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Abstract

This paper deals with a theoretical approach to assessing the effects of parameter estimation uncertainty both on Kagesgaestion
their estimated error variance. Although a comprehensive treatment of parameter estimation uncertainty is covered bydnlKBigyes

at the cost of extensive numerical integration, the proposed approach has a wide field of application, given its relatitg. Sitmgl
approach is based upon a truncated Taylor expansion approximation and, within the limits of the proposed approximativantiomabn
Kriging estimates are shown to be biased for all variograms, the bias depending upon the second order derivatives with trespect
parameters times the variance-covariance matrix of the parameter estimates. A new Maximum Likelihood (ML) estimator foiogeamtva
parameters in ordinary Kriging, based upon the assumption of a multi-normal distribution of the Kriging cross-validatias armaduced

as a mean for the estimation of the parameter variance-covariance matrix.
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Introduction (which can be quite large) is commonly made, which may

In the study of spatially distributed hydrological phenomenalead to three major inconsistencies: a bias in the point
one of the most important advantages of statistical methodastimation of the multi-dimensional variable, a different
such as Kriging (Matheron, 1970; Delhomme, 1978; despatial distribution of the measure of uncertainty and last
Marsily, 1986) and objective analysis (Gandin, 1970), isbut not least an inappropriate model choice for the variogram.
their ability to quantify the uncertainty in the derived In spite of its great concern to hydrologists and the
estimates. In Kriging and other techniques of spatial analysigvailability of Bayesian approaches (Kitanidis, 1986), the
statistical hypotheses are made in identifying and evaluatingroblem of evaluating soundly the effects of model choice
the multidimensional spatial structure of the hydrologicaland parameter estimation on the value and reliability of
process of interest. In the specific case of Kriging, wherepredictions has so far received scant attention in Kriging
linear minimum variance unbiased estimation is adoptedapplications. Past research has been concerned mainly with
this is equivalent to the selection of a functional form, andbuilding objective and efficient algorithms for parameter
the estimation of the relevant parameters for the main trendstimation (see for instance Zimmerman and Zimmerman,
(first order moment) and for the covariance or the semi-1991; Cressie, 1993) and for structure selection (Davis and
variogram or the generalised covariance (second ordepavid, 1978, Starks and Fang, 1982) while the effect of
moments). sample size on the precision of estimates has also been
Although the statistical inference of model form and of studied (Lettenmaier, 1981).

parameter values from available data obviously entails some Unfortunately, conventional users of Kriging tend to
degree of arbitrariness and uncertainty, the theoreticadeparate the phase of the estimation of model parameters,
expressions generally used for the expected value and thusing least squares if enough data are available, or subjective
error variance of the estimated variable do not take intgraphical methods if not, from the estimation and
account these sources of approximation. In particular, ninterpretation of results, which leads finally to the model
account of the effects of uncertainty in parameter estimateshoice. This separation of the two phases of parameter
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estimation and model identification leads to the selectiorii.
of a model on the basis of the variance of the errors of
estimate of the interpolating function (the error contrasts),
once values for the previously estimated parameters are
provided. No mention is generally made of the fact that,
due to the interdependence of observations, the uncertainty
of the parameter estimates can be quite large, and its effect
on the variance of the errors of estimate will depend strongly
upon the structure of the adopted model.

Bayesian approaches were introduced in Kriging
applications by Kitanidis (1986) while further developments
can be found in Omre and Halvorsen (1989), Le and Zidek
(1992), Diggleet al.(1998), Woodbury and Ulrych (2001).
The Bayesian approaches have the advantage of allowing
the assessment and the reduction of the uncertainty on model
parameters at the cost of extensive numerical integration,
generally based upon Monte Carlo or Markov Chain Monte
Carlo techniques.

The aim of the present paper is to present a methodology
which, although approximate, can be viewed as an
alternative to the Bayesian approaches and, given its relative
simplicity, used on most Kriging applications. The work
focuses on the assessment of the influence of parameter
uncertainty of the Kriging estimates for a given model
structure, while the possible source of errors induced by
the wrong model choice is not dealt with. As a follow-up of
the present work, the question of model choice can be
addressed more appropriately within the frame of a
statistical acceptance rejection test, yet to be defined, by
comparing the sampling distribution of the empirical semi-
variogram classes to the approximate distribution of the
theoretic semi-variogram which can be obtained as a
function of the parameter estimates. iii.

Problem formulation

Z'is an intrinsic random function assumed to have a
constant but unknown mean, whose system of ordinary
Kriging equations, under the assumption of weak
stationarity, can be written as:

y=TrA 2
In Egn. (2) yis the h+1,1] vector defined as:
s
0
y=0-0 3)
0,0
u- o

with v the I, 1 vector of variogram values describing
the spatial dependence between the estimation point
(X, +Y,) and the measurement pointsis the p+1,n+1]
matrix defined as:
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where " is the h,  symmetric matrix of variogram
values describing the spatial dependence among the
measurement points whilgs an p, 1] unit vector and
Ais defined as:
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with 4 a Lagrange multiplier arising from the
unbiasedness conditioB{2, - z,} = 0;
the semi-variogram, whose classical estimate

y(h)= E{[z(s)— z(s+h) 2} was proposed by
Matheron (1962), is isotropic and its form can be chosen
amonyg intrinsically linear or non linear models.

The Kriging problem can be formulated in two dimensions Bearing in mind thaty(0)=0 in the absence of

as the process of estimation of the vallyg and error measurement errors, the expression for a number of semi-
variance of the estimate§ , of a spatial variable at a point variogram models used in this paper is given as Eqgn. (6) for
(xo, yo) where the true (unknown) value g, under the  h>0, whereh is the distance between two points gpdw,
following assumptions: a) are model parameterg,being generally known as the
“nugget” effect,
i. the interpolating equation is based upon the linear y(h): p+wll_e—h/aJ
interpolator given by Egn. (1) which allows the value

EXPONENTIAL

of z,in s, = (x5, Y, ) to be expressed as a function of y(h)= p+a)é—e_(h/a)25 GAaussIAN (6)
z¢ at s, = (%, y,), Withk=1, n,as:
t O t
5% =2TA 1  Blh)= p+ w1875 _1.25BE§ + 0.37SBE§D h<a
0 B o O OR
|
where 7" is the h, 1 vector of observations antl the ~ ¥(h)= p+w hza

[n, 1 vector of interpolating weights; MODIFIED SPHERICAL
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Because Maximum Likelihood (ML) will be used to CPViously a function of the parameters and positigyy

estimate the semi-variogram parameters, the spherical mod@ee Eqn. 8) since, from Eqn. (2) and for any given model
was modified slightly from the original equation, as can beof Eqn. (6) one can see the dependence oh the model
seen from Eqgn. (6), to guarantee the continuity of theparameter§ throughr” andy and dependence ax§)
function and of its first and second order derivatives mthroughy

h=a as required by ML to be asymptotic minimum

variance (Kendall and Stuart, 1973), without modifying its

convexity. The differences between the modified spherical EJ\E El‘ “E a/g (11)
semi-variogram and the original one are very small, as can A =3.-(= [3-- -0 O OF I' y(:?):/\(ﬁ)
be shown by plotting the two curves. SU 0 HJ E El E

From the Kriging literature (see Matheron, 1970; de )
Marsily, 1986), under the above stated conditions, the I'(5) andy(9) are expressed as a function of one of the

estimation error variance of the interpolating model can bénodels introduced in Eqn. (6) whiftis the(m, 1)parameter
expressed as: vector (p,w,a), with m=1,2,3,the number of unknown

parameters to be estimated.
Itis therefore possible to express directly the dependence

2 _ *T 7
90 E{(ZO z) } VA +u=yTA @ of 5, on the set of parameters, as:

For a given set of observations, the estimatefrom Eqn.

(1), can be expressed as: o : oO'G'o
. N [ od o .
Q*D ZO:[Z . O]D ...... 00~z r(ﬁ) ( ): 20(79)
0’0 3" ¢ oogatg
7=2"[I : o]g-.gz z'A (8) (12)
g If the parameter vecta$ is no longer considered as a set

of a priori fixed values (the common assumption), but rather
as 9, an estimated quantity depending both on the model
structure and upon the observation vedoit is easy to
show that, due to the parameter estimation error

in which the following substitution was made for
computational convenience:

*

O
_B’ % * _Et 0 ) and Var{zo(ﬁ)} differ from E{ ( } and Var{
Z=pgp? = E E respectively, even whe,9 the parameter estimate obtamed
EUS 0 with a specific vector of observations, actually coincides

with 9.

If the general relationship expressed by Eqn. (12) is
sufficiently well behaved and if the coefficients of variation
1, of the parameterg (which depend on the degree of non-

and, from Eqn. (2) and for any given model of Eqn. (6):

%“ B Er UE a’ E linearity of y(3) in the neighbourhood of the estimates of
A=Q@-0=0- - 000 (10) the expected valuegid{ are small, following Todini and
E{JB BJT : OE Blg Ferraresi (1996), it is convenient to approximate the

expected value and the variance of the Kriging estiragte

éaken as a function of the parameters, by a truncated Taylor-

series expansion ofy(9) about } (Benjamin and

Cornell, 1970). In addition, smcEéFs not known, it is

4 common practice to use the estimated parameter \@lue
instead, to give

The cross-validation errors are estimated by taking on
value z, at a time out of the whole set wobservations,
by computing from Egn. (8) at that poilﬁxk,yk) the
predicted valuegz, and by subtracting it from the observe

value z . a Zo
E\%, (@ Covd;, 9,
)2 ZZ 8,9 019579 b=5 (13)
Influence of parameter estimation
: A s () e 020) < . [s 210%0)
uncertaint 0 §.1%%
y varafo)-2fhoy T4, 5 comn IS

To assess the influence of parameter estimation uncertainty
on the Kriging estimates, the following considerations must (14)
be made. For a given set of observations, the estizgage ~ Where:
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the space of the semi-variogram (Journel and Huijbregts,
Co\l{éi,éj}:%-rr%——la_r/——l G_I'H ) (15)  1978; Cressie and Hawkins, 1980; Cressie, 1985); least
06, 00 9 =9 squares techniques in the space of observations defined in
the form of generalised covariance expressed as a linear
as derived in Appendix A, and where the expressiondgunction of parameters (Delfiner, 1976; Kitanidis, 1983);
Maximum Likelihood in the space of residuals from a linear
trend (Mardia and Marshall, 1984); Maximum Likelihood
in the space of cross-validation errors (Samper and Newman,
&-g,——l%_d_’_,——ﬁ,% (16) 1989); Maximum Likelihood in the space of “error
99, N contrasts” (Kitanidis, 1983), using what is known as
0% 1a00Yy 0 4 o aHay o o Restricted Maximum Likelihood (REMI._) (Patterson and
29,09, =7'r W_dﬁidﬁj r y_ﬁﬁi r o, —d—ﬁjr yE Thompson, '1971,1974). All the§e te(?hmques have pros ahd
cons that will be addressed briefly in the sequel, but this
_‘L"rﬂ%;l’_ or r—ly% paper will focus only on the ML and REML type estimators,
99, since they allow for the derivation of the covariance matrix
of the parameters, which can be computed as the inverse of
the Fisher information matrix, and can be used for
investigating the effect of parameter uncertainty over the
Kriging estimates, as advocated by Kitanidis (1983) and
proposed by Todini and Ferraresi (1996).
With respect to the use of ML and REML type estimators,
5,(3); a bias correction is needed which depends on thg must be pointed out that they are asymptotically minimum

second order derivatives % (d) with respect to the variance estimators only if the Likelihood function is

parameters as well as on the covariance matrix of th(gontinuous and twice differentiable with respect to the
parameter estimates, all computedgerg parameters over the entire field of existence (Kendall and

Equation (14) shows, within the same limitations Stuart, 1973); this condition does not hold for the classical
expressed above, that th’e increase in the variahtee spherical and cubic variograms, given the discontinuity in

estimation error ofzy(9) depends upon the first order th.e seconq _deriyative at=a. This.can be overcome by a
derivatives of the functiorzo(s) as well as on the slight modification of the expressions of the spherical and

covariance matrix of the parameter estimates computed fo‘?'c th? cubic semi-variograms by |mp03|.ng Fhe cgntmwty of
9=9 the first and of the second order derivativeshir a as

To estimate the corrective terms of Eqns. (13) and (14j)roposed in th?s paper (see !Eqn. 6) .
for bias correction and variance adjustment, one needs to The formulation presented in Todini and Pellegrini (1999)

estimate the parameter values and their covariance matri>f<(?"0WS the development of Samper and Newman (1989),

defined as the inverse of the Fisher information matrix 2SSUming a multi-normal distribution of Kriging cross-

These estimates can be obtained using the ML estimator %alldatlon errprs but, msteaq of |mpqsmg thel.r
be described in the following section independence, it accounts for their full covariance matrix.

In addition, by realising that the cross-validation errors can
. . . be viewed as a special case of error contrasts, and by using
The maximum liklihood estimator the relationships among the Kriging variables, the problem
In Kriging applications, it is usual practice to fit model semi- is reduced to a computationally convenient formulation
variogram parameters subjectively by comparing thedepending only on the observations, on the selected semi-
theoretical semi-variogram graphically with mean valuesvariogram and on its parameters.
of its estimates obtained from the observations, as is done, Then-1weights for each of thepointsz, used for cross-
for instance, in Geo-EAS (Englund and Sparks, 1988) or irvalidation are calculated using Eqn. (10) by omitting¢he
GSLIB (Deutsch and Journel, 1992), which are widelyrow and column as appropriate. These spegjaln-1, 1]
available Kriging packages. size distinct (k = 1, 2, ... ,n) vectors of cross-validation
Nevertheless, more objective techniques are alsgveights relevant to each of th@bservation points can be
available. Following the comprehensive reviews given byre-arranged to form a matrix of size p, ] by inserting a
Zimmerman and Zimmerman (1991), and by Cressie (1993)ero along its principal diagonal. This allows the Kriging
these can be divided into least squares based techniquesafpss-validation errors to be represented as afj yector:

~ 24
for9Z ,and_? % _ namely:
99, 09,09

i

5, 39,

17)
have been derived in Todini and Ferraresi (1996).
Equation (13) clearly shows, within the limits of the

proposed approximation, that the expected valuz, (8 )
does not correspond to the value estimateg ahamely
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oo covariance matrix/, to be diagonal. The application of
= [/\T —l] z :[/\T - u] E gz* [/\ -1 u] z the technique to real data with this independence hypotheses
E= (18) showed that the assumption of independent errors may

involve significant distortions in the estimation of the
where 7* is the vector of observed data, whijéis the  parameters particularly for certain types of variograms
augmented vector, its last element being set equal to zeréTodini et al, 2001).
as in Egn. (9) is the ph, N augmentednatrix containing The new ML estimator also assumes a multi-normal
the cross-validation weights for theneasurements points, distribution of the cross-validation errors but with a full
| isthe p, n| identity matrix andnis a vector of Lagrange covariance matrix/, that can be expressed either as a
multipliers which disappear. Even ifis not a Gaussian function of the chosen variogram and of the Kriging weights,
random field, it still seems reasonable to assume the crosas given for instance by de Marsily (1986) and by Samper
validation errors to be normally distributed, with zero meanand Newman (1989), or as the more suitable matrix
and variance-covariance matrh (to be derived in  expression of Eqn. (23) derived in Appendix B and used in

Appendix B), i.e.: this paper.
oo
=N(o,V,) (19) V,=-3[1 i or® B (23)
EUS

on the grounds of the unbiasedness of Kriging for known
parameters and the fact that they are obtained as a lineathere 5 is the diagonalr, n matrix containing then
combination of the data. Wilks (1962) shows in fact, on thecross-validation error variances given by Eqgn. (7).
basis of earlier work due to Wald and Wolfowitz (1944), Unfortunately, due to the Kriging normalisation constraint
that the limiting distribution of linear functions in large (i.e. the sum of the Kriging weight& is always equal to
samples from large finite populations is the normalone), the matrin/, is not invertible, its rank being equal to
distribution, even if the underlying variables are non[n-1]. It is therefore necessary and convenient to define an
Gaussian. ortho-normal transformation of the][dimensional vector

The joint probability density function of theGaussian  of cross validation errorg to project it on anr-1]
cross validation errors (with zero mean) can thus belimensional space by the principal component technique,
expressed as: disregarding the null eigen-value and the corresponding

eigen-vectors. The following relationship holds:
£ (e9) = (2r) ™2V, [ V2 Expl- 167V, %) (20)
PVP =-z[I i o] H =V (24)

where ¢ is the vector of cross validation erroik,denotes
the vector of semi-variogram structural parameters (namelyhereV, is an p-1, n-1 diagonal matrix of non-null eigen-
p, w anda), and the symbo||'| denotes the determinant.  values anoP the [n, n-1 matrix of relevant eigen-vectors.
The vector of parameter8 will be determined through This transformation allows one to defiffeas follows:

Maximum Likelihood estimation, namely by maximising 0o
the Likelihood: n=-P's[l : o]rt5 Ez* (25)
@ H
L(9le)= f(elo) (21)

Consequently, the Log-likelihood becomes:
or by minimising the negative Log-likelihood function

defined as: (@1 ==L [n)="7Lin(2m)+ Linv, |+ 10TV,
(26)
s(8le)=-InL(8|e)=DIn(2m)+ LIV |+ie"V, e with:
(22) 00
o . _ CV,=-P"z[l i o rtgEEp (27)
Within the frame of previous research aimed at assessing o

the influence of parameter estimation variance in Kriging,

Todini and Ferraresi (1996) (similarly to what was done byEquation (26) with the diagonal covariance ma‘t,r,;xgiven
Samper and Newman (1989)) made the hypothesis of normat Eqn. (27) can be viewed as a special case of Restricted
independent cross-validation errors by assuming théMaximum Likelihood (REML) in which the cross-validation
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errors are a special type of independent error contrasts. Tleproximation, the conventional Kriging estimates are
use, in Eqn. (26), of the expression provided by Eqn. (27) ibiased for all semi-variogram models, the bias depending
not computationally convenient, since it requires a newupon the second order derivatives with respect to the
ortho-normal transformation at each parameter modificationparameters times the variance-covariance matrix of the
Fortunately it can be shown that a more convenient angarameter estimates. The entity and the importance of the
more general formulation can be found. Pre- and postbias and of the increase in variance will be elaborated in
multiplying Eqn. (24) bys ~*, and substituting the resulting Part 2 by means of a case study based upon the average
equation in Eqgn. (25) the following relationship can beyearly precipitation over the Veneto Region in Italy (Todini

derived: et al, 2001).
Although, for the sake of simplicity, the development of
n=v, pl =71/ (28) the methodology in this paper does not consider errors in

data, it can be expanded easily to take them into account.
and using Eqgns. (26) and (27) to derive the quadratic ternkExtensions to co-Kriging as well as the generalisation of

appearing in the Log-likelihood, one obtains: the proposed procedure to non-stationary fields are
— I T4 ar 4 N straightforward: in the latter case the spatial correlation
NV, =2 IRV VP 2T =2 T TPV P T structure must be expressed in terms of the generalised
o0 covariance instead of the variogram function and an

==Z"[I : O]I"lg--gz* =—7'ry; (29) adequate number of Lagrange multipliers has to be

BH introduced, according to the degree of the polynomial drift.

Thus, the new Log-likelihood can be written easily as:
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APPENDIX A

The variance-covariance matrix of
parameter estimate

The parameter variance-covariance mat@&\r{éi ,1§j} obtained as a function of the covariance matrix appearing
appearing in Eqgns. (15) and (16) can be computed as the the Log-likelihood function and of its first order
inverse of the Fisher information matrix, that is the inversederivatives with respect to the parameters. By applying
of the negative of the expected value of the Hessian of th&itanidis derivation to the Log-likelihood given by Eqgn.
Log-likelihood function defined over the parameters (32), the following result can be obtained for ithgeneric
(Kendall and Stuart, 1973): element ofCov, ,z9j

co, 3, }= b 9.6, o, ] B= el (/) =

B o
:Egﬁ%gﬁég

H being the Hessian of with respect tog , bearing in
mind that the relationship holds asymptotically for the linear,
monomial, exponential and Gaussian models, and i€quation (A2) allows for the estimation of all the elements
approximate for the spherical and cubic models, a®f the variance-covariance matrix of the ML estimates of
previously mentioned. Kriging parameters to be used in Egns. (15) and (16).
Kitanidis (1983) , by using Gaussian moment factoring,
shows that for Gaussian-distributed data a simplified
expression for the parameter covariance matrix can be
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APPENDIX B The result of this product, shows that the resulting column
vector has all null values except for tHedtement, which
The derivation of the covariance is equal toog since by definition 7y A +up = yy;

Ve A + 1, =0f; and u' A, =1. Equation (B1) is then
obtained by combining all the resulting columns for the
As mentioned in the argument leading to Eqn. (18), for &jifferentk .

given estimate of Kriging paramete&;s the cross-validation Equation (B1) can also be written as:

errorse are estimated by taking one valag at a time out

matrix of the cross-validation errors

N-10 o0

of the whole set ofi observations, by computing at that 0 0 40 0

point (xk,yk) the weightsAy from Egn. (10) and by O T ol o (B3)
subtracting the observed valag from the predicted value Hu H FOH

2, obtained using Eqn. (8) in its reduced form. Using the expressions given by Eqn. (B3) the vector of cross-

Once all theA, have been computed and re-arranged inyzjigation errors, defined by Eqgn. (18), can be now
A, itis possible to evaluate the covariance matrix of theaypressed as:

cross-validation errors to be used in the expression of the

Likelihood function. This is done by taking into account 00
that the following relationship holds: € =Z[I : O]/'_lg-~%* (B4)
EUS
-10 O ubn-ro O (a-1)+uu'd
o o4 g_U O and its covariance matriy, as:
He'' B BT ¢ oM B g uTh-1) 8 oo 0o
] ; vo=elee}=sp 0 or2 BB B
J (A-+w'g OO £ =
= B - B:D”DZ (B1) 00 -1 (B5)
_ . 0 .
0 0 o EPH =i “]D”S/z‘ [ ol D
EY= Bu' H

where 5 is the diagonalr], n| matrix containing then

crgss-validation error variances given by Eqgn. (7) and where Equation (B5) shows that the covariance matrix of the
u' (A1) equals zero, because for any given painthe  ¢ross validation errors can be expressed as a function of the

corresponding weightd, add to one. o ~ variance-covariance matrix of the observatidys which
Equation (B1) can be demonstrated by multiplying, takindcan pe computed by reversing the definition of the semi-
into account the matrix partitioning, matrjx times the variogram:
-10 L
i ix O ive: L\ _ 2 2
generic K column of matrlxD T Dto give: Vz* (|, J)-—(Ui +0° )_ Vi (B6)
S

where g? and aJ2 are the unknown variances of and

z; respectively.

0 DB O iy i uIxD > . . .
0o * oo o Writing Eqgn. (B6) in matrix form one obtains:
r OD—D]_ = e e 1D: %*T 0 1DE|_1D
il , 0 ok m 1o _ 1( T)_ .
oo BJT ;0 o o-- -0 Vz* —E ©+0 r (87)
0 Eb 0 T 0
1 0
kD kU HJ %km where@ is an p, n matrix defined as:
e A =y +u 2 00 O b2 o2 i ¢20
o 0oo s 5 . o0
= * * = D -
B yk Ak +/Jk E %"k D %2 ..é e .ég (B8)
B UT/\T( _l E EO E @Tl 2 FIE
The covariance matrix of the cross-validation errors
becomes:
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u| . A-10
:[/\T—/ : u]%- +2@ —/'*E/ ;o8- 5
EY Hu' H

(B9)
Matrix @ is unknown, but given that it is constant along
the columns (and conversay' is constant along the rows),
the following property holds:

=10
(far-s y]%}mJ@ [ O]DD b=o B10)
DEIJ E

since the sum of the weight is equal to 1.
By taking into account Eqgn. (B10), the covariance matrix
of the cross-validation errors becomes:

-10
i u]DE(r)[/ ol 0 ew
EMT H
which can be also written as:
N-10
. B12
VE:—[/\T—I : u]/’% S ( )
Hu' B

again because the weightg add to 1.
Finally, Eqn. (B12) can be further simplified by
substituting for Egn. (B3), which gives:

00 00

Vo=-s[ o ortr rtg =z ortp-
D H O H
(B13)

Expression (B13) shows that the covariance matrix of the
cross-validation errors can be expressed as a function of
their variances and of the inverse of the Kriging matrix.

223



