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Abstract
The theoretical approach introduced in Part 1 is applied to a numerical example and to the case of yearly average precipitation estimation
over the Veneto Region in Italy. The proposed methodology was used to assess the effects of parameter estimation uncertainty on Kriging
estimates and on their estimated error variance. The Maximum Likelihood (ML) estimator proposed in Part 1, was applied to the zero mean
deviations from yearly average precipitation over the Veneto Region in Italy, obtained after the elimination of a non-linear drift with elevation.
Three different semi-variogram models were used, namely the exponential, the Gaussian and the modified spherical, and the relevant biases
as well as the increases in variance have been  assessed. A numerical example was also conducted to demonstrate how the procedure leads to
unbiased estimates of the random functions. One hundred sets of 82 observations were generated by means of the exponential model on the
basis of the parameter values identified for the Veneto Region rainfall problem and taken as characterising the true underlining process. The
values of parameter and the consequent cross-validation errors, were estimated from each sample. The cross-validation errors were first
computed in the classical way and then corrected with the procedure derived in Part 1.  Both sets, original and corrected, were then tested, by
means of the Likelihood ratio test, against the null hypothesis of deriving from a zero mean process with unknown covariance.  The results of
the experiment clearly show the effectiveness of the proposed approach.
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Introduction
The analysis of the effect of parameter estimation uncertainty
on the estimated Kriging variables proposed in Part 1
(Todini, 2001) was applied to the mean annual precipitation
of the Veneto region in Northern Italy.

The complexity of the spatial phenomenon, which deals
with precipitation influenced by orographic factors, does
not warrant the a priori assumption of stationarity in the
mean. Given the presence of a non-linear gradient of
precipitation with elevation, digital elevation model data
(with pixels of 1×1 km2) were therefore used to eliminate
this dependence.

The data used in this study consist of mean annual
precipitation from 1961 to 1990, collected at 82 recording
stations. The area bounded by Latitudes 45°01’ and
46°34’ N (approximately 172 km) and Longitudes 10°46’
and 13°04’ E (approximately 183.5 km) contains a suitably
dense and well-distributed network of stations, as can be
seen from Fig. 1 (which was produced by means of IDRISI,
a widely used Geographic Information System (GIS)

Fig. 1.  Digital Elevation Model of the Veneto Region with rain
gauging stations. Elevation in m -  Distance ranges: N-S  circa

183.5 km; E-W circa 172 km
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software (Eastman, 1992)), where the 1×1 km2 digital
elevation model of the Veneto Region is shown together
with the location of the rain-gauging stations.

As shown in Fig. 2, a non-linear trend with elevation was
considered and the following relationship was derived:

( ) ( )[ ]{ }210 /,exp1),( ayxhaayxhr −−+= (1)

in which r  is the deterministic trend in the mean annual
precipitation r , ( )yxh ,  is the local terrain elevation, and

210 ,, aaa  are three parameters, which were estimated by
means of a non-linear regression to give

.09.113,775.651,023.802 210 === aaa
The Kriging variables *z  were thus obtained  as the

deviations from the mean drift:

( )),(),(),(* yxhryxryxz −= (2)

and, for the sake of clarity, will be referred in the text as
adjusted rainfall.

The distribution of the Kriging variables, although this
property is not particularly stringent, as already discussed
in Part 1, is very close to a Normal distribution, as can be
seen from Fig. 3 with classes ranging between –400 to
+400 mm.

Parameter estimation
Three theoretical semi-variogram models were tested:
exponential, Gaussian and modified spherical, given in Eqns.
(3), (4) and (5) respectively, to estimate the parameters of
the structural model.

( ) [ ]αωγ heph −−+= 1 EXPONENTIAL (3)

( ) ( )




 −+= − 2

1 αωγ heph GAUSSIAN (4)

MODIFIED SPHERICAL (5)

As discussed by Todini (2001), the modified spherical
model is used in this application instead of the more classical
one of Eqn. (6) because it guarantees the continuity of the
function, together with that of its first and second derivatives
with respect to the parameters over the entire domain of
existence, as it is required by Maximum Likelihood to be
minimum variance (Kendall and Stuart, 1973).

SPHERICAL (6)

A first attempt at fitting the three models of Eqns. (3), (4)
and (5) was made by using the ML estimator under the
assumption of spatially independent cross-validation errors,
as suggested by Samper and Newman (1989) and by Todini
and Ferraresi (1996).

The results of this parameter identification cannot be
considered satisfactory. This is evident from Figs. 4a, 4b
and 4c, where the estimated semi-variogram is compared to
the average sampling values bounded by σ2±  limits,
obtained for the different classes of distance, using the
standard Kriging technique. This is obtained by dividing
the maximum distance range between measurement points
in distance classes (of equal length or of equal frequency of
observations); the quantity [ ]2)hs(z)s(z)h(g ii +−=  is

0

500

1000

1500

2000

2500

0 500 1000 1500 2000

Elevation  (m)

P
re

ci
pi

ta
tio

n 
(m

m
)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 2. The non-linear drift of the mean annual precipitation with
gauge elevation (a.m.s.l)

Fig. 3. The frequency distribution of residuals from the non linear
drift (adjusted rainfall) with elevation
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then computed from each couple of points falling in the
class and used for estimating the average value and its
standard deviation in the class.

The results obtained show that, given that the cross-
validation errors are actually spatially correlated (de Marsily,

1986), the assumption of independence does indeed affect
the parameter and the semi-variogram  estimates.

Much better results can be obtained using ML under the
assumption of correlated cross-validation errors, as is seen
in Figs. 5a, 5b and 5c. These figures show that there is a
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Fig. 4c.Comparison of the modified spherical semi-variogram with
average classes values assuming the hypothesis of independent

cross-validation errors

Fig. 4b. Comparison of the Gaussian semi-variogram with average
classes values assuming the hypothesis of independent cross-

validation errors

Fig. 4a. Comparison of the exponential semi-variogram with
average classes values assuming the hypothesis of independent

cross-validation errors

Fig. 5a.Comparison of the exponential semi-variogram with
average classes values assuming the hypothesis of correlated cross-

validation errors

Fig. 5b.Comparison of the Gaussian semi-variogram with average
classes values assuming the hypothesis of correlated cross-

validation errors
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Fig. 5c.Comparison of the modified spherical semi-variogram with
average classes values assuming the hypothesis of correlated cross-

validation errors
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good agreement between the estimated semi-variograms and
their sampling estimates, although no least-squares fit was
used on the semi-variogram ordinates.

Table 1 shows the parameter values obtained as well as
the classical Kriging statistics computed over the sample of
the 82 cross-validation errors, namely the mean, the root
mean square error, the re-scaled mean and the re-scaled
variance; all the semi-variogram models reconstruct the
spatial process with more or less the same statistical
properties and variance. Therefore, the selection of the most
appropriate model is, or may appear to be, reduced to a
subjective choice.

In the approach proposed, the technique of estimating the
parameters by fitting the semi-variogram to its sample
estimates while using the variance of the cross-validation
errors to select the model, has been reversed, leading to a
more classical statistical technique. The model parameters
are now estimated by applying ML to the distribution of the
cross-validation errors, while the adequacy of the model
must be checked on the divergence of the theoretical semi-
variogram obtained from its sample estimate. In other words,
the assumption on a semi-variogram model is followed by
the parameter estimation on the basis of the cross-validation
errors and by a final acceptance-rejection test on the chosen
model with the estimated parameter values retained as the
null hypothesis.

This gives rise to the need to define an appropriate
statistical acceptance-rejection test for the semi-variogram
to account both for the empirical semi-variogram sampling
errors and for the uncertainty of the theoretical semi-
variogram estimate induced by parameter estimation
(Bogaert, 1999). Nevertheless the selection of the most
appropriate model falls beyond the scope of the present
paper. Once the model has been selected, it can be introduced
directly into the Kriging equations to estimate mean annual
precipitation of the area under study and to determine the
estimation error variance.

Figures 6a, 6b and 6c show the interpolated surface of
the adjusted rainfall for the three models, namely

Table 1.    Parameter values and cross-validation errors statistics (errors in mm) for the three
models assuming correlated cross-validation errors

Parameters      Statistics
Nugget Sill Range
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Exponential 101.69 545.55 128768 0.807 13.072 0.00271 1.0000
Gaussian 139.73 252.71 51116 1.077 12.990 0.00377 0.9999
Spherical 107.31 297.84 125045 0.817 13.032 0.00273 1.0000

Fig. 6a. The estimated spatial distribution of the adjusted rainfall in
mm, using the exponential model

Fig. 6b. The estimated spatial distribution of the adjusted rainfall in
mm, using the Gaussian model

Fig. 6c. The estimated spatial distribution of the adjusted rainfall in
mm, using the spherical model
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exponential, Gaussian and modified spherical, while Figs.
7a, 7b and 7c show the relevant standard deviations.

Analysis of  parameter estimation
uncertainty
After determining the surface of the adjusted rainfall *z
and the standard deviation of their estimation error using
the three different semi-variogram models, the analysis of
the effect of parameter estimation uncertainty was carried
out along the lines described in Part 1.

Fig. 7a. The standard deviation of the estimated adjusted rainfall
in mm, using the exponential model

Fig. 7b. The standard deviation of the estimated adjusted rainfall
in mm, using the Gaussian model

Fig. 7c. The standard deviation of the estimated adjusted rainfall
in mm, using the spherical model

Fig. 8a. The bias of the estimated adjusted rainfall in mm, using the
exponential model

Fig. 8b. The bias of the estimated adjusted rainfall in mm, using the
Gaussian model

Fig. 8c. The bias of the estimated adjusted rainfall in mm, using the
spherical model

The bias corrections computed using the proposed
methodology (Eqn. (13) in Todini, 2001) for the three models
mentioned above are given in Figs. 8a, 8b and 8c, while the
increase in the standard deviation of the estimation error
(obtained by means of Eqn. (14) in Todini, 2001) is plotted
in Figs. 9a, 9b and 9c. Finally the bias corrected adjusted
rainfall values are given in Figs. 10a, 10b and 10c. To
complement the areal spread information, Table 2 gives the
minimum and maximum values obtained for the different
quantities.

Prior to bias correction all the models give similar results
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Fig. 9b. The increase in standard deviation of the estimated adjusted
rainfall in mm, using the Gaussian model

Fig. 9c. The increase in standard deviation of the estimated adjusted
rainfall in mm, using  the spherical model

Fig. 10a. The estimated spatial distribution of the bias corrected v
alue of the adjusted rainfall in mm, using the exponential model

Fig. 10b. The estimated spatial distribution of the bias corrected
value of the adjusted rainfall in mm, using the Gaussian model

Fig. 10c. The estimated spatial distribution of the bias corrected
value of the adjusted rainfall in mm, using the modified spherical

model

Table 2.  Minimum and maximum values of several statistics for the different models

Model Exponential Gaussian Modified spherical
Min/Max [mm] Min/Max [mm] Min/Max [mm]

Adjusted rainfall -268/246 -267/230 -250/181
Std. Dev. of adjusted rainfall 115/181 124/178 116/176
Bias -45/79 -19/29 -121/100
Increment of Std.  Dev. 0/37 0/8.5 0/28
Bias corrected adjusted rainfall -264/313 -247/220 -335/265

Fig. 9a. The increase in standard deviation of the estimated adjusted
rainfall in mm, using the exponential model
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in terms of adjusted rainfall. Figures 6a, 6b and 6c show
similar patterns, more smoothed in the case of the Gaussian
model, with ranges from –268 to 246 mm for the
exponential, from –267 to 230 mm for the Gaussian and
from –250 to 245 mm for the spherical.

The distribution of the standard deviations is also very
similar, with again more smoothness shown by the Gaussian
model. The standard deviations vary from 115 to 181 mm
for the exponential, from 120 to 178 for the Gaussian and
from 115 to 170 mm for the spherical.

Figures 8a, 8b and 8c show that all the models are biased,
as was anticipated in Part 1, and the bias tends to be larger
on the edges because the variance is larger. The range of
the bias of the Gaussian model is quite small (from –19 to
29 mm) when compared to that of the exponential (from –
45 to 79 mm), and of the spherical (from –121 to 100 mm),
(see Table 2), particularly if the scale of the bias is compared
to the estimated deviations: the bias for the spherical model
reaches almost half of the signal’s standard error.  An
increase in standard deviation as calculated from Eqn. (14)
of Todini (2001) is observed, but is relatively modest,
particularly for the Gaussian model. The maximum increase
is 37 mm for the exponential model, but most of this increase
is smaller than 5 mm (Fig. 9a). The maximum is of 8.5 mm
for the Gaussian (Fig. 9b) and reaches 28 mm for the
spherical (Fig. 9c), but again in this last case, most of the
increase is smaller than 2 mm.
Finally, because of the largely different spatial pattern of
the bias (shown in Figs. 8a, b and c) the corrected adjusted
rainfall values (shown in Figs. 10a, b and c) now differ from
each other, with ranges of –264 to 313 mm for the
exponential, of –247 to 220 mm for the Gaussian and of
–335 to 265 mm for the spherical.

This paper does not deal with the model selection problem
but,  in the light of the results obtained , model selection is
extremely important because of its strong conditioning of

the bias corrected results. To illustrate the final results and
provide a basis for the numerical experiment, the exponential
model was selected subjectively because it provided a larger
bias than the Gaussian and the largest increase in standard
error. Consequently, Fig. 11 shows the reconstructed field
of yearly average rainfall over the Veneto region in Italy,
with a standard deviation field given in Fig. 12.

The numerical experiment
As pointed out in Part 1, the Kriging estimates at a point
can be demonstrated to be unbiased if the true model and its
parameter values are known; if one has to choose the model
and/or has to estimate the model parameters, this property
does not hold as shown in the previous section, with a
resulting small increase in the variance and mainly the
introduction of a relatively large bias. While the effect of
model selection, shown to be important in the Veneto Region
example, will be dealt in a successive work, this paper
focuses on the effect induced by parameter estimation.

To assess statistically the validity of the proposed bias
correction, the following numerical experiment was set up.
One hundred sets of 82 “adjusted rainfall observations” were
extracted, at the same locations of the Veneto case study,
from the following Gaussian process:

δBz = (7)

where δ  is an [82] dimension NIP(0,1) and B  the square
root of the [82, 82] covariance matrix, defined as a function
of h , the mutual distances among the 82 raingauges,
reflecting the assumed exponential type semi-variogram,
with the same set of parameters of Table 1 found for the
Veneto case study:

Fig. 11. The estimated spatial distribution of the average yearly
totals of precipitation over the Veneto region in Italy in mm, using

the exponential model

Fig. 12. The estimated standard deviation of the average yearly
totals of precipitation over the Veneto region in Italy in mm, using

the exponential model
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(8)

Matrix B is the symmetrical matrix obtained by the
eigenvalue-eigenvector decomposition of the estimated

( ) ( ){ }hsz,szCov +  assumed to be equal to 2B . Each set
was then used for estimating the parameter values as well
as the cross-validation errors. The latter were computed in
two ways namely without and with the proposed correction
given in Eqn. (13) of  Part 1 (Todini, 2001), thus producing
two samples of 82x100 cross-validation errors. Each of the
two samples was then tested against the null hypothesis of
deriving from a zero mean multivariate process with
unknown covariance. Given that the cross-validation errors
are not independent, as previously discussed, the Likelihood
Ratio Test (LRT) was considered the most appropriate
(Mardia et al., 1979). Under the null hypothesis of zero mean
and unknown variance (Hotelling one-sample T2 test), the
quantity ( ) mSmn T 11 −− , with m the estimated sample
mean, S the estimated sample covariance, n  the sample size
(n =100 in the proposed experiment)  is a T2(p,n-1) with
p = 82  the multivariate space dimension and the quantity

 
( )

mSm
p

pn T 1−−
 has a Fisher F

p,n-p
 distribution. Table 3

shows the results of the test at the 90 and 95% levels based
upon an F

82,18
. As one can clearly observe, while the test on

the “conventional” cross-validation sample is highly
unlikely, there is no evidence to reject the null hypothesis
either at the 10 or 5% levels, thus validating once more the
proposed approach.

Conclusions
The theoretical approach to assess the effect of parameter
estimation uncertainty in ordinary Kriging presented in
Part 1, which was shown to produce a bias and an increase
in estimation variance, was used to analyse the behaviour
of three semi-variogram models by means of yearly
precipitation data over the Veneto region in Italy.

The numerical results are coherent with what were
anticipated in the theoretical development; namely that the

parameter estimation uncertainty introduces a bias, which
can be relatively large depending upon the non-linearity of
the model used, and an increase in variance of the errors of
estimate.

Finally, given the strong dependence of the bias and the
increase in variance on the model used, it is felt that there is
an urgent need for the development of an objective
acceptance or rejection test on the basis of the ML estimated
semi-variogram taking into account on the one hand the
uncertainty induced by the parameter estimates and, on the
other hand, the sampling distribution of the empirical semi-
variogram estimate.
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Table 3.  Likelihood Ratio Test Results for original and corrected cross-validation errors

H
0 
: Mean = 0; Unknown Variance ( )

mSmT 1

82

82100 −− F
82,18

(90%) =1.706162 F
82,18

(95%)=1.990905

Original Ordinary Kriging cross-val. errors 21.84675 REJECTED REJECTED

Corrected Ordinary Kriging cross-val. errors 1.623827 ACCEPTED ACCEPTED
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