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Abstract. In this paper, we provide a new approach to study unde-
niable signatures by translating secure digital signatures to secure un-
deniable signatures so that the existing algorithms can be used. Our
mechanism is that any verifier without trapdoor information cannot dis-
tinguish whether a message is encoded from Diffie-Hellamn resource D or
random resource R while a signer with trapdoor information can distin-
guish efficiently a codeword which is computed from D or R. We show
how our mechanism can be efficiently achieved and provide proofs of
security for our schemes in the standard complexity model. We also pro-
vide evidences to show that our approach can be applied to construct
designated confirmer signatures, designated verifier signatures as well.
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1 Introduction

Undeniable signature schemes, first introduced by Chaum and van Antwerpen
[6], have various applications in cryptology. Such signatures are characterized
by the property that verification can be only achieved by interacting with the
legitimate singer through a confirmation protocol, on the other hand, the signer
can prove that a forgery is such by engaging in a denial protocol. Since its
introduction in 1989, undeniable signature schemes have received a significant
attentions in the cryptographic research community [2], [7], [15], [16], [26], and
[29]. These works have provided a variety of different schemes for undeniable
signature schemes with variable degree of security, provability and additional
features. All those works based on discrete logarithm problem can be viewed as
variations of Chaum and van Antwerpen’s scheme [6].

In [2], the problem of construction undeniable schemes based on RSA was
suggested by Boyar, Chaum, Damg̊ard, and Pedersen as a possible research di-
rection. The first undeniable signature scheme based on the traditional RSA
problem was presented by Gennaro, Krawczyk and Rabin [17]. Following Gen-
naro, Krawczyk and Rabin’s works, Galbraith, Mao and Paterson [20], Galbraith
and Mao [19] and Miyazaki [23] have already presented improved schemes. Those
undeniable signature schemes can be viewed as variations of Gennaro, Krawczyk
and Rabin’s scheme.



As improvement of undeniable signature [6], [4], several interesting notions
are introduced. The notion of convertible signatures was introduced in [2] and
[14], and the notion of designated confirmer signatures, first introduced by
Chaum [5], and formalized by Okamoto [28], are digital signatures that can
be verified only by some help of either a signer or a semi-trusted designated
confirmer. In designated confirmer signature schemes, if the signer is unavailable
to confirm the signature, the confirmer, previously designated by the signer, can
confirm the signature for the recipient. Practical constructions have been pro-
posed by Chaum [5], Okamoto [28], Michels and Stadler [24] and by Camenisch
and Michels [10]. Furthermore, Okamoto [28] shows that confirmer signatures ex-
ist if and only if public key encryption schemes exist. And finally, the conception
of designated verifier signatures was introduced and implemented by Jakobsson,
Sako, Impagliazzo [27].

Our contributions In this paper, we provide a new approach to study un-
deniable signatures by translating secure digital signatures to secure undeniable
signatures so that the existing algorithms can be used. Our mechanism is that
any verifier without trapdoor information cannot distinguish whether a message
is encoded from Diffie-Hellamn resource D or random resource R while a signer
with trapdoor information can distinguish efficiently a codeword which is com-
puted from D or R. We show how our mechanism can be efficiently achieved and
provide proofs of security for our schemes in the standard complexity model. We
also provide evidences to show that our approach can be applied to construct
designated confirmer signatures, designated verifier signatures as well.

The rest of paper is organized as follows. In Section 2, a new model on undeni-
able signature scheme is presented. In Section 3, a generic approach to construct
undeniable signatures is presented, and we also provide proofs of security for our
schemes. Concrete examples are presented in Section 4 together with possible
extensions of our approaches to study variations of undeniable signatures such
as designated confirmer signatures, designated verifier signatures. Finally, the
conclusion of our research is presented in Section 5.

2 Definition and Notions

Our mechanism to construct undeniable signatures is from source hiding tech-
nique. That is a verifier without trapdoor information of source can not dis-
tinguish whether a message is encoded from D or R. However, the signer with
trapdoor information can distinguish whether it is computed from D or R. In
our model, an undeniable signature consists following algorithms and protocols:

– A key generation algorithm KG: This is a probabilistic polynomial time algo-
rithm, which receives 1k as input, where k is a security parameter, and gener-
ates as output a pair of keys (SKs, PKs) called secret and public key of sig-
nature algorithm, respectively. Also KG outputs a pair of keys (SKc, PKc)
called secret, public key of confirm and disavowal protocol respectively. The



secret key SKs is used by the signer to create ordinary signatures, while the
keys SKc is used to test the validity of a codeword.

– Message encoding algorithm Enc: There are two kind of random source
denoted by D and R. Given a message m, the signer encodes a message m to
a codeword which is either in D or in R. We say a codeword is valid denoted
by V f(Enc(m), SKc) = 1 if it is in D, otherwise it is invalid, denoted by
V f(Enc(m), SKc) = 0.

– A signature algorithm (Sign, V f): This is a probabilistic polynomial time
algorithm, which receives a secret key Ks and a m, it encodes the message m
by running Enc, and then runs the signing algorithm with input Enc(m), and
finally outputs a signature σ(m) : =(Enc(m), Sign(Enc(m))). A signature
σ(m) of message m is called universally valid if V f(Sign(Enc(m)) = 1.

– A confirmation protocol (C, VC): This is a pair of interactive Turing ma-
chines called the signer and the verifier. The common input consists of a
message m ∈ M , a string z ∈ S, and a pair of public keys (PKs, PKc).
The signer receives as private input a verification key SKc. The output of
the confirmation protocol is 1 or 0, where the output of 1 indicates that the
signature is valid, i.e., the confirmation protocol outputs 1 if and only if both
V f(Enc(m), SKc) = 1 and V f(Sign(Enc(m))) = 1.

– The denial protocol (D,VD): This is a pair of interactive Turing machines
called the signer and the verifier. The common input consists of a message
m ∈ M , a string z ∈ Z and a public key (PKs, PKc). The signer receives as
private input a verification key SKc. The protocol is designed to convince
VD that z is invalid with w.r.t. m and (PKs, PKc). We say a signature is
invalid if and only if either V f(Enc(m), SKc)=0 or V f(Sign(Enc(m)))=0.

There are two basic requirements on undeniable signature schemes: the first
is signature unforgeable, namely, without access to the private key of the signer,
no one should be able to produce legitimate signatures by himself and the second
requirement is non-transferability of the signature, namely, no attacker should
be able to convince any other party, without the cooperation of the legitimate
signer, of the validity or invalidity of a given message and signature.

To define the security against signature forgeable attack, we allow adversaries
to play the following game:

Game 1 (Signature forgery attack)

An adversary AdvSign(SKs) is a probabilistic polynomial time algorithm,
which can be used in the following type of experiment:

(G1.1) KG is executed on input 1k, let the output be PKs, SKs, PKc and
SKc. As input, AdvSign(SKs) gets PKs, PKc, SKc and 1k;

(G1.2) AdvSign(SKs) may make any polynomial size bound of signature re-
quest. AdvSign(SKs) produces m and receives the result of running σ(m) on input
(m,Ks);



(G1.3) Let M be a set of messages occurring in the signature requests done
in the second step. Now AdvSign(SKs) outputs a message m′ /∈ M , and a string
z′.

Let psig(k) be the probability that AdvSign(SKs) outputs (m′, z′) such that
V f(z′) = 1. This probability is taken over the random choices make by AdvSign(SKs),
KG and Sign.

We say a function ν: N → R is a negligible function if for any c > 0, there
exists N0 ∈ N such that ν(k) < 1/kc for all k > N0. We say that a function q:
N → R is overwhelming if the function ν defined by ν(k) = 1−q(k) is a negligible
function.

AdvSign(SKs) is successful against the scheme (KG, Sign, (C, VC), (D,VD)
if p(k) is at most negligible amount.

Definition 1: An undeniable signature scheme is said to be unforgeable if no
adversary AdvSign(SKs) has success against it.

To capture the definition of non-transferability of a signature, we allow ad-
versaries to play the following game:

Game 2 (Codewords indistinguishable)

An adversary AdvD(SKs,SKc) is a probabilistic polynomial time algorithm,
which can be used in the following type of experiment:

(G2.1) KG is executed on input 1k, let the output be PKs, SKs, PKc and
SKc. As input, AdvDist(SKs,SKc) gets PKs, PKc and 1k;

(G2.2) AdvDist(SKs,SKc) may now make polynomial size bound of signature
requests. Given a message m, the encoding algorithm flops a coin b and then
chooses encodes the message according to b, if b, then the codeword is computed
form D, otherwise it computed from R. Finally produces a signature of the
codeword of m.

(G2.3) Let M be the set of messages occurring in signature requests done
in step 2. Now, AdvDist(SKs,SKc) outputs a message m′ /∈ M , and receives a
string z′, which is either valid codeword, or invalid codeword according to the
coin flopping b ∈ {0, 1}.

(G2.4) AdvDist(SKs,SKc) may now make polynomial size bound of signature
requests and the adversary may also request to play role of VC or VD in the
confirmation and the denial protocol, provided that m′ does not occur as the
message in any request, and Enc(m′) does not occur in any encoding request.

(G2.5) Finally, AdvDist(SKc) outputs b′.

Let pk be the probability that AdvDist(SKc) outputs b′ = b in the game.
The probability is taken over the random choices made by KG, Sign, (C, VC),
(D,VD) and coin flopping b. AdvDist(SKc) is successful against the scheme defined
by the tuple (KG, Sign, (C, VC), (D,VD), if |pk − 1/2| is at most negligible
amount.



Definition 2: An undeniable signature scheme is said to be signatures indis-
tinguishable if no adversary AdvDist(SKs,SKc) has success against it.

3 Generic constructions

Given a signature algorithm
∑

, which is secure in the sense of Goldwasser, Micali
and Rivest’s definition [22], we provide a generic approach to translate ordinary
signatures to undeniable signatures Since our approach to construct undeniable
signatures is independent on the structure of underlying signature scheme, there-
fore the method is universal. Thus undeniable signatures constructed form this
approach are called universal undeniable signatures.

3.1 How to generate codewords

The indistinguishability of codewords follows from the hardness assumption of
decisional Diffie-Hellman problem. Let G be a large cyclic group of prime order
q, and let g be a generator of G. We consider the following two distributions:

– Given a Diffie-Hellman quadruple g, gx, gy and gxy, where x, y ∈ Zq, are
random strings chosen uniformly at random;

– Given a random quadruple g, gx, gy and gr, where x, y, r ∈ Zq, are random
strings chosen uniformly at random.

An algorithm that solves the Decisional Diffie-Hellman problem is a statistical
test that can efficiently distinguish these two distributions. Decisional Diffie-
Hellman assumption means that there is no such a polynomial statistical test.
This assumption is believed to be true for many cyclic groups, such as the prime
sub-group of the multiplicative group of finite fields.

Generalized Decisional Diffie-Hellman assumption: for any k, we consider the
following distributions:

– The distribution R of any random tuple (g1, · · · , gk, u1, · · · , uk) ∈ G2k, where
g1, · · · , gk, and u1, · · · , uk are uniformly distributed in G2k;

– The distribution D of tuples (g1, · · · , gk, u1, · · · , uk) ∈ G2k, where g1, · · · , gk

are uniformly distributed in Gk, and u1 = gr
1, · · · , uk = gr

k for random r ∈ Zq

chosen at random.

An algorithm that solves the generalized decisional Diffie-Hellman problem
is a statistical test that can efficiently distinguish these two distributions. Gen-
eralized decisional Diffie-Hellman assumption means that there is no such a
polynomial statistical test.

It has been shown in the literature that the quadruple decisional Diffie-
Hellman problem is equivalent to the polynomial tuple decisional Diffie-Hellman
problem. We refer the readers to [1], [8], [9], [31], [34] and [35] for further refer-
ence.



Encoding algorithm Enc: Let P = 2Q + 1 be a large safe prime. A group
G ⊆ Z∗

P of order Q is generated by public system parameter. We assume that
the discrete logarithm problem defined over ZP is hard. Let h be a generator
of the group G. The singer chooses x1, x2 ∈ ZQ uniformly at random, and
computes h1 = hx1 mod P and h2 = hx2 mod P . The public key PKc is
(h, h1, h2, P, Q, G,H), where H is a collision free hash function with suitable
output length. The secret key SKc is (x1, x2).

Given a message m ∈ {0, 1}∗, the encoding algorithm computes a codeword
as follows:

-Valid codeword: It chooses r ∈ Z∗
Q uniformly at random, and then com-

putes u = hr
1 mod P , v = hr

2 mod P , and w = H(u, v, m). The codeword is
defined by Enc(m) = (u, v, w). A codeword is valid if (h1, h2, u, v) is Diffie-
Hellman quadruple. The set of valid codewords is denoted by D.

-Invalid codeword: It chooses r, r′ ∈ Z∗
Q uniformly at random, and then

computes u = hr
1 mod P , v = hr′

2 mod P , and w = H(u, v, m). The codeword is
defined by Enc(m) = (u, v, w). A codeword is invalid if (h1, h2, u, v) is random
quadruple. The set of invalid codewords is denoted by R.

This completes the description of encoding algorithm Enc.

3.2 How to universally translate signatures to undeniable signatures

Given signature schemes secure against adaptive chosen message attack in the
sense of Goldwasser, Micali and Rivest’s definition [22], we provide a method
universally translating the ordinary signatures to undeniable signatures.

– Signing algorithm: on input m, the signer runs encoding algorithm Enc to
get a codeword Enc(m) : = (u, v, w), and signs the codeword Enc(m). The
output of signature algorithm is σ(m) : = (Enc(m), Sign(w))

– Verification algorithm: on input a putative signature σ(m) of message m,
the verification algorithm V f tests the valid of Sign(w).
• if V f(Sign(w))=0, then the verifier terminates the protocol, and outputs

0;
• If V f(Sign(w))=1, then the verifier further decides whether w ∈ D or

w ∈ R by running interactive bi-proof of equality or inequality of two
discrete logarithms with the signer (e.g., the protocols presented in [4],
[16], [11] and [25]).
∗ If logh1

(u) = logh2
(v), then (h1, h2, u, v) ∈ D thus Enc(m) is a valid

codeword, and the verification algorithm output 1;
∗ Otherwise Enc(m) is an invalid codeword, and the verification algo-

rithm output 0.

The proof of security We want to show that universal undeniable signature
scheme is secure for the signer and it is also codeword indistinguishable. Before
we provide rigorous security proof of scheme, we first review the following well
known bi-proof system of equality or inequality two discrete logarithms presented
by Michael and Stadler [25] as an improvement of original protocols first studied
by Chaum [4] and later extended by Fujioka, Okamoto and Ohta [16].



Suppose the prover knows the discrete logarithm y = αx mod P (P is a large
safe prime, i,e., P=2Q+1), and wants to allow the verifier to decide whether
logβ(z) = logα(y) mod P for given elements β, z, the prover and the verifier can
execute following protocol.

– The verifier chooses random values u, v ∈ Z∗
Q, computes a := αuyv and send

a to the prover.
– The prover chooses k, k̃, w ∈ Z∗

Q, computes rα := αk, rβ := βk, r̃α := αk̃,

r̃β := βk̃, and sends rα, rβ , r̃α, r̃β and w to the verifier.
– The verifier opens its commitment a by sending u, v to the prover;
– If a 6= αuyv, the prover halts, otherwise the prover computes s := k−(v+w)x

mod Q, s̃ : = k̃ − (v + w)k mod Q, and sends s, s̃ to the verifier;
– The verifier first checks whether αsyv+w = rα, αs̃yv+w = r̃α, and βs̃rv+w

β =
r̃β and then concludes:
• If βszv+w = rβ , then logβ(z) = logα(y);
• If βszv+w 6= rβ , then logβ(z) 6= logα(y);

Michael and Stadler [25] prove that the above protocol is complete and sound.
It is zero-knowledge under the assumption that there exists no algorithm running
in expected polynomial time which decides with non-negligible probability better
than guessing whether two discrete logarithms are equal.

Theorem 1: If underlying signature algorithm
∑

is secure against in the sense
of Goldwasser, Micali and Rivest’s definition [22], then the constructed universal
undeniable signature scheme

∏
is secure in the sense of definition 1.

Proof: Since the adversary is given SKc in forgery game 1, we can ignore the
algorithm Enc. Therefore the signature algorithm

∏
is the same as the signature

algorithm
∑

, and thus theorem 1 is correct.

Theorem 2: Under the hardness assumption of decisional Diffie-Hellman prob-
lem over Z∗

P , the universal undeniable signature scheme is codeword indistin-
guishable.

Proof: Given a quadruple (h1, h2, u, v) which is either from D or R, we want
to distinguish whether (h1, h2, u, v) ∈ D or in R with the help of adversary
Adv, who is assumed to be able to distinguish a codeword in D or in R with
non-negligible advantage.

We construct a simulator as follows. The input to simulator is (h1, h2, u, v)
and a secure signature scheme

∑
as well as secret signing key SKs, PKs and

PKc, where PKc is (h, h1, h2, P, Q, G,H), where H is a collision free hash func-
tion with suitable output length. For 1 ≤ i ≤ poly(k), on response the ith
signing query for a message mi from the adversary, the simulator chooses a bit
bi uniformly at random. If bi = 1, then the simulator chooses ri ∈ Z∗

Q uniformly
at random and finally computes ui = hri

1 , vi = hri
2 and wi = H(ui, vi,mi);

Otherwise, the simulator chooses ri,1, ri,2 ∈ Z∗
Q uniformly at random and com-

putes ui = h
ri,1
1 , vi = h

ri,2
2 , wi := H(ui, vi,mi), where H is collision free hash

function. The coin tosses ri or (ri,1, ri,2) and bi are kept secret. Finally the sim-
ulator computes the signature Sign(wi); The output of signature algorithm is
Enc(mi)=(ui, vi, wi) and Sign(wi).



Since Sign(wi) is always valid, i.e., V f(Sign(wi)) = 1, it follows that the
signature is generated by the simulator itself, therefore the simulator knows the
exact value ri or (ri,1, ri,2) as well as bi (otherwise this signature is a forgery
signature of mi, thus contracts the assumption of

∑
is secure against adaptive

chosen message attack). To request the confirmation and deniable of a codeword
Enc(mi), the simulator can run the bi-proof for equality or inequality of two
logarithm logh1

(ui) and logh2
(vi) described above as the simulator knows the

random strings ri or (ri,1, ri,2).
We now translate the quadruple (h1, h2, u, v) to a signature of message m as

follows: we compute w = H(u, v, m) and Sign(w). The codeword of message m
is Enc(m) = (u, v, w), the signature of message m is σ : = (Enc(m), Sign(w)).
Eventually, the adversary will output a bit b′, at which point, a distinguisher
Dist to tell Diffie-Hellman quadruple from random quadruple can be easily con-
structed: the input to Dist is (h1, h2, u, v), the output of Dist is b′ ∈ {0, 1}, a
copy of adversary’s output. Since the adversary is assumed to be able to guess
the correct value b′ with non-negligible probability, so is Dist.

4 Concrete examples and possible extensions

4.1 Concrete examples

We provide the following example to show that efficiency of our construction
from an efficient signature scheme presented in [36]. Without any modification,
this technique can be applied to other secure signature schemes such as OAEP
RSA [3], and Schnorr signature scheme [30] as well.

– Key generation algorithm: Let p, q be two large primes such that p−1 = 2p′

and q−1 = 2q′, where p′, q′ are two (l′ +1)-bit strings. Let n = pq and QRn

be the quadratic residue of Z∗
n. Let g, h be two generators of QRn chosen

uniformly at random. The public key is (n, g, h,X,H), where X ∈ QRn and
H is a collision free hash function with output length l. The private key is
(p, q).

– Signature algorithm: To sign a message m, a (l +1)-bit prime e and a string
t ∈ {0, 1}l are chosen at random. The equation ye = XgthH(m)modn is
solved for y. The corresponding signature of the message m is (e, t, y).

– Verification algorithm: Given a putative triple (e, t, y), the verifier first checks
that e is an odd (l + 1)-bit number. Second it checks the validation that
X = yeg−th−H(m)modn. If the equation is valid, then the verifier accepts,
otherwise, it rejects.

This signature scheme is proved secure under the joint assumptions of the
strong RSA problem, the discrete logarithm problem defined over QRn, as well
as the existence of collision free hash function.

Concrete examples We now provide a concrete example based on the above
signature scheme.



– Key generation algorithm: Let P = 2Q + 1 be a large safe prime. A group
G ⊆ Z∗

P of order Q is generated by public system parameter. We assume that
the discrete logarithm problem defined over ZP is hard. Let h be a generator
of the group G. The singer chooses x1, x2 ∈ ZQ uniformly at random, and
computes h1 = hx1 mod P and h2 = hx2 mod P . The public key PKc is
(h, h1, h2, P, Q, G,H), where H is a collision free hash function with suitable
output length. The secret key SKc is (x1, x2).
Let p, q be two large safe primes i.e., p−1 = 2p′ and q−1 = 2q′, where p′, q′

are two l′-bit strings. Let n = pq and QRn be the quadratic residue of Z∗
n.

Let X, g1 and g2 are generators of QRn chosen uniformly at random. The
public key of signer is (n, X, g1, g2,H) along with an appropriate description
of G including s. The private key of signer is (p, q).

– Signing algorithm: The signer chooses r ∈ ZQ uniformly at random and
computes u = hr

1 mod P , v = hr
2 mod P , and w = H(u, v, m). Then the

signer chooses l+1-bit prime e at random, the equation ye = Xgt
1g

w
2 mod n is

solved for y. The signature of message m is denoted by σ(m) = (e, y, t, u, v).
– The confirm protocol between the singer and verifier ConfS,V . Given a pu-

tative signature of message σ(m)=(e, y, t, u, v), the verifier first checks the
equation X = yeg−t

1 g−w
2 mod n, where w = H(u, v, m). If V f(Sign(w)) = 0,

then the verifier terminates the protocol and output 0. Otherwise, the signer
proves the equality of two discrete logarithms logh1

(u) = logh2
(v) to the

verifier with the auxiliary input r, where r is a random string which is used
for generating the signature. σ(m) is valid if and only if the verifier accepts
the proof of equality of discrete logarithm logh1

(u) = logh2
(v).

– The disavowal protocol between the signer and a verifier DisS,V . Given a
putative signature of message σ(m)=(e, y, t, u, v), the verifier first checks the
equation X = yeg−t

1 g−w
2 mod n, where w = H(u, v, m). If V f(Sign(w)) = 0,

the verifier terminates the protocol, and outputs 0. Otherwise, the signer
proves the inequality of two discrete logarithms logh1

(u) 6= logh2
(v) to the

verifier with the auxiliary input r. Notice that a signer always knows the
random string r to be used to generate σ(m) as the output of V f(Sign(w))
is always 1.

By applying theorem 2, one knows that under joint assumptions of the strong
RSA problem defined over Z∗

n, the discrete logarithm problem defined over Z∗
P ,

as well as the existence of collision free hash function, the undeniable signature
scheme is secure.

4.2 Possible extensions

We consider possible extensions of our approach to construct convertible signa-
tures, designated verifier signatures and designated confirmers signatures in this
section.

– Convertible signature schemes can be easily constructed if the trapdoor in-
formation x1, x2 ∈ Z∗

Q is revealed.



– Designated confirmer signature scheme can be easily constructed if the trap-
door information x1, x2 ∈ Z∗

Q is chosen by a confirmer.
– Designated verifier signature scheme can be easily constructed if the trap-

door information x1, x2 ∈ Z∗
Q is chosen by a verifier. Here we point out

the difference between our approach and Steinfeld et.al’s approach [32] and
[33]. Our construction is pre-processing model, i.e., given a message, we first
encode the message and sign the codeword. Steinfeld et.al’s approach is post-
precessing, i.e., after singer produces a signature of message m, the singer
further translates the signature to designated-verifier signatures. Therefore
two approaches are completely different.

– Since the quadruple decisional Diffie-Hellman problem is equivalent to any
polynomial tuples of decisional Diffie-Hellman problem, we can construct
a set of designated verifiers S ( each player in S is a designated verifier)
by the following approach: given a public known multiple group G with
order Q. Let h be a publicly verifiable generator of G, each designated ver-
ifier can choose its secret key xi,1, xi,2 and then publishes its public key
hi,1 = hxi,1 and hi,2 = hxi,2 . We say a codeword is valid for the verifier i, if
(hi,1, hi,2, ui,2, ui,2) is a Diffie-Hellman quadruple. Notice that Diffie-Hellman
quadruple can be easily distinguished from random quadruple with the help
of trapdoor information (xi,1, xi,2) which is generated and known only by the
verifier i. Therefore, we provide a solution to the open problem suggested by
Desmedt [13].

5 Conclusion

In this paper, we provide a universal approach to construct undeniable signatures
from any secure signature scheme. We also provide evidences to show that our
approach can be applied to construct designated confirmer signatures, designated
verifier signatures as well.
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