
Point Compression on Jacobians of
Hyperelliptic Curves over Fq.

Colin Stahlke

Abstract. — Hyperelliptic curve cryptography recently received a lot of atten-
tion, especially for constrained environments. Since there space is critical, compression
techniques are interesting. In this note we propose a new method which avoids factoring
the first representing polynomial. In the case of genus two the cost for decompression
is, essentially, computing two square roots in Fq, the cost for compression is much less.

Introduction

An asymmetric cryptographic system such as ElGamal’s needs a finite group such
as the Jacobian of a hyperelliptic curve over a finite field. For genus g = 1 we
have the well-known special case of elliptic curve cryptography.

Since these cryptographic systems are realized in computers with limited ressources
(eg. smart cards) and communication happens over channels with limited band
width, it is desirable that the representation of a group element need little space.

How much space in bits does a point on a Jacobian over Fq need? Its representa-
tion as a tuple of g points on the curve with x and y coordinates needs 2g · log2(q)
bits. On the other hand, since the number of points on the Jacobian is close to
qg, the amount of information in a point is only about g · log2(q) bits.

In a cryptographic context every point of interest is in the cyclic group generated
by some known point P of the Jacobian. So an optimal point compression would
be: Given a point Q, calculate k ∈ Z such that 0 ≤ k < #〈P 〉 and Q = k · P .
Since #〈P 〉 is at most the number of points on the Jacobian and k identifies the
point Q uniquely, k is the optimal compression of the point Q in the sense that
k needs exactly as many bits as there is information in the choice of the point Q.
Obviously this compression is not practical since compressing a point would be

1



calculating its discrete logarithm which means breaking the crypto system. So
we need to find a trade off between a good compression and the computing power
needed to compress and decompress a point.

Fast point addition usually uses the Mumford representation. Lange found the
fastest formulas so far (see [Lange]). In the Mumford representation each element
of the Jacobian is represented by a pair of polynomials [u(x), v(x)] of bounded
degree. Hess, Seroussi, and Smart [HSS] propose a method for compression where
each element is represented by at most g + g log2 q bits. In this note we propose
a different technique needing the same amount of space but the computing costs
are lower.

1. The Mumford representation

In [Mum][page 3.17] Mumford introduces the following representation of ideal
classes which correspond to divisor classes, i.e. to points on the Jacobian:

Theorem (Mumford Representation): Let the function field be given via
the absolutely irreducible polynomial y2 + h(x)y = f(x), where h, f ∈ Fq[x],
deg f = 2g+ 1, deg h ≤ g. Each nontrivial ideal class over Fq can be represented
via a unique ideal generated by u(x) and y − v(x), u, v ∈ Fq[x], where

• u is monic,

• deg v < deg u ≤ g,

• u|v2 + vh− f .

Let D =
∑r

i=1 Pi − r∞, where Pi 6= ∞, Pi 6= ιPj for i 6= j and r ≤ g (ι
is the hyperelliptic involution). Put Pi = (ai, bi). Then the corresponding
ideal class is represented by u =

∏r
i=1(x − ai) and if Pi occurs ni times then(

d
dt

)j
[v(x)2 + v(x)h(x)− f(x)]|x=ai

= 0, 0 ≤ j ≤ ni − 1.

Now we want to compress a representative [u, v] of an ideal class by storing u
and some more bits, such that we can reconstruct v.

Since u|v2 + vh− f , there is a p ∈ Fq[x] such that up = v2 + vh− f . This is an
equation between two polynomials of degree 2g + 1 since deg f = 2g + 1. The
unknowns are the 2g + 2 − deg u coefficients of p and at most deg u coefficients
of v. Therefore by comparision of coefficients we have 2g + 2 equations with at
most 2g + 2 unknowns. We expect at most 2g solutions for v in which case the
choice of one solution can be encoded in g bits.

2



This expectation has to be verified in each case of course. For elliptic curves we
get 2 solutions for v and with just one bit we can reconstruct v which corresponds
to calculating the y-coordinate from the x-coordinate of a point. By way of illus-
tration from now on we restrict ourselves to genus g = 2 and odd characteristic.
Then a curve can be defined by

y2 = x5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0,

where f has only simple roots in the algebraic closure. Let fi be the coefficients
of f , ui of u, vi of v and pi of p. From up+ f = v2 by comparision of coefficients
we get

p(x) = −x3 + (u1 − f4)x2 + (u0 − u2
1 + f4u1 − f3)x+ p0.

The discriminant of

(1) u(x)p(x) + f(x) = (p0 + f2 − f3u1 − f4(u0 − u2
1) + u1(2u0 − u2

1)) x2 +

(u1p0 + f1 − f3u0 + f4u0u1 + u0(u0 − u2
1)) x+

u0p0 + f0

is of degree at most 2 in p0 and all coefficients are known. It is zero since
u(x)p(x) + f(x) is a square (namely v(x)2). From v(x)2 = u(x)p(x) + f(x) we
get relations for v0 and v1:

(2) v2
0 = u0p0 + f0

(3) 2v0v1 = u1p0 + f1 − f3u0 + f4u0u1 + u0(u0 − u2
1)

(4) v2
1 = p0 + f2 − f3u1 − f4(u0 − u2

1) + u1(2u0 − u2
1)

2. Compression

The fi, ui and vi are known. Calculate p0 from (2) or (if u0 = 0) from (4).
Consider the right hand side of (1) as polynomial in x and let d(p0) be its dis-
criminant which we consider as polynomial in p0. If u2

1 − 4u0 6= 0, consider the
discriminant of d and decide which root gives the correct value for p0. Store this
choice in Bit1. Since q is odd, the most convenient choice might be to take as
Bit1 the least significant bit of the root (i.e. the parity of a coordinate of the root
considered as number in [0, p− 1]).

Exception: If u2
1 − 4u0 = 0 then d(p0) is of degree 1 and Bit1 can be chosen

arbitrarily. In fact d(p0) is never of degree 0, otherwise a short calculation shows
that f(−u1/2) = 0 and f ′(−u1/2) = 0, so −u1/2 would be a singular point of
the curve.

3



Now store in Bit2 the correct choice of v0 as root of u0p0 + f0 (see (2)). (Again
the most convenient choice might be to take as Bit2 the least significant bit of
v0). But if v0 = 0 then instead store in Bit2 the correct choice of v1 as root of
the right hand side of (4).

The compressed point is the tuple (u0, u1, Bit1, Bit2).

3. Decompression

The fi and ui are known. Also known are Bit1 and Bit2. We need to recover
v0 and v1. Take the discriminant of u(x)p(x) + f(x) (see (1)) and consider this
discriminant d(p0) as polynomial in p0. Calculate p0 from d(p0) = 0 according to
Bit1. Calculate v0 from (2) according to Bit2. If v0 6= 0 then calculate v1 from
(3). If v0 = 0 then calculate v1 from (4) according to Bit2.

References

[HSS] F. Hess, G. Seroussi, and N. P. Smart. Two topics in hyperelliptic cryp-
tography. In Selected Areas in Cryptography – SAC 2001, volume 2259
of Lect. Notes Comput. Sci., pages 181–189. Springer, 2001.

[Lange] T. Lange. Formulae for Arithmetic on Genus 2 Hyperelliptic Curves.
http://www.itsc.ruhr-uni-bochum.de/tanja/preprints.html, 2003.
submitted.

[Mum] D. Mumford. Tata Lectures on Theta II. Birkhäuser, 1984.

EDIZONE GmbH, Siegfried-Leopold-Str. 58, D-53225 Bonn, Germany
e-mail: stahlke@edizone.de

4


