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ABSTRACT

Meteorological models generate fields of precipitation and other climatological variables as spatial averages at thaesgaie o$éd for
numerical solution. The grid-scale can be large, particularly for GCMs, and disaggregation is required, for example tcagenepaitte
spatial-temporal properties of rainfall for coupling with surface-boundary conditions or more general hydrological applikatietiod is
presented here which considers the generation of the wet areas and the simulation of rainfall intensities separatelystaastheaf
nearest-neighbour Markov scheme, based upon a Bayesian technique used in image processing, is implemented so as tespretaraé the
features of the observed rainfall. Essentially, the large-scale field and the previously disaggregated field are usedeamearndiégrative
procedure which aims at selecting a realisation according to the joint posterior probability distribution. In the sechadrtagihtological
characteristics of the field of rainfall intensities are reproduced through a random sampling of intensities accordirgdistalbetion and
their allocation to pixels chosen so that the higher intensities are more likely to be further from the dry areas. The toafjibeetheme
are assessed for Arkansas-Red River basin radar rainfall (hourly averages) by disaggregating from 40 km x 40 km to 8 km >w&km. The
dry scheme provides a good reproduction both of the number of correctly classified pixels and the coverage, while theschemséi
generates fields with an adequate variance within the grid-squares, so that this scheme provides the hydrologist witha fosetfiué
downscaling of meteorological model outputs.

Keywords: Rainfall, disaggregation, General Circulation Model, Bayesian analysis

Introduction with surface boundary conditions or, if the modelled rainfall

Meteorological models of atmospheric processes are usead to be used, for hydrological impact assessment. In the case
across a wide range of scales for diverse applications. A¢f rainfall forecasting, some combination of the mesoscale
the global scale, General Circulation Models (GCMs) areforecast and a finer scale advection based upon radar data
used to investigate the evolution of the climate (DOE, 1996)Brown, 1998) may be used, although no theoretical grounds
while at the regional scale, mesoscale models are weathare adduced to support this approach. In the case of GCMs,
forecasting tools. The numerical solution is based upon a simple scheme is used to provide a distribution of rainfall
spatial discretisation that is limited by computational over the grid-square (Warriloet al, 1996; Eagleson, 1978;
constraints; this introduces a dependence upon the scale @fegory and Smith, 1990; Rowntree, 1988): it is assumed
application. For global models, grid squares may be of théhat it rains over a proportion of the grid-square, the coverage,
order of 10 km? while rainfall forecasting models may run which is taken equal to= 0.1 if the rainfall is convective or
at a resolution of about 250 Km € = 0.3 (or 0.5 depending on the model) if the rainfall is
These are scales at which the modelling of rainfall as drontal; moreover, where it rains, the rainfall intensity is
spatial average over each grid-square misrepresents bo#ssumed to be exponentially distributed.The coverage
the area affected by rainfall and the hydrological processeassumption has been shown to be inadequate (Onof and
at the land surface (Abourgila, 1992; Sivapatal, 1995).  Wheater, 1996a, b) while the intensity distribution is better
Some form of spatial disaggregation is required for couplingepresented by two-parameter distributions (Collier, 1992;
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Matsubayashiet al, 1994). Some changes can be carried out from the 40 km x 40 km coarse scale.
incorporated to improve this distributional approach to This paper presents details of a methodology first
disaggregation (Onat al., 1998), such as to allow for scale introduced in Wheateat al (1999), with particular emphasis
dependence and preserve temporal autocorrelatioron the intensity scheme. The validation of the intensity and
However, it is not possible for such a methodology tothe whole scheme will be addressed in detail. In the rest of
reproduce the spatial memory of the process, i.e. the fadhe paper, “grid-square” will be taken to refer to the coarse
that a certain area is covered by rain at one time-stepesolution grid-square of the meteorological model while
influences its being rainy at another time-step. This may bépixel” refers to the fine-resolution grid-square at which
important for soil moisture distribution and flood generation, the rainfall field is required.

since where rain falls may determine whether the generated

runoff is a flood or not (Steinet al, 1998).

Methodologies for the downscaling of GCM information
have been examined by many authors. In particular, ah OR IMAGE RECONSTRUCTION
explicit representation of the different fluxes at the smallerThe task with which an image processing (IP) algorithm
scale has been carried out by Sethal. (1994); another has to deal has similarities to that which a spatial
approach consists of looking at the different values of thelisaggregation (SD) algorithm has to solve. In both cases,
fluxes for different land-use types but independently of theirthere is an image that is not available in the required form:
location. These two approaches are described and comparéulP, it is corrupted by noise while in the case covered in
by Molderset al (1996). The first takes location into account this paper, it is given only at a coarse scale. Moreover, spatial
and also incorporates a limited amount of temporalaveraging is used in IP since it smooths out noise, so that in
dependence for large-scale events, but has the disadvantalgeth cases, a coarse scale picture is taken as the starting
of being rather computationally expensive. Other authorgpoint. This analogy is used here to provide a SD algorithm
have examined the possibility of downscaling large-scalgor the wet/dry problem.
information provided by GCMs to a regional scale (e.g. von Having underlined these analogies, the following
Storchet al, 1993), but such use of regression analysesmportant differences between the two tasks must be noted:
based upon canonical correlation methods is applicable only
to coarse time-scales such as the month. 1. Inthe case of IP, there is one true picture which is to be

The methodology presented here is consequently a recovered; in SD, a range of fine-scale pictures can
location-based approach which allows for the generation aggregate up to the given coarse-scale field.
of an ensemble of disaggregated fields at each time-step f@& Unlike an IP algorithm, the SD algorithm presented here
a time-series of coarse scale rainfall. The problem of the aims to provide an ensemble of possible fine-scale
selection of the wet fine-scale grid squares is dealt with by  realisations, so that it may provide a tool for ensemble
implementing an algorithm based upon a Bayesian technique forecasting or hydrological Monte-Carlo simulation.
used in image processing and adapted so as to take in8 In IP, afine-scale picture of the image is available, albeit
account the memory of the process. a noise-corrupted one; no such information is available

In this algorithm, the wet/dry spatial structure of the for SD.
rainfall field is described by a Markov Random Field. 4. As indicated in the introduction, the SD algorithm will
Rainfall intensities are then allocated to the small-scale grid-  seek to reproduce the temporal memory of the process,
squares using a beta distribution, so that it averages to the while this is not one of the objectives of IP.
large-scale rainfall depth.

The methodology is implemented and validated with a Taking these points in pairs, the absence of one true answer
composite radar data set from the Arkansas-Red River basin the SD problem (point 1) can be turned to the advantage
(650 km x 1350 km) in central USA, at a 4 km x 4 km of the SD algorithm in that it implies it will be a stochastic
resolution. This hourly rainfall is the result of the integration methodology thus answering the requirement of point 2.
of 16 Weather Surveillance radars; NOAA check the datal he apparent lack of small-scale information underlined in
for errors, introduce a mean field bias correction and missingoint 3 will be compensated for by using the disaggregated
data is in-filled using raingauge and satellite data. This idield at the previous time-step as fine-scale data, thereby
available on the World Wide Web ahttp:// allowing for a way to build in the temporal correlation
www.abrfc.noaa.gov. For the testing of the algorithm, therequired by point 4. Thus the algorithm will best be started
data are here aggregated to a scale of 8 km x 8 km whicht a dry time-step where the disaggregated field is known.
will represent the fine-scale. The disaggregation will be

THE PHILOSOPHY OF ADAPTING A TECHNIQUE
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The Bayesian framework

The IP algorithm proposed by Besag (1986) is one in which

prior information about the spatial structure of the field is TypeII | Typel Type II
updated by using the noise distribution as evidence to form

a posterior probability distribution for the true picture X

according to Bayes's theorem: Type I Central | Typel

. Pixel
Pr {X=x|evidence E} = Pr {E|X=x} Pr{X=x} / Pr {E} ”‘
1)

Similarly in SD, a Bayesian update of prior information TypeIl |Iypel |Typell
about the state (wet/dry) of each pixel is achieved by

bringing in evidence to bear about the true field. As

mentioned in the previous section, the disaggregated picture Fig. 1. lllustration of the neighbourhood structure for the MRF

at the previous time-step is part of the evidence that will be

used. There is, however, more evidence available since the

intensities at the coarse scale are known; as many authors

have observed, there is a link between the mean rainfaf{!RST TYPE OF EVIDENCE: DISAGGREGATED

intensity and the rainfall coverage over an area (e.g. KedemtELD AT THE PREVIOUS TIME-STEP

et al, 1990; Onofet al, 1998). Other evidence could also The simplest way of representing the dependence between

be used, such as climatological data which wouldtwo consecutive time-steps is by using conditional

characterise the rainfall type. This has not been investigateprobabilities of the state of a pixel at one time-step given its

here but the Bayesian framework is flexible enough tostate at another. Note that because of the way the evidence

accommodate such data. is used in (1), these conditional probabilities are expressed
in the following form:

PRIOR STRUCTURE: MARKOV RANDOM FIELD
HYPOTHESIS

A convenient way of representing a spatial structure of;nq thus two such probabilities are required, p(1,0) and
neighbourhood dependence probabilistically is to model th%(l,l) _

field as a Markov Random Field (MRF) which is the spatial

equivalent of an autoregressive process. Having defined a

certain number of types of neighbours which are constrained?COND TYPE OF EVIDENCE: LARGE-SCALE

by the condition that they should form cliques (Chaneter RAINFALL INTENSITIES

al., 1997), itis possible to estimate the ratio of the probabilityA relationship between average real intensity and coverage
of a pixel being wet (X=1) to its being dry (X=0). Thisis  over a grid-square is required. There are many studies
in terms of a number of parameters equal to the number aflentifying links between these variables (Eltahir and Bras,
neighbour types plus one. Data analysis suggested that tH®93; Onofet al, 1998). Here, however, a relationship is
neighbourhood structure illustrated in Fig. 1 would providerequired that can be used in a distributional fashion, e.g.
a simple and adequate representation of the spatial structuuch that the residuals are approximately normally
There are two neighbour types and the Hammersley-Cliffordlistributed (with mean 0). Data analysis suggests that this

ply;x) =Pr{X (1) =y | X (t) =X} ®3)

theorem (Besag, 1986) yields: condition is fulfilled by the following relationship:
Pr{X, =1|rest of the field} /Pr{X=0|rest of the field} In{ (w+0.5)/(n-w+0.5)} =aln{R} +b + Z (4)
=exp {a+BA, +BA} 2)

where w is the number of wet pixels out of the n pixels in
wherea, 3, andf3, are parameters, and And A are the  the grid square, R the average rainfall over it, a and b model
number of type 1 and 2 pixels which are wet. parameters and Z a N(() gistributed variable. This is
illustrated by a plot of the left hand side of (4) against In{R}
in Fig. 2.
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4 . o N A have fewer neighbours; the conditional probabilities are
; therefore scaled accordingly.
a o o Q
3-
o oo
o . Rainfall intensities
=
oo This task can be subdivided into two parts:
- N " ° e find a number of pixel intensities equal to the number
. D00 0 0 . . . . . .
%3 Ch— et of wet pixels by sampling from the marginal distribution
r|E o — — — of pixel intensity;
,; 0 g - =0 e choose to which pixel each sampled intensity is to be
— oo __+__, oo allocated.
-1 D ——
/1 s .-"" o
T ——— . MARGINAL DISTRIBUTION OF PIXEL INTENSITY
24 o e .
oo “- bl - Many authors report that point rainfall intensities are
Y o o approximately gamma distributed (Colliet al, 1992).
"310 3 A M : 7 2 . Matsubyashet al. (1984) find that for small areas of a few
square kilometres, mean areal intensities are gamma
In{R} distributed, with the distribution converging towards a
normal distribution as the size of the area increases. This is
Fig. 2. Coveragel/intensity relationship according to Eqn. (4) not always the case (Oh, 1993), but for the scales of 4 km x
4 km or 8 km x 8 km, the rainfall intensities in the Arkansas
INTEGRATION OF THIS INFORMATION BY A data are found to be gamma distributed.
RASTER-LIKE UPDATING OF THE FIELD However, this information is not sufficient to sample the

intensities in the disaggregation scheme because of the
means that the updating of the rainfall field according toconstraint that the average of the intensities over all the pixels
lg_hould be equal to the grid-square intensity. The distribution

Bayes’s theorem is best carried out as an updating of th ) e } )
value (0 or 1) of each pixel conditional upon its neighbours.Of k independent gamma d|str|buteq variables W'th shape
parameten and scale parametgrwhich are constrained

Since the distribution of Z in (4) is a continuous one, theb hei KR i b distribut hnk
updating of each pixel takes the form of a sampling y their sum kR is a beta distribution (Johnk, 1964)

procedure according to a conditional posterior densit)}::har"’lCterlseOI by the following density function:
function. Thus, at each pixel, this is calculated as a product

of the conditional probability of the pixel's state at the f X|kR
previous time-step, the conditional density function of the

resulting coverage and the prior probability given from the

log odds ratio in (1). The process is carried out at each pixe\ﬁ"here B(x.y) :r(X)G(Y)/G(XTy) is the beta function (and
and repeated over the whole picture a large number (e. _the gamma function). Notice that the scale parameter of

100) of times. This is an implementation of the Gibbs he gamma distribution does not appear, which is intuitively
sampler (Besag, 1986), and provides a field in which théeasonable since all the scale information about the value
state of a pixel is approximately distributed according toOlc the pixel intensity X is governed by the sum kR so that a

the posterior distribution of X single parameter is required here.
' The validity of this beta distribution assumption can be

verified in the following way: for the July 1994 data, pixel
IMPLEMENTATION intensities are normalised so that each grid-square has the
As mentioned above, the requirement of the knowledge ofame mean. The cumulative distribution of the pixel
the previous disaggregated time-step entails that thétensities is then plotted against the theoretical beta
algorithm is best started with a dry rainfall field. At each cumulative distribution with the same mean and standard
time-step, the iterative procedure of updating each pixel igleviation as the data. Figure 3 shows that this distribution
initialised by starting with the disaggregated rainfall field does indeed provide a good fit and a Kolmogorov-Smirnov
from the previous time-step and the 100 iterations of thdest at the 99% level does not reject the hypothesis of
Gibbs sampler can then be carried out. At the edges, pixe@oodness of fit.

The fact that this information is available in conditional form

(x) = L[ KR BO,(k-1)v) ] (x /(kR)y*
(1 - x/(KR)yk-be-2 (%)
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Fig. 5.Rank of the pixel intensity against rank of pixel distance from
edge of field

This is confirmed by a Spearman correlation test yielding a

Data analysis of the July 1994 data is carried out to identifgorrelation of 0.47 which is significant at the 99%
a simple feature of the spatial structure of the rainfallconfidence level.

intensities. The intensities of all pixels and distances to the This suggests the following intensity allocation scheme:

nearest dry pixel are ranked from the lowest to the highest,.
over the wet area the pixel belongs to. The distance used is
the L or Manhattan metric illustrated in Fig. 4. Figure 5 is 2.
a plot of the intensity ranking against the distance ranking.
(circles refer to any number of pixels less than 100 while a

petal represents 100 pixels). It shows that higher intensities

For each pixel, thelldistance to the neighbouring dry
area is calculated.

This distance d is raised to the power p.

Pixels are then randomly allocated the sampled
intensities, starting from the highest intensity, with a
probability proportional totd

tend to occur at points which are further from the dry areaThe power p which is empirically found to produce the best

[y
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Fig. 4. lllustration of distance from edge calculated bynhetric:

wet areas are numbered with the value of their distance to the edge

of the rainfall field.

intensity field structure is p=5, so that the dependence upon
the distance is highly non-linear.

Parameter estimation

Parameters are estimated for the period from July 1994 to
June 1995. The parameters used for the MRF model and
the dependence of areal intensity upon coverage are
estimated by maximum likelihood while the temporal
dependence probabilities are estimated by the corresponding
frequencies in the data set.

A parameter set is estimated for each month to represent
seasonality in the following way:

1. A set of parameters is calculated for each time-step in
the period.

2. A weighted average of parameters over the month is
then obtained using weights proportional to the
conditional mean rainfall intensity (i.e. mean intensity
over wet grid-squares) so that these averages are
dominated by intensive rainfall events.
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3. Moving averages of these monthly parameters are the
calculated over the year using a window of length 2
with weights of 0.25, 0.5 and 0.25 respectively, so as ti
produce a smoothed parameter set.
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Model assessment was carried out on a storm starting

17:00 on 14 July 1995 and finishing at 07:00 on 15 July & -

0.1
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A Ao he A A A A A
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\WET/DRY MODEL Hours since start of storm

Correctly classified pixels

Figure 6 shows a black and white (wet/dry) example of a
model realisation (top) compared with the data (bottom) at
the fine-scale for 22:00; the coarse-scale picture used in the The mean and variance over 100 realisations of the
disaggregation is in the middle. The reconstruction is googbroportions of the correctly classified wet grid-squares are
in that 65.2% of the pixels within wet grid-squares haveshown in Fig. 7 for each hour of the event: in general, the
been classified correctly; however, there is some diagonahodel classifies about 65 to 70% of the pixels correctly.
banding in the data that is not well reproduced.

Fig. 8. Success rate for wet/dry pixel classification

Coverage

The proportion of correctly classified pixels can however
be well reproduced by a totally dry or wet field. Therefore,
we must also look at a measure which is most important to
the success of this scheme in terms of producing
hydrologically realistic rainfall, i.e. the rainfall coverage.
Figure 8 shows the coverage errors for the duration of the
test storm. The quantities plotted are the mean over 100
realisations of the mean and variance over all grid-squares
of the rainfall field of the difference between the true
coverage of these squares and the modelled coverage. This
demonstrates the ability of the scheme in reproducing
coverages, since the mean error is mostly smaller than 4%
or 1 pixel per grid-square, and the standard deviation less
than 8%.
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Fig. 6. Sample model output for wet area prediction Fig. 7. Modelled wet grid square coverage errors
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Intensity scheme
To estimate the errors of this scheme independently of th Mean of ratios of correlations
success of the wet/dry algorithm, the intensity scheme i 0.8 -
applied to the true wet/dry field.

To assess the goodness-of-fit quantitatively, the Mea 4
Square Error (MSE) is used:

Mean of ratios
o o o
~
1

2
MSE=E[S (x-y)’]
0 T T T [ T T T T T T T T T T 1
where X=xand Y=y are the modelled and observed pixel 12345678 9101112131415
intensities respectively, k the number of wet pixels in a grid- Hours since start of storm

square and the expectation is over all grid-squares and ov..
all realisations. By expandlng. Fig. 11.Correlation of within wet grid-square intensities (intensity
model only)

MZE = E [var[X] + var[Y] - 2 E {corr[X,Y]
var[X]var[Y] }] (6)
THE WHOLE DISAGGREGATION SCHEME

where the variance (var) and correlation (corr) are sampl&he performance of the whole disaggregation scheme can
statistics taken over the pixels contained in a grid-squarebe assessed visually by looking at a sequence of model

The terms in NEE are examined in turn using 100 realisations from the storm of 14 July 1995 for two
realisations of the disaggregated field. Figure 10 shows theonsecutive aurs (22:00 and 23:00) compared to the
mean over all grid-squares and all realisations of the ratiobserved data (Fig. 9a, 9b, shown overleaf).

Quantitatively, the variables examined for the intensity
scheme in Figs. 10 and 11 are now plotted for the whole
scheme in Figs. 12 and 13 respectively. The ratio of the
within-square variancebas deteriorated only slightly

Mean of ratios of variances

3 compared with the intensities-only case. This reflects the

8 25 accuracy of the model at reproducing rainfall coverages.
"5 2 On the other hand, the intensity correlations between
S 1.5 1 modelled and observed data are much smaller. This is largely
§ 11 due to the stochastic nature of the model which, for instance,

= 0.5 A correctly classifies only 65 to 70% of the pixels in the wet/
0 L dry scheme. This measure is therefore of little use as an
12345678 9101112131415 indicator of the appropriateness of the scheme as a whole.

Hours since start of storm

Fig. 10 Variance of within wet grid-square intensities (intensity

model only) .
Mean of ratios of variances
of the within-square intensity variance for the observed da 35 -
to that for the modelled data, i.e. of var[X]/var[Y]. There | = 5|
is, on average, one and a half to two times as much variar % 25
in the observed data as in the disaggregated image. Nc ..‘é 2 -
that under the assumption of perfect correlation betwee | < 1.5 1
observed and modelled data, MSE is minimal when th | £ 0.; |
variances are equal. 0
Figure 11 shows the mean of the within-square intensit - ® w N~ o - 0O ©
correlation between the observed and modelled dat Hours since start of storm

corr[X,Y]. Fairly high correlations of 0.6 are achieved,
which is encouraging, considering the simplicity of the
intensity scheme in its present form. Fig. 12.Variance of within wet grid-square intensities
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Fig. 9. Model output for full algorithm (a and b: 14/7/95 at 22:00 and 23:00) with for each: the observed field at pixel resoltitiehogt,
the aggregated observed field in the middle and the modelled disaggregated field at the bottom.
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Fig. 13 Correlation of within wet grid-square intensities

Conclusions and further work

A general modelling procedure has been developed for
rainfall disaggregation which retains spatial and temporal
memory and therefore has clear advantages over schemes
generally available at present. The different components of
the scheme have been assessed and found to be individually
reasonable for the production of stochastic realisations of
disaggregated rainfall fields. The overall model has also
been shown to reproduce properties of the rainfall field with
areasonable degree of accuracy. This algorithm is expected
to be of use either in providing greater detail to the rainfall
forecasts obtained with meteorological models or as input
to hydrological models which incorporate representations
of the exchange of energy and water vapour and the
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generation of runoff, since spatial and temporal memory documentation paper 25: canopy surface and soil hydrology,

are important factors in predicting response. \Lﬁ-(rsmn 1.Technical report, Meteorological Office, Bracknell,

There remains a number of issues to address: Johnk, M.D., 1964. Erzeugung von Betaverteilten und
Gammauverteilten Zufallszahlekletrika, 8, 5-15.

; ; ; i~nKedem, B., Chiu, L.S. and Karni, S., 1990. An analysis of the
(1) Improvement of the intensity sampling and allocation threshold method for measuring area-average raidfalppl.

scheme: another Markov Random Field approach is eteorol, 29 3-20.
being considered to provide a more satisfactoryMatsubayashi, U., Takagi, F. and Tonomura, A., 1984. The
representation of the spatial structure of the intensity Probability density function of areal average rainfall,
distributi Hydrosci. Hydraul. Eng.2, 63-71.
istribution. ] ) Molders, N., Raabe, A. and Tetzlaff, G., 1996. A comparison of
(2) Parameter estimation: at present, parameters are scal@wo strategies on land surface heterogeneity used in a mesoscale-

and site specific, which means that a large amount 05{,“8{601‘38%";’"' TOdewefllusA]?A”, 233—749. on in GCM
e ; ; : : , L., Analysis of rainfall disaggregation in S

data ane}lySIS IS, re,qu”ed for thel.r estimation. A Unpubl. MSc Thesis, Dept. of Civil and Environ. Engin.,

systematic examination of the variation of parameters |mperial College, London.

from site to site and over different scales as a functiorOnof, C. and Wheater, H.S., 1996a. Analysis of the spatial

f climatoloaical char ristics is r ired. coverage of British rainfall fields]. Hydrol,.l76, 97—1;3. .
of climatological ¢ .aacte stics is required Onof, C. and Wheater, H.S., 1996b. Modelling of the time series
(3) Model assessment: the performance of models such asys spatial coverages of British rainfall fieldd, Hydrol, 176

these is difficult to assess in a formal manner. It would 115-31.

seem that an examination of their performance inOnof, C., Mackay, N.G., Oh, L. and Wheater, H.S., 1998. An
improved disaggregation technique for GCMsGeophys. Res.

conjunction with hydrological models is the proper 103 19577—19586
approach to this problem. Rowntree, P.R., 1988. Land surface parameterization&rar.
of ECMUF workshop on parameterization of fluxes over land
surfaces Meteorological Office, Bracknell, UK.
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