. The 
main advantages of IT-NN are illustrated on experi-
mental data set. 

This article also studies the improvement of the 
learning algorithm. We introduced momentum factor 
and adaptive learning rate in the learning algorithm of 
IT-NN, which restrain the vibrancy and accelerate the 
convergence of training IT-NN. The effectiveness of 
the improved learning algorithm is illustrated by its 
comparison with original learning algorithm when 
training an IT-NN to gain nonlinear principal compo-
nents with same dimensions. This paper represents a 

 
Received 2005-05-31, accepted 2006-05-15. 

* Supported by Beijing Municipal Education Commission (No.xk100100435) and the Key Research Project of Science and 
Technology from Sinopec (No.E03007). 

** To whom correspondence should be addressed. E-mail: zhuqx@mail.buct.edu.cn 



Chinese J. Ch. E. (Vol. 14, No.5) 

October, 2006 

598 

new nonlinear system modelling method by combin-
ing IT-NN with RBF neural network (RBF-NN), 
which takes both advantages of the two neural net-
works: the effectiveness of IT-NN in dimensionality 
reduction and the goodness of RBF neural network in 
input and output fast mapping. This method is applied 
to simulate cracking furnace and predict the yields of 
ethylene and propylene. The simulation in section 5 
shows that this nonlinear system model can predict the 
yields of ethylene and propylene. 
 
2  METHODS  OF  DIMENSIONALITY    REDUCTION 
2.1  Linear PCA 

For m-D matrix, X=[x1, x2, …, xm], linear PCA 
can find a reversible linear transformation, which 
maps data from higher space X to a lower space T. 
The whole transformation can be described as follows: 

= + + + +T T T
1 1 2 2 r rX t p t p t p E       (1) 

pi is an eigenvector of matrix X, ti is the ith principal 
component, and E is the residual. More generally, we 
can write: 

       T= +X TP E               (2) 
where T is defined as principal component scores, P is 
defined as principal component loadings, and E con-
sists of minor components which involve noise or 
unimportant variance. 

Usually, PCA compression is very efficient if the 
variables have linear relationships. If the nonlinear 
relations among variables exist, PCA as a linear 
method becomes inefficient. For example, when PCA 
is used in a nonlinear system, the minor components 
do not always contain noise or unimportant compo-
nents, but contain important information. If they are 
discarded, important information will be omitted. But 
if they are kept, PCA may contain too many compo-
nents. To handle this problem, it is necessary to turn to 
nonlinear PCA methods. 
 
2.2  ANN & nonlinear PCA 

The difference between linear PCA and nonlinear 
PCA is the mapping function. Linear PCA projects 
original data set X to new linear principal components 
space T by using a linear mapping function (illustrated 
in section 2.1). Nonlinear PCA gains nonlinear prin-
cipal components by using a nonlinear mapping func-
tion. There are different ways to represent this nonlin-
ear mapping function, thus to form different nonlinear 
PCA methods. Hastie and Stuetzle[9] used a linear 
smooth curve or surface called principal curve or 
principal surface. Neural network is commonly used 
as a nonlinear PCA method, such as ANN and IT-NN. 

ANN maps nonlinearly the data sets into few la-
tent variables. The ANN has a structure consisting of 
three hidden layers, namely, mapping layer, bottleneck 
layer, and de-mapping layer. The number of nodes in 
the bottleneck layer is much smaller than in the map-

ping and de-mapping layers. Actually, the ANN can be 
seen as a hybrid of the two single hidden layer net-
works, as presented in Fig.1. The network in the left 
side is functioned as data compressing while that in 
the right side is functioned as data de-compressing. 

 
Figure 1  The structure of ANN 

During training of ANN, the data set is com-
pressed to few latent variables, the number of which 
corresponds to the number of nodes in the bottleneck 
layer. Then the output of the bottleneck layer is de-
compressed in the de-mapping layer. If the reconstruc-
tion error is small, this ensures that the output from 
the bottleneck layer contains a compact representation 
of the data set. The abilities of ANN to deal with lin-
ear and nonlinear correlation between variables are 
related to the type of the transfer function used in each 
layer. In order to guarantee proper functioning of the 
network, i.e., to uncover nonlinearities between data 
variables, the neurons in the mapping and de-mapping 
layers should be nonlinear. Usually, as a transfer func-
tion in the mapping and de-mapping layers, like the 
sigmoid is used. The form of function is given by 
Eq.(3). 

1( )
1 e xσ x −=

+
              (3) 

ANN can deal with linear and nonlinear correlations 
between variables and leads to a compact data repre-
sentation. It is referred in the literature as nonlinear 
PCA. Thus, the outputs of nodes in the bottleneck 
layer can be viewed as nonlinear principal compo-
nents. 
 
2.3  IT-NN & its learning algorithm 

Contrasting to ANN, the network structure of 
IT-NN is similar to the de-mapping of ANN, simpli-
fied with only one hidden layer, as presented in Fig.2. 
IT-NN has two basic characteristics: fewer input layer 
nodes than any other layer and fixed inputs which are 
not given but have to be gained by adjusting. 

Instead of training a whole 3-hidden-layer ANN, 
we only train its de-mapping subnet. Training such a 
subnet is a little different with training other feed for-
ward network, because the input of the subnet is not 
given. Therefore, we adjust not only the weights of the 
network but also the input values reproduce the given 
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data as accurately as possible. For each input vector 
(xp1, xp2,…, xpm), it is adjusted to minimize the error 
between its corresponding output of IT-NN (zp1, zp2,…, 
zpn) and the original sample (tp1, tp2,…, tpn). After the 
subnet and its inputs are properly adjusted, we can 
gain a p×m matrix X and a de-mapping neural net-
work model. The matrix X can be viewed as nonlinear 
principal components. Thus all the requirements for 
data dimensionality reduction is fulfilled through 
training a de-mapping network and its input layer si-
multaneously. Therefore, the IT-NN can be considered 
as an alternative nonlinear PCA method of ANN. The 
following paragraphs will illustrate the adjusting algo-
rithm in detail. 

Let pkt  be the value of the kth observed variable 
in the pth sample and zpk the corresponding output of 
IT-NN. The aim of training IT-NN is to minimize the 
following objective function: 

2min ( , ) min ( )pk pk
p k

z t= −∑∑E X W   (4) 

The steepest descent direction for optimizing network 
inputs Δxpi is defined as follows: 

( ) pk
pi pk pk

pi pik

z
x t z

x x
∂∂

Δ = − = −
∂ ∂∑E

     (5) 

The steepest descent direction for optimizing network 
weights Δwji is defined as follows: 

Δ ( ) pk
ji pk pk

jik

z
w t z

w w
∂∂

= − = −
∂ ∂∑E

      (6) 

The network output is given by: 
(1)(2) j ji pipk k kj

ij

b w xz σ f w σ⎡ ⎤⎛ ⎞+= + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑∑     (7) 

where σ(·) is sigmoid function, bj and fk are the bias of 
the jth hidden node and kth output node, (1) (2),ij kjw w are 
the weights of IT-NN. The steepest descent direction 
for training network is 

(1)Δ pi ji pj
j

x w δ= ∑             (8) 

where δpj is the propagated error at the hidden layer 

and has been given by 

(1)

(2) (2) (1)( )

pj j ji pi
i

pk pk k ji pikj kj
k j i

δ σ b w x

w t z σ f w σ w x

⎛ ⎞
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⎝ ⎠

⎡ ⎤⎛ ⎞
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∑

∑ ∑ ∑  (9)

 

Weight adjusting is given by 

ji pi pj
p

w x δΔ = ∑           (10) 

2.4  Improvement of IT-NN learning algorithm 
A disadvantage of this approach is that the com-

plexity of training the IT-NN increases exponentially 
with the dimensionality of the training data set in-
creasing[6]. To improve the algorithm and accelerate 
the convergence of training IT-NN, here we introduce 
a momentum factor η and adaptive learning rate, rx 
and rw. Based on original learning algorithm, the input 
is adjusted as follows, 

( 1) ( )

(1 )( ) ( ) ( 1)

pi pi

x
pi pi

x m x m

r m x m x m
η η

+ = +

∂ ∂⎡ ⎤− +⎢ ⎥∂ ∂ −⎣ ⎦

E E      
(11)

 

          ( ) 2 ( 1)x
x xr m r mλ= −           (12) 

( ) sign
( ) ( 1)x

pi pi
m

x m x m
λ

⎡ ⎤∂ ∂
= ×⎢ ⎥

∂ ∂ −⎢ ⎥⎣ ⎦

E E      (13) 

Weight adjusting: 

( 1) ( ) ( ) (1 )
( ) ( 1)ww m w m r m

w m w m
η η

⎡ ⎤∂ ∂
+ = + − +⎢ ⎥∂ ∂ −⎣ ⎦

E E

 (14) 
( ) 2 ( 1)w

w wr m r mλ= −          (15) 

sign
( ) ( 1)w w m w m

λ
⎡ ⎤∂ ∂

= ×⎢ ⎥∂ ∂ −⎣ ⎦

E E        (16) 

In this algorithm, momentum factor η helps to 
meliorate the convergence of training the network. 
From the equations of the learning algorithm, we can 
easily find that if the steepest descent directions are 
same when continuously iterating twice, the learning 
rate will be doubled. On the contrary, the learning rate 
will be halved. Therefore, the adaptive learning rate 
can accelerate the convergence of training IT-NN.  

As a whole, the iteration can follow the following 
steps after the sample T (tpk , the kth observed variable 
in the pth sample) has been properly prepared: 

Step 1  To scale the variables of sample T into 
the range [0,1]. In our application we use the flowing 
equation, 

min
max min

pk k
pk

k k

t
t'

−
=

−
           (17) 

where pk
't  is the scaled value of tpk, maxk and mink are 

the maximum and minimum values of kth variable in 

Figure 2  The structure of IT-NN 
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sample T. 
Step 2  To initialize input matrix X and weights 

(W1 and W2) with random values in the range [0,1].  
Step 3  For each input xpi(i=1,…,m), calculate 

the corresponding output zpk(k=1,…,n) of the IT-NN 
by using Eq.(7). 

Step 4  To calculate the errors between the out-
put zpk(k=1,…, n) and the scaled ( 1, , )pk

't k n= ⋅ ⋅ ⋅ . 
Step 5  To adjust the weights (W1 and W2), 

weights learning rate rw(p), input vectors X and input 
learning rate rx(p) by using Eqs.(11)—(16). 

Step 6  For next input x(p+1)i (i=1,…,m), repeat 
Step 3 to Step 5 until all inputs has been adjusted and 
calculate the total error between the outputs Z and the 
scaled sample T′. If the error is smaller than aim error, 
and at the same time the error doesn’t change any 
more, exit the iteration. Otherwise, next step. 

Step 7  To repeat the iteration from Step 3 to 
Step 6. After the iteration is finished, we acquire the 
input matrix X and a neural network model with fixed 
weights. For the testing sample, to get the new input 
matrix, we don’t need train the weights any more but 
only train inputs. Iteration can be repeated from Step 1 
to Step 7 but with fixed values of weights. The new 
input can be viewed as the nonlinear principal com-
ponents of the testing sample. 
 
3  EXAMPLES 
3.1  Comparison between linear PCA, ANN and 
IT-NN 
Example 1: Considering the following nonlinear sys-
tem, 

2
1 10.5 2 0.5x t t e= − + +          (18) 

 2
2 2sinπx t t t e= + + +           (19) 

2
3 32 2cosπx t t c e= − − +         (20) 

where t is random among [－1,1], e1, e2, e3 are Gaus-
sian noise μ[0, 0.01]. Actually, the system is affected 
only by one variable t, which means the 3-D data sets 
are relative and have only one independent variable. 
Therefore the 3-D nonlinear data sets can be com-
pressed to 1-D data set. To illustrate the effectiveness 
of IT-NN, we compare the capabilities of reducing the 
dimensionality of the given nonlinear system with 
linear PCA, ANN (with net structure 3-7-1-7-3), and 
IT-NN (with the structure 1-7-3). The training error, 
testing error, and reconstruction error is computed by 
the Eq.(21), defined as root-mean-square error: 

2

1 1
RMS

( )
m n

pk pk
p k

z t

e
mn

= =

−

=
∑∑

       (21) 

where, m and n is the dimension of sample T (zpk) and 
(tpk), respectively. 

The results are listed in Table 1. Data recon-
structed by linear PCA, ANN, and IT-NN are pre-
sented in Fig.3. From Table 1 and Fig.3 we can see 
that the data sets are represented through one linear 
principal component have much error with original 
data sets. One linear principal component can only 
explain 63.5% information of the original data sets. 
While new data sets represented by one nonlinear 
principal component have the same distribution and 
nearly no difference with the original data sets. One 
nonlinear principal component can explain nearly all 
the information of original datasets (99.1% with ANN 
and 99.6% with IT-NN). This comparison illustrates 
that when reducing the dimensionality of a nonlinear 
system to its real value, linear PCA may cause infor-
mation lost. To solve that problem, we need more 
principal components to explain the representation 
original data sets, which will increase the dimension-
ality of the new principal components space. But for 
nonlinear PCA, that is not a problem. Dimensionality 
reduction of nonlinear systems can be done effectively 
with much less principal components. 

Table 1  Results for Example 1 
Model Reconstruction error Retained variation 

linear PCA 8.44 63.5% 
ANN 0.017 99.1% 
IT-NN 0.010 99.6% 

 
Figure 3  Data reconstructed by LPCA, ANN and IT-NN 

● original data; * by ANN; ◇ by LPCA; ○ by IT-NN 
 
3.2  Effectiveness of improved IT-NN 

In section 3.1, we mentioned that the improved 
training algorithm is much faster than the original 
training algorithm when training IT-NN. This section 
will illustrate such conclusions with an example. Re-
consider the nonlinear system of Example 1 in section 
3.1, we use ANN (with 3-7-1-7-3 net structure) and 
IT-NN (with 1-7-3 net structure) trained with both 
learning algorithms to obtain one nonlinear principal 
component. The training results are listed in Table 2 
and illustrated in Fig.4. All the errors are computed by 
Eq.(21). For the new training algorithm of IT-NN, the 
error decreases sharply when the number of iteration 
increases to 100. The training error drops down with 
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increasing of the iteration and reaches the level 0.01 at 
400. While the original algorithm, training the same 
IT-NN, needs more iteration to drop down the training 
error. About 200 iterations are needed to decrease the 
error sharply, which is nearly twice the number of the 
iteration for the improved algorithm. When iteration 
increases to 650, training error reaches the goal. 
Comparison was also made between ANN and IT-NN. 
For ANN, it needs more than 1200 iteration steps to 
decrease the training error to the same goal. The rea-
son why ANN needs more iterations than IT-NN is 
that ANN has a complicated net structure, and the 
performance of back propagation deteriorates while 
the number of hidden layer gets larger [10]. 

Table 2  Comparison between ANN and IT-NN 

Model Training error Testing error Iterations
ANN 0.017 0.023 1250 

IT-NN 0.010 0.016 650 

improved IT-NN 0.009 0.013 400 

 
Figure 4  Train ANN, original IT-NN and improved IT-NN 

—— improved IT-NN; -·-·- original IT-NN; --- ANN 

From the experiment, we can see that the adap-
tive learning rate and momentum factor improves the 
performance of IT-NN, meliorates the divergence of 
training process. Actually, as an extension, the adap-
tive learning rate and momentum factor can be applied 
to the learning algorithms of any feed-forward neural 
network, which can save a lot of time during the 
training process. 
 
4  NONLINEAR SYSTEM MODELLING WITH IT-NN 
& RBF-NN 

The purpose of combining IT-NN with RBF is to 
take advantage of these two neural networks. IT-NN is 
a good way to reduce the dimensionality of sample 
data sets and remain the nonlinear characters between 
variables. RBF neural network is good at mapping the 
input and output. But high dimensionality of input 
layer will lead to more input nodes in RBF, which will 
make the net structure more complicated and harder to 
be trained. So modified IT-NN is taken as the input 
vector of the RBF-NN and reduces the dimension of 
the input sample in RBF-NN. Generalized RBF struc-
ture is presented in Fig.5. The Gaussian function is 

taken as the radial basis function. For training, learning 
algorithm based on gradient descent is adopted in this 
paper. The whole model structure is presented in Fig.5. 

 
Figure 5  Combine IT-NN with RBF-NN for nonlinear 

system modeling 

Let Y=F(T) be a nonlinear function, where inputs 
T have high dimension. To model this nonlinear func-
tion using RBF neural network, firstly, we use IT-NN 
to reduce the dimensionality of original data sets 
ti(i=1,…,n) from m dimension to l dimension. For 
each input T(t1, t2,…, tn), we can calculate the nonlin-
ear principal components X(x1, x2,…, xl), by training 
the inputs of IT-NN. Secondly, we use RBF to map the 
relations between output Y and nonlinear principal 
components X. The simulation in section 5 will illus-
trate how to apply this model to nonlinear system. 
 
5  APPLICATION  IN  ETHYLENE CRACKING  
FURNACE  SYSTEM  MODELLING 

The key of an ethylene plant with huge economic 
impact is a cracking furnace. And the key factor of 
optimal design and operation in furnace is the predic-
tion. There are 20 factors (4 group naphtha feed flows, 
4 group high-pressure dilute steam flows, 4 group pipe 
inlet temperatures in radiant box, 4 groups coil outlet 
temperature (COT), 1 fuel flow in the bottom of 
cracking furnace, 1 fuel flow in the wall of cracking 
furnace, 1 flue gas cross temperature, and 1 flue tem-
perature in the hearth) that directly or indirectly affect 
the yields of ethylene and propylene[11,12]. The 20 
variables are marked in Fig.6. 

 
Figure 6  Cracking furnace 

 
Network training will be carried out once again 

while the change of cracking raw material and opera-
tion condition is taken place. Retraining network will 
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ensure to the soft sensing model reliability and accuracy. 
The sample data must be preprocessed, such as data 
rectification and data transformation before modelling 
in order to ensure model accuracy, and the description 
of data preprocessing is no longer mentioned.  

Limited by the sample data, the outputs are only 
the yields of C2H4 and C3H6. So the predictive model 
of the yields of ethylene and propylene has 20 inputs 
and 2 outputs. If we only use one RBF-NN to map the 
inputs and outputs, the net structure would be quite 
complicated and training such complicated network 
would consume time and even diverge if the net 
structure were not selected properly.  

We use two neural networks, IT-NN and RBF-NN, 
to make the model. Through training the inputs and 
weights of IT-NN we reduce the dimensionality of the 
sample data sets consisted of 20 variables. In order to 
determine the input nodes of IT-NN, we implement 
the linear PCA method, and get 10 linear principal 
components if selecting the control level 90%. Since a 
nonlinear method will describe the data with greater 
accuracy and fewer latent variables than a linear 
method, the number of nonlinear principal compo-
nents gained through IT-NN would be less than 10. 
Therefore, we select an IT-NN with 10 to 5 input 
nodes and 15 hidden layer nodes to gain different 
nonlinear PCs. The errors of data reconstructed by 
these nonlinear principal components is listed in Table 
3. Firstly, we train IT-NN and RBF with different PCs, 
and then use these models to predict the yields of eth-
ylene and list the errors in Table 4. From Tables 3 and 
4, we can see that the IT-NN with 7 nonlinear PCs will 
be the best choice. Fewer PCs (6 and 5) cause infor-
mation lost, and more PCs (10, 9, 8, 7) increase the 
input nodes of RBF. Fig.7 shows the predictive curves 
produced by the model (IT-NN with 7 nonlinear PCs + 
RBF). Further, 5 different kinds of naphtha with two 
operation conditions are selected to verify the model 
precision, and the testing results of comparing the 
practical yields with the model calculation are showed 
in Table 5 and Table 6. In the tables, nP is normal par-
affin, iP is isomeric paraffin, N is naphthene, and A is 
aromatics. These values are percentages of mass. IP, 
10%,…, 90%, EP are fractionating points. Thereinto, 
IP is initial fractionating point, EP is end fractionating 
point, and ASTM is American Society of Testing Ma-

terials. The results have shown that this model is ac-
curate in predicting the yields of ethylene and propyl-
ene and can be applied in cracking furnace system as a 
soft predict model. 

6  CONCLUSIONS 
This paper illustrates the limitation of linear PCA 

and the effectiveness of nonlinear PCA when analyz-
ing nonlinear system. And it also studies the theory of 
ANN and IT-NN as nonlinear PCA methods. A mo-
mentum factor and adaptive learning rate are pre-
sented to improve the performance of IT-NN and 
meliorate the convergence of training process. The 
improved IT-NN is an effective way to reduce the di-
mensionality of data sets where relations among vari-
ables are nonlinear. Comparison is also made between 
linear PCA, ANN, and IT-NN by examples. Experi-
ments have shown that the improved IT-NN has a bet-
ter performance than ANN and original IT-NN. In or-
der to predict the yields of ethylene and propylene, 
which are the key factors of optimal design and opera-
tion in furnace, this paper studies a soft sensing model 
based on IT-NN and RBF-NN. Compared with tradi-
tional chromatogram instrument, the predictive model 
works effectively and has many advantages: timely 
prediction, less investment, easy maintenance, and 
convenient operation. Based on this model, advanced 
process control, operation optimization, performance 
monitoring, and production evaluation can be imple-
mented effectively. 

Table 3  Reconstruction errors with different input 
layer nodes of IT-NN 

Net structure Construction error 
10-15-20 0.0092 
9-15-20 0.0106 
8-15-20 0.0126 
7-15-20 0.0130 
6-15-20 0.05329 
5-15-20 0.13785 

Table 4  Training and predicting errors with different PCs 
in IT-NN+RBF-NN model 
Training error Predicting error IT-NN net 

structure C2H4 C3H6 C2H4 C3H6 

10-15-20 0.0106 0.0135 0.0593 0.06053 
9-15-20 0.0120 0.0132 0.0631 0.06539 
8-15-20 0.0124 0.0141 0.0677 0.06900 
7-15-20 0.0130 0.0150 0.0731 0.0901 
6-15-20 0.2001 0.1689 0.1896 0.3090 
5-15-20 0.3901 0.2155 0.3408 0.3754 

 
Figure 7  The yields of ethylene and propylene 
○ data measured by chromatogram instrument; 
● data predicted by IT-NN+RBF with 7 PCs 
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NOMENCLATURE 

bj  bias of the jth hidden node  
E  residual matrix 
ei  ith Gaussian noise 
eRMS root-mean-square error 
fk  kth output node 
m  dimension of sample T (tpk) 
max k the maximum values of kth variable in the sample T 
min k the minimum values of kth variable in the sample T 
n  dimension of sample T (tpk) 
P  principal component loadings 
pi  an eigenvector of matrix X  
rw, rx adaptive learning rate 
T  principal component scores 
ti  the ith principal component  
tpk  the kth observed variable in the pth sample   

pk
't   the scaled value of tpk 
Δwji  weight increment between two nodes 
X  matrix 
Δxpi  increment of the ith input variable for the pth sample 
Y  nonlinear function 
zpk  IT-NN output of the kth variable for the pth sample 
δpj  propagated error at the hidden layer 
η  momentum factor  
μ[0, 0.01] Gaussian noise  
σ(·)  sigmoidal function 
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Table 5  Predicted results for 5 different naphtha (COT:840℃, dilute ratio: 0.5) 

ASTM fractionating temperature, ℃
Density nP iP N A 

IP 10% 30% 50% 70% 90% EP
Practical

C2H4

Calculation
C2H4 

Relative 
error

Practical 
C3H6 

Calculation
C3H6 

Relative
error

0.663 33.92 46.16 16.95 3.29 29.6 41 51 64 79 120 164 29.18  29.4599 0.9592 11.03 11.0038 0.2375

0.680 33.30 39.20 20.98 5.89 30 43 54 68.8 83 118 163 28.92  28.6563 0.9118 10.77 10.8117 0.3871

0.670 35.22 41.33 18.05 4.55 31 43.9 52.2 62.4 78.9 111.2 162 28.81  29.1193 1.0730 10.93 10.9275 0.0229

0.682 41.26 33.55 22.93 2.26 26.8 47.5 65.0 81.0 100.0 134.8 168.0 31.01  30.9690 0.1322 13.96 13.8901 0.5007

0.697 31.13 34.48 26.39 8.00 37.1 55.9 73.2 91.6 111.8 140.5 158.0 28.06  28.1350 0.2672 12.62 12.5603 0.4730

 

Table 6  Predicted results for 5 different naphtha (COT:840℃, dilute ratio: 0.6) 

ASTM fractionating temperature, ℃
Density nP iP N A 

IP 10% 30% 50% 70% 90% EP
Practical

C2H4

Calculation
C2H4 

Relative 
error

Practical 
C3H6 

Calculation
C3H6 

Relative
error

0.663 33.92 46.16 16.95 3.29 29.6 41 51 64 79 120 164 28.32  28.2755 0.1571 11.57 11.476 0.8124

0.680 33.30 39.20 20.98 5.89 30 43 54 68.8 83 118 163 28.89  28.7402 0.5185 11.91 11.850 0.5037

0.670 35.22 41.33 18.05 4.55 31 43.9 52.2 62.4 78.9 111.2 162 29.41  29.2768 0.4529 11.62 11.562 0.4991

0.682 41.26 33.55 22.93 2.26 26.8 47.5 65.0 81.0 100.0 134.8 168.0 31.06  30.9821 0.2508 13.98 14.023 0.3075

0.697 31.13 34.48 26.39 8.00 37.1 55.9 73.2 91.6 111.8 140.5 158.0 28.17  28.1612 0.0312 12.72 12.827 0.8411

 


