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Abstract
This paper deals with a theoretical approach to assessing the effects of parameter estimation uncertainty both on Kriging estimates and on
their estimated error variance. Although a comprehensive treatment of parameter estimation uncertainty is covered by full Bayesian Kriging
at the cost of extensive numerical integration, the proposed approach has a wide field of application, given its relative simplicity. The
approach is based upon a truncated Taylor expansion approximation and, within the limits of the proposed approximation, the conventional
Kriging estimates are shown to be biased for all variograms, the bias depending upon the second order derivatives with respect to the
parameters times the variance-covariance matrix of the parameter estimates. A new Maximum Likelihood (ML) estimator for semi-variogram
parameters in ordinary Kriging, based upon the assumption of a multi-normal distribution of the Kriging cross-validation errors, is introduced
as a mean for the estimation of the parameter variance-covariance matrix.
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Introduction
In the study of spatially distributed hydrological phenomena,
one of the most important advantages of statistical methods
such as Kriging (Matheron, 1970; Delhomme, 1978; de
Marsily, 1986) and objective analysis (Gandin, 1970), is
their ability to quantify the uncertainty in the derived
estimates. In Kriging and other techniques of spatial analysis,
statistical hypotheses are made in identifying and evaluating
the multidimensional spatial structure of the hydrological
process of interest. In the specific case of Kriging, where
linear minimum variance unbiased estimation is adopted,
this is equivalent to the selection of a functional form, and
the estimation of the relevant parameters for the main trend
(first order moment) and for the covariance or the semi-
variogram or the generalised covariance (second order
moments).

Although the statistical inference of model form and of
parameter values from available data obviously entails some
degree of arbitrariness and uncertainty, the theoretical
expressions generally used for the expected value and the
error variance of the estimated variable do not take into
account these sources of approximation. In particular, no
account of the effects of uncertainty in parameter estimates

(which can be quite large) is commonly made, which may
lead to three major inconsistencies: a bias in the point
estimation of the multi-dimensional variable, a different
spatial distribution of the measure of uncertainty and last
but not least an inappropriate model choice for the variogram.

In spite of its great concern to hydrologists and the
availability of Bayesian approaches (Kitanidis, 1986), the
problem of evaluating soundly the effects of model choice
and parameter estimation on the value and reliability of
predictions has so far received scant attention in Kriging
applications. Past research has been concerned mainly with
building objective and efficient algorithms for parameter
estimation (see for instance Zimmerman and Zimmerman,
1991; Cressie, 1993) and for structure selection (Davis and
David, 1978, Starks and Fang, 1982) while the effect of
sample size on the precision of estimates has also been
studied (Lettenmaier, 1981).

Unfortunately, conventional users of Kriging tend to
separate the phase of the estimation of model parameters,
using least squares if enough data are available, or subjective
graphical methods if not, from the estimation and
interpretation of results, which leads finally to the model
choice. This separation of the two phases of parameter
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estimation and model identification leads to the selection
of a model on the basis of the variance of the errors of
estimate of the interpolating function (the error contrasts),
once values for the previously estimated parameters are
provided. No mention is generally made of the fact that,
due to the interdependence of observations, the uncertainty
of the parameter estimates can be quite large, and its effect
on the variance of the errors of estimate will depend strongly
upon the structure of the adopted model.

Bayesian approaches were introduced in Kriging
applications by  Kitanidis (1986) while further developments
can be found in Omre and Halvorsen (1989), Le and Zidek
(1992), Diggle et al. (1998), Woodbury and Ulrych (2001).
The Bayesian approaches have the advantage of  allowing
the assessment and the reduction of the uncertainty on model
parameters at the cost of extensive numerical integration,
generally based upon Monte Carlo or Markov Chain Monte
Carlo techniques.

The aim of the present paper is to present a methodology
which, although approximate, can be viewed as an
alternative to the Bayesian approaches and, given its relative
simplicity, used on most Kriging applications. The work
focuses on the assessment of the influence of parameter
uncertainty of the Kriging estimates for a given model
structure, while the possible source of errors induced by
the wrong model choice is not dealt with. As a follow-up of
the present work, the question of model choice can be
addressed  more appropriately within the frame of a
statistical acceptance rejection test, yet to be defined, by
comparing the sampling distribution of the empirical semi-
variogram classes to the approximate distribution of the
theoretic semi-variogram which can be obtained as a
function of the parameter estimates.

Problem formulation
The Kriging problem can be formulated in two dimensions
as the process of estimation of the value 0ẑ , and error
variance of the estimate 20σ , of a spatial variable at a point
( )00, yx  where the true (unknown) value is 0z , under the
following assumptions:

i. the interpolating equation is based upon the linear
interpolator given by Eqn. (1) which allows the value
of 

0z  in  ( )000 , yxs =  to be expressed as a function of

kz
 
at  ( )kkk yxs ,= , with k=1, n, as:

**
0ˆ λTzz = (1)

where *z is the [n, 1] vector of observations and *λ the
[n, 1] vector of interpolating weights;

ii. *z is an intrinsic random function assumed to have a
constant but unknown mean, whose system of ordinary
Kriging equations, under the assumption of weak
stationarity, can be written as:

λΓγ = (2)
In Eqn. (2) γ is the [n+1,1] vector defined as:

(3)

with 
*γ  the [n, 1] vector of variogram values describing

the spatial dependence between the estimation point
(x

0
 ,y

0
) and the measurement points. Γ is the [n+1,n+1]

matrix defined as:

(4)

where *Γ  is the [n, n] symmetric matrix of variogram
values describing the spatial dependence among the n
measurement points while u is an [n, 1] unit vector and
λ is defined as:

(5)

with µ  a Lagrange multiplier arising from the
unbiasedness condition { } 0ˆ 00 =− zzE ;

iii. the semi-variogram, whose classical estimate
was proposed by

Matheron (1962), is isotropic and its form can be chosen
among intrinsically linear or non linear models.

Bearing in mind that ( ) 00 =γ  in the absence of
measurement errors, the expression for a number of semi-
variogram models used in this paper is given as Eqn. (6) for
h>0, where h is the distance between two points and (p, w,
a) are model parameters, p being generally known as the
“nugget” effect,
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Because Maximum Likelihood (ML) will be used to
estimate the semi-variogram parameters, the spherical model
was modified slightly from the original equation, as can be
seen from Eqn. (6), to guarantee the continuity of the
function and of its first and second order derivatives in

α=h  as required by ML to be asymptotic minimum
variance (Kendall and Stuart, 1973), without modifying its
convexity. The differences between the modified spherical
semi-variogram and the original one are very small, as can
be shown by plotting the two curves.

From the Kriging literature (see Matheron, 1970; de
Marsily, 1986), under the above stated conditions, the
estimation error variance of the interpolating model can be
expressed as:

( ){ } λγµλγσ TTzzE =+=−= **2
00

2
0 ˆ (7)

For a given set of observations, the estimate 0ẑ , from Eqn.
(1), can be expressed as:

(8)

in which the following substitution was made for
computational convenience:

(9)

and, from Eqn. (2) and for any given model of Eqn. (6):

(10)

The cross-validation errors are estimated by taking one
value kz  at a time out of the whole set of n observations,
by computing from Eqn. (8) at that point ( )kk yx ,  the
predicted value kẑ  and by subtracting it from the observed
value kz .

Influence of  parameter estimation
uncertainty
To assess the influence of parameter estimation uncertainty
on the Kriging estimates, the following considerations must
be made. For a given set of observations, the estimate ˆ z 0 is

obviously a function of the parameters and position (x
0
,y

0
)

(see Eqn. 8) since,  from Eqn. (2) and for any given model
of Eqn. (6) one can see the dependence of λ  on the model
parameters ϑ, through *Γ  and 

*γ  and dependence on (x
0
,y

0
)

through 
*γ .

(11)

Γ(ϑ)  and γ(ϑ) are expressed as a function of one of the
models introduced in Eqn. (6) while ϑ is the (m, 1) parameter
vector (p,ω,α), with m=1,2,3, the number of unknown
parameters to be estimated.

It is therefore possible to express directly the dependence
of 

0ẑ  on the set of parameters, as:

(12)

If the parameter vector ϑ  is no longer considered as a set
of a priori fixed values (the common assumption), but rather
as ϑ̂ , an estimated quantity depending both on the model
structure and upon the observation vector z*, it is easy to
show that, due to the parameter estimation error, both

 ( )ϑ̂ˆ0z
and ( ){ }ϑ̂ˆ0zVar  differ from ( ){ }ϑ0ẑE  and ( ){ }ϑ0ẑVar
respectively, even when ˆ ϑ , the parameter estimate obtained
with a specific vector of observations, actually coincides
with ϑ .

If the general relationship expressed by Eqn. (12) is
sufficiently well behaved and if the coefficients of variation
of the parameters ϑ  (which depend on the degree of non-
linearity of γ(ϑ) in the neighbourhood of the estimates of
the expected values { }ϑ̂E are small, following Todini and
Ferraresi (1996), it is convenient to approximate the
expected value and the variance of the Kriging estimate ˆ z 0,
taken as a function of the parameters, by a truncated Taylor-
series expansion of ˆ z 0 ϑ( ) about { }ϑ̂E (Benjamin and
Cornell, 1970). In addition, since { }ϑ̂E is not known, it is
common practice to use the estimated parameter value ϑ̂
instead, to give:

(13)

(14)
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(15)

as derived in Appendix A, and where the expressions

for
i

ẑ

∂ϑ
∂ 0 , and 

ji

ẑ

∂ϑ∂ϑ
∂ 0

2
, namely:

(16)

(17)

have been derived in Todini and Ferraresi (1996).
Equation (13) clearly shows, within the limits of the

proposed approximation, that the expected value of ˆ z 0 ϑ( )
does not correspond to the value estimated at ϑ̂ , namely

( )ϑ̂ˆ0z ; a bias correction is needed which depends on the
second order derivatives of ˆ z 0 ϑ( ) with respect to the
parameters as well as on the covariance matrix of the
parameter estimates, all computed forϑϑ ˆ= .

Equation (14) shows, within the same limitations
expressed above, that the increase in the variance of the
estimation error of ̂ z 0 ϑ( ) depends upon the first order
derivatives of the function ̂ z 0 ϑ( ) as well as on the
covariance matrix of the parameter estimates computed for

ϑϑ ˆ= .
To estimate the corrective terms of Eqns. (13) and (14)

for bias correction and variance adjustment, one needs to
estimate the parameter values and their covariance matrix,
defined as the inverse of the Fisher information matrix.
These estimates can be obtained using the ML estimator to
be described in the following section.

The maximum liklihood estimator
In Kriging applications, it is usual practice to fit model semi-
variogram parameters subjectively by comparing the
theoretical semi-variogram graphically with mean values
of its estimates obtained from the observations, as is done,
for instance, in Geo-EAS (Englund and Sparks, 1988) or in
GSLIB (Deutsch and Journel, 1992), which are widely
available Kriging packages.

Nevertheless, more objective techniques are also
available. Following the comprehensive reviews given by
Zimmerman and Zimmerman (1991), and by Cressie (1993),
these can be divided into least squares based techniques in

the space of the semi-variogram (Journel and Huijbregts,
1978; Cressie and Hawkins, 1980; Cressie, 1985); least
squares techniques in the space of observations defined in
the form of generalised covariance expressed as a linear
function of parameters (Delfiner, 1976; Kitanidis, 1983);
Maximum Likelihood in the space of residuals from a linear
trend (Mardia and Marshall, 1984); Maximum Likelihood
in the space of cross-validation errors (Samper and Newman,
1989); Maximum Likelihood in the space of “error
contrasts” (Kitanidis, 1983), using what is known as
Restricted Maximum Likelihood (REML) (Patterson and
Thompson, 1971;1974). All these techniques have pros and
cons that will be addressed briefly in the sequel, but this
paper will focus only on the ML and REML type estimators,
since they allow for the derivation of the covariance matrix
of the parameters, which can be computed as the inverse of
the Fisher information matrix, and can be used for
investigating the effect of parameter uncertainty over the
Kriging estimates, as advocated by Kitanidis (1983) and
proposed by Todini and Ferraresi (1996).

With respect to the use of ML and REML type estimators,
it must be pointed out that they are asymptotically minimum
variance estimators only if the Likelihood function is
continuous and twice differentiable with respect to the
parameters over the entire field of existence (Kendall and
Stuart, 1973); this condition does not hold for the classical
spherical and cubic variograms, given the discontinuity in
the second derivative at α=h . This can be overcome by a
slight modification of the expressions of the spherical and
of the cubic semi-variograms by imposing the continuity of
the first and of the second order derivatives in α=h as
proposed in this paper (see Eqn. 6).

The formulation presented in Todini and Pellegrini (1999)
follows the development of Samper and Newman (1989),
assuming a multi-normal distribution of Kriging cross-
validation errors but, instead of imposing their
independence, it accounts for their full covariance matrix.
In addition, by realising that the cross-validation errors can
be viewed as a special case of error contrasts, and by using
the relationships among the Kriging variables, the problem
is reduced to a computationally convenient formulation
depending only on the observations, on the selected semi-
variogram and on its parameters.

The n-1 weights for each of the n points z
k
 used for cross-

validation are calculated using Eqn. (10) by omitting the kth

row and column as appropriate.  These special *
kλ  [n-1, 1]

size distinct (k = 1, 2, … ,n) vectors of cross-validation
weights  relevant to each of the n observation points can be
re-arranged to form a matrix Λ  of size [n, n] by inserting a
zero along its principal diagonal. This allows the Kriging
cross-validation errors to be represented as an [n, 1] vector:
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(18)

where *z  is the vector of observed data, while z is the
augmented vector, its last element being set equal to zero,
as in Eqn. (9), Λ  is the [n, n] augmented matrix containing
the cross-validation weights for the n measurements points,

I  is the [n, n] identity matrix and m is a vector of Lagrange
multipliers which disappear. Even if z is not a Gaussian
random field, it still seems reasonable to assume the cross-
validation errors to be normally distributed, with zero mean
and variance-covariance matrix εV  (to be derived in
Appendix B), i.e.:

( )εε VN ,0= (19)

on the grounds of the unbiasedness of Kriging for known
parameters and the fact that they are obtained as a linear
combination of the data. Wilks (1962) shows in fact, on the
basis of earlier work due to Wald and Wolfowitz  (1944),
that the limiting distribution of linear functions in large
samples from large finite populations is the normal
distribution, even if the underlying variables are non
Gaussian.

The joint probability density function of the n Gaussian
cross validation errors (with zero mean) can thus be
expressed as:

(20)

where ε  is the vector of cross validation errors, ϑ  denotes
the vector of semi-variogram structural parameters (namely
p, w and a), and the symbol •  denotes the determinant.
The vector of parameters ϑ  will be determined through
Maximum Likelihood estimation, namely by maximising
the Likelihood:

( ) ( )ϑεεϑ fL = (21)

or by minimising the negative Log-likelihood function
defined as:

(22)

Within the frame of  previous research aimed at assessing
the influence of parameter estimation variance in Kriging,
Todini and Ferraresi (1996) (similarly to what was done by
Samper and Newman (1989)) made the hypothesis of normal
independent cross-validation errors by assuming the

covariance matrix εV  to be diagonal. The application of
the technique to real data with this independence hypotheses
showed that the assumption of independent errors may
involve significant distortions in the estimation of the
parameters particularly for certain types of variograms
(Todini et al., 2001).

The new ML estimator also assumes a multi-normal
distribution of the cross-validation errors but with a full
covariance matrix εV  that can be expressed either as a
function of the chosen variogram and of the Kriging weights,
as given for instance by de Marsily (1986) and by Samper
and Newman (1989), or as the more suitable matrix
expression of Eqn. (23) derived in Appendix B and used in
this paper.

(23)

where Σ is the diagonal [n, n] matrix containing the n
cross-validation error variances given by Eqn. (7).

Unfortunately, due to the Kriging normalisation constraint
(i.e. the sum of the Kriging weights kλ  is always equal to
one), the matrix εV is not invertible, its rank being equal to
[n-1]. It is therefore necessary and convenient to define an
ortho-normal transformation of  the [n] dimensional vector
of cross validation errors ε  to project it on an [n-1]
dimensional space by the principal component technique,
disregarding the null eigen-value and the corresponding
eigen-vectors. The following relationship holds:
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where ηV  is an [n-1, n-1] diagonal matrix of non-null eigen-
values and P  the  [n, n-1] matrix of relevant eigen-vectors.
This transformation allows one to define η  as follows:

(25)

Consequently, the Log-likelihood becomes:

(26)
with:

(27)

Equation (26) with the diagonal covariance matrix ηV  given
in Eqn. (27) can be viewed as a special case of Restricted
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errors are a special type of independent error contrasts. The
use, in Eqn. (26), of the expression provided by Eqn. (27) is
not computationally convenient, since it requires a new
ortho-normal transformation at each parameter modification.

Fortunately it can be shown that a more convenient and
more general formulation can be found. Pre- and post-
multiplying Eqn. (24) by 1−Σ , and substituting the resulting
equation in Eqn. (25) the following relationship can be
derived:

*1 zPV T −= Ση η
(28)

and using Eqns. (26) and (27) to derive the quadratic term
appearing in the Log-likelihood, one obtains:

(29)

Thus, the new Log-likelihood can be written easily as:

(30)

which, although expressed in terms of the vector of
observations, is defined in the multi-normal space of the
Kriging cross-validation errors. Note that Eqn. (30) does
not imply that ηΓ V= , because the change of variable
in the Likelihood function requires the change of the
normalising constant.

This theoretically remarkable and computationally
efficient result, shows that the Log-likelihood function is
independent of the Kriging weights Λ , depending only on
the observations, the semi-variogram model and its
parameters.

Conclusions
The theoretical approach based upon a truncated Taylor
expansion approximation, introduced in this paper, aimed
at assessing the effect of parameter estimation uncertainty
both on Kriging estimates and on their estimated error
variance, has given rise to a number of interesting
considerations.

To apply the proposed methodology, a new ML estimator
was also developed, that can be viewed as a special case of
Restricted Maximum Likelihood with the additional
advantage of a computationally efficient formulation of the
Likelihood function to be minimised.

The results show that, within the limits of the proposed

approximation, the conventional Kriging estimates are
biased for all semi-variogram models, the bias depending
upon the second order derivatives with respect to the
parameters times the variance-covariance matrix of the
parameter estimates. The entity and the importance of the
bias and of the increase in variance will be elaborated in
Part 2 by means of a case study based upon the average
yearly precipitation over the Veneto Region in Italy (Todini
et al., 2001).

Although, for the sake of simplicity, the development of
the methodology in this paper does not consider errors in
data, it can be expanded easily to take them into account.
Extensions to co-Kriging as well as the generalisation of
the proposed procedure to non-stationary fields are
straightforward: in the latter case the spatial correlation
structure must be expressed in terms of the generalised
covariance instead of the variogram function and an
adequate number of Lagrange multipliers has to be
introduced, according to the degree of the polynomial drift.
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obtained as a function of the covariance matrix appearing
in the Log-likelihood function and of its first order
derivatives with respect to the parameters. By applying
Kitanidis derivation to the Log-likelihood given by Eqn.
(32), the following result can be obtained for the i,j  generic
element of { }jiCov ϑϑ ˆ,ˆ :

(A2)

Equation (A2) allows for the estimation of all the elements
of the variance-covariance matrix of the ML estimates of
Kriging parameters to be used in Eqns. (15) and (16).
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APPENDIX A

The variance-covariance matrix of
parameter estimate
The parameter variance-covariance matrix { }jiCov ϑϑ ˆ,ˆ

appearing in Eqns. (15) and (16) can be computed as the
inverse of the Fisher information matrix, that is the inverse
of the negative of the expected value of the Hessian of the
Log-likelihood function defined over the parameters
(Kendall and Stuart, 1973):

{ } ( )( ) ( ){ } ==




 −−= −ϑϑϑϑϑϑ

T
jjiiji HEˆˆEˆ,ˆCov L

1

(A1)

H being the Hessian of L  with respect to ϑ , bearing in
mind that the relationship holds asymptotically for the linear,
monomial, exponential and Gaussian models, and is
approximate for the spherical and cubic models, as
previously mentioned.

Kitanidis (1983) , by using Gaussian moment factoring,
shows that for Gaussian-distributed data a simplified
expression for the parameter covariance matrix can be
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APPENDIX B

The derivation of  the covariance
matrix of  the cross-validation errors
As mentioned in the argument leading to Eqn. (18), for a
given estimate of Kriging parameters ϑ̂ , the cross-validation
errors ε  are estimated by taking one value kz  at a time out
of the whole set of n observations, by computing at that
point ( )kk yx ,  the weights kλ  from Eqn. (10) and by
subtracting the observed value kz  from the predicted value

kẑ  obtained  using Eqn. (8) in its reduced form.
Once all the kλ  have been computed and re-arranged in

Λ , it is possible to evaluate the covariance matrix of the
cross-validation errors to be used in the expression of the
Likelihood function. This is done by taking into account
that the following relationship holds:

(B1)

where Σ is the diagonal [n, n] matrix containing the n
cross-validation error variances given by Eqn. (7) and where

( )ΙΛ −Tu  equals zero, because for any given point k , the
corresponding weights *kλ  add to one.

Equation (B1) can be demonstrated by multiplying, taking
into account the matrix partitioning, matrix Γ  times the
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The result of this product, shows that the resulting column
vector has all null values except for the kth element, which
is equal to 2

kσ  since by definition ***
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Tu λ . Equation (B1) is then
obtained by combining all the resulting columns for the
different k .

Equation (B1) can also be written as:

(B3)

Using the expressions given by Eqn. (B3) the vector of cross-
validation errors, defined by Eqn. (18), can be now
expressed as:
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and its covariance matrix εV as:

(B5)

Equation (B5) shows that the covariance matrix of the
cross validation errors can be expressed as a function of the
variance-covariance matrix of the observations *z

V  which
can be computed by reversing the definition of the semi-
variogram:

(B6)

where 2
iσ  and 2

jσ  are the unknown variances of  iz  and

jz  respectively.
Writing Eqn. (B6) in matrix form one obtains:
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      where Θ  is an [n, n] matrix defined as:
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(B9)
Matrix Θ  is unknown, but given that it is constant along
the columns (and conversely TΘ  is constant along the rows),
the  following property holds:

( B10)

since the sum of the weights kλ  is equal to 1.
By taking into account Eqn. (B10), the covariance matrix

of the cross-validation errors becomes:

(B11)

which can be also written as:

(B12)

again because the weights kλ  add to 1.
Finally, Eqn. (B12) can be further simplified by

substituting for Eqn. (B3), which gives:

(B13)

Expression (B13) shows that the covariance matrix of the
cross-validation errors can be expressed as a function of
their variances and of the inverse of the Kriging matrix.
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