総 説 Review Article

銅のホメオスタシスに関与するマルチ銅オキシダーゼ CueO の構造と機能

櫻井 武・片岡 邦重

金沢大学大学院自然科学研究科物質科学専攻

Structure and Function of CueO, a Multicopper Oxidase Concerned in Homeostasis of Copper

Takeshi Sakurai and Kunishige Kataoka

Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University

Abstract

CueO is a multicopper oxidase involved in Cu-homeostasis of *E. coli*. CueO has the four catalytic copper binding sites, a type 1 Cu, a type 2 Cu and a pair of type 3 Cu's, in a single chain protein molecule consisting of 484 amino acids. CueO has the fifth Cu-binding site constructed by Met355, Asp360, Met439, Met439 as the substrate-binding site, which is isolated from bulk waters by the Met-rich segment comprised of amino acids 355-400. The high cuprous oxidose activity of CueO is realized by the presence of this fifth Cu-binding site as revealed by the K_m value and the point mutations for the ligating amino acids. CueO showed enhanced oxidizing activities for organic substrates in the presence of Cu(II) ion at the fifth Cu-binding site because this extra Cu(II) ion functioned as the mediator of electron-transfer between exogenous substrate and type 1 Cu. Further, mutations at Asp112 adjacent to the trinuclear Cu center formed by type 2 Cu and type 3 Cu's indicated that this acidic amino acid functioned not only as a proton donor for dioxygen but also as a modulator for the binding of dioxygen.

Keywords : Cu-homeostasis, CueO, multicopper oxidase, four-electron reduction of dioxygen, point mutation

1. はじめに

嫌気的な状態では銅は水に不溶な Cu(I)として存在す るので、銅が生命によって利用され始めたのは、シアノ バクテリアが酸素分子を生産するようになった数十億年 前以降のことであると考えられている。酸素は当初、水 に溶解している Fe(II)の酸化に使われたので、地球環境 の酸素濃度が上昇し、硫化物として自然界に存在する銅

 連絡先:櫻井 武 〒920-1192 金沢市角間町 金沢大学大学院自然科学研究科物質科学専攻 TEL: 076-264-5685 FAX: 076-264-5742 E-mail: ts0513@kenroku.kanazawa-u.ac.jp

論文受付日:平成18年8月3日 論文受理日:平成18年8月22日 が水に溶解し生命によって広く利用されるようになった のは、生命の歴史においてはかなり後のことである。Cu (II)/Cu(I)の酸化還元電位はFe(III)/Fe(II)の酸化還元電 位よりも高く、大部分の銅タンパク質は0.2-0.8V で機能 することから、様々の基質の酸化に有効である。銅タン パク質での銅イオンの主たる役割は電子伝達と酸素の結 合・活性化であり、呼吸、金属イオン(Fe, Cu, Mn)の 輸送、酸化ストレスからの防御、物質代謝、血液凝固、 色素形成などに関係している^{1,2)}。銅は酸化還元活性であ り、スーパーオキサイドやその他の活性酸素の発生源と なり、高い毒性を示すことから、銅のホメオスタシスを 維持することは好気的な代謝にとって極めて重要である。 すなわち細胞内の銅濃度は一定の狭い範囲に維持されて いる必要がある。銅ホメオスタシスの乱れは、アルツハ イマー病、嚢胞性線維症、パーキンソン氏病の原因とも 考えられている3,4)。

銅のホメオスタシスに関わる研究は Esherichia coli や

Homeostasis system	Regulation system	Function				
СорА	CueR, CpxR	Detoxification of cytoplasmic Cu(I)				
CusCFBA	CusRS	Detoxification of periplasmic and				
		possibly cytoplasmic Cu(I)				
CueO	CueR	Protection of periplamsic Cu-proteins				
PcoABCD	PcoRS	Protection from periplasmic Cu stress				
PcoE	CusRS(PcoRS)	Cu-binding(chaperone)				
	. , ,	U I				

 Table 1
 Copper-homeostasis systems of E. coli

Substrate(mM)	Activity (U/mg)				
	without Cu(II)	with 1 mM Cu(II)			
Cu(I) (0.1)	187	201			
Fe(II) (0.5)	0.91	53			
PD (5.0)	0.53	19			
ABTS (3.0)	0.45	16			
DMP (10.0)	0	29			
Catechol (3.0)	0	12			
Guaiacol (10.0)	0	0			
Syringaldazine (0.01)	0	0			

Fable 2	Specific	activities	of CueO
---------	----------	------------	---------

Cu(I) : tetrakis(acetonitrile)copper(I) hexafluorophosphate Fe(II): hexacyanoferrate(II) PD: *p*-phenylenediamine DMP: 2,6-dimethoxyphenol ABTS: 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)

Enterococcus hirae で比較的よく研究されている⁵⁾。E. coli は通性嫌気性で温血動物の消化器官に生息すること から銅耐性機構が発達していると考えられ、銅ホメオス タシスの研究に適している。E. coli の銅に応答するシス テムとして、センサーとレギュレータが対となった CusRS によって制御される CusCFBA や MerR に類似 した CueR によって制御される CueO などが発見されて いる (Table 1)⁶。本稿では CueO についての最新の知見 を、拙者らの研究結果を含めて概説する。なお、CueR は cueO (以前は yacK と呼ばれた) ばかりでなく copA 遺伝子も制御している。CopA はサイトプラズムからペ リプラズムへCuをCu(I)として輸送するP-タイプ ATPase であり、CueO はペリプラズムにおいて Cu(I) をより毒性の低い Cu(II)へと酸化する。cue は Cu efflux の略であり、銅の排出系であることを表している(Fig.1)。 CueO は Cu(I) 酸化活性が際立って高く、現在知られ

ている唯一の Cu(I)オキシダーゼである⁷⁾。また、Cu(I) 酸化活性ほどは高くはないが、Fe(II)酸化活性も示すこ とから、セルロプラスミンや Fet3p⁸⁾と同様にフェロオキ シダーゼでもある。さらに、エンテロバクチンやその前 駆体のようなジフエノール類に対する酸化活性も有して おり、ジフエノールによって Cu(II)が還元されることを 阻害し、銅毒性を軽減していると考えられている^{9,10)}。こ の反応は微生物のメラニン生成プロセスと類似している。

2. CueO の構造・性質

CueO はラッカーゼ様活性を示すマルチ銅オキシダー ゼである¹¹⁾。ただし、ラッカーゼ活性はあまり高くない。 マルチ銅オキシダーゼとしては、植物由来のラッカーゼ¹²⁾、 アスコルビン酸オキシダーゼ¹³⁾、脊椎動物の血液中に存 在するセルロプラスミン¹⁴⁾がよく知られている。しかし ながら、最近、微生物由来のマルチ銅オキシダーゼが数

Fig. 1 Copper homeostasis mechanisms in *E. coli*. CueO is a multicopper oxidase to oxidize Cu(I) translocated by a P-type ATPase, CopA. CueR regulates transcriptions of CeuO and CopA by sensing Cu ion. CusCFBA is a four-component Cu-efflux pump regulated by CusRS.

29	AERPTLPIPD	LLTTDARNRI	QLTIGAGQST	FGGKTATTWG	YNGNLLGPAV	78
79	KLQRGKAVTV	DIYNQLTEET	2 3 TLHWHGLEVP	GEVDGGPQGI	IPPGGKRSVT	128
129	LNVDQPAATC	3 3 WFHPHQHGKT	GRQVAMGLAG	LVVIEDDEIL	KLMLPKQWGI	178
179	DDVPVIVQDK	KFSADGQIDY	QLDVMTAAVG	WFGDTLLTNG	AIYPQHAAPR	228
229	GWLRLRLLNG	CNARSLNFAT	SDNRPLYVIA	SDGGLLPEPV	KVSELPVLMG	278
279	ERFEVLVEVN	DNKPFDLVTL	PVSQMGMAIA	PFDKPHPVMR	IQPIAISASG	328
329	ALPDTLSSLP	ALPSLEGLTV	RKLQLSMDPM	LDMMGMQMLM	EKYGDQAMAG	378
379	MDHSQMMGHM	GHGNMNHMNH	GGKFDFHHAN	KINGQAFDMN	KPMFAAAKGQ	428
429	YERWVISGVG	1 2 3 DMMLHPFHIH	GTQFRILSEN	GKPPAAHRAG	WKDTVKVEGN	478
489	VSEVLVKFNH	DAPKEHAYMA	313 1 HCHLLEHEDT	1 GMMLGFTVGH	HHHHH	517

Fig. 2 Amino acid sequence of the recombinant CueO. The peptide, GHHHHHH is attached to the C-terminal end for facile purification. Numbers indicate ligand amino acids for each type of copper. Amino acids 355-400 are the segment covering the substrate-binding site. Helices V, VI and VII are indicated by cylinders.

多く発見されており、バクテリアのマルチ銅オキシダー ゼは抗生物質の生合成¹⁵⁾、胞子形成¹⁶⁾、金属耐性、形態 形成、鉄^{17,18)}やマンガン¹⁹⁾の酸化・輸送など²⁰⁾に関与する ことが明らかにされている。このような状況の下、CueO は銅耐性に関わる酵素として発見された。 マルチ銅オキシダーゼの定義は、分光学的および磁気 的性質の異なる Cu イオンが含まれることであり、通常、 マルチ銅オキシダーゼはタイプ1、タイプ2、タイプ3 銅を含んでいる。タイプ1、2 銅を含む銅型亜硝酸還元 酵素も広義にマルチ銅オキシダーゼに含められるが、銅

		2 3				3 3		1 2 3		313 1 1
CueO	99	TLANGGL	112	DG	141	HPHOHGK	443	REFRIEGT	497	MARCHLLEREDTORM
BO	92	SVHLHGS	105	DG	132	WYHDHAM	398	HPIHIHLV	454	MFHCHNLIHEDHDMM
AO	58	VIENEGV	73	DG	102	FYEGHLG	445	HPWHILHGH	504	AFECHIEPHLHMCMG
RvLc	57	TIHNHGV	73	DG	102	WHAHSD	433	HPMHT.HGP	493	FIECHFERHTTECHA
AbLel	61	SIEWEGF	98	DG	106	WYESELS	398	HPFHLFGH	449	FIECHIDWHLEAGLA
TvLcl	62	SIHMHGP	77	DG	107	WYESELS	395	HPFHLFGH	449	FIECHIDFHLEAGFA
CotA	103	VVHLHGG	116	DG	151	WYHDHAM	419	申PI申 申 V	489	VWHCHILEHEDYDMM
Fet3	79	SMERE	94	DG	124	WYHOHTD	413	HPFHIBGE	451	FFECHIEWHLLQGLG
PcoA	98	SIHWHGI	101	DG	142	WYESEFG	542	HPIHLHGM	588	LIECELLYHMEMOME
HCp	98	TFHSHGI	101	DG	142	IYHSHID	542	HTVHFHGM	588	LIECEVIDEIHAGME

Fig. 3 Homology of the partial amino acid sequences among CueO, *M. verrucaria* bilirubin oxidase (BO), ascorbate oxidase (AO), *R. vernicifera* laccase (RvLc), *A. thaliana* laccase (AbLc1), *T. versicolor* laccase (TvLc1), CotA, Fet3p, PcoA and human ceruloplasmin. Numbers indicate the amino acids coordinating each type of Cu site.

Fig. 4 Crystal structure of CueO figured using PyMOL for the PDB data 1N68.

型亜硝酸還元酵素は構造的にはマルチ銅オキシダーゼの 亜種に位置づけられる²¹⁾。CueOの有する銅イオンの構 造や性質については後ほどふれることにして、まず、ア ミノ酸配列について眺めてみる。

Fig. 2は CueO のアミノ酸配列を示している²²⁾。cueO がコードするプレタンパク質のうち 1-28 番目の N-末端 部分はシグナル配列であり、CueO は TAT 経路によりペ リプラズムに移行する。このシグナル配列中にはリーダー ペプチダーゼ開裂モチーフ(A₁₆SA)が含まれている。成 熟タンパク質は 29 番目の Ala に始まり、484 アミノ酸 残基(53.4 kDa)からなる。CueO は 3 つのクプレドキシ ン(ブルー銅タンパク質)様のドメインから構成されてい る。マルチ銅オキシダーゼはクプレドキシンをベースと して、2 ドメイン、6 ドメイン、3 ドメイン型の構造へと 多様化してきたと考えられているが²¹⁾、CueO はアスコ ルビン酸オキシダーゼと同様に、3 ドメイン型のマルチ 銅オキシダーゼである。Fig. 3 に他のマルチ銅オキシダー ゼとの活性部位付近のアミノ酸配列の相同性を示した。 C-末端付近に存在する配列 His-Cys-His はマルチ銅オキ シダーゼに特有である。各タイプの銅への配位子となる アミノ酸と酸素の4電子還元におけるプロトンドナーと 考えられる Asp112 は他のマルチ銅オキシダーゼでも極 めて高く保存されている。

CueO はすでに結晶構造解析が行なわれており、PDB に座標データが登録されている(1KV7, 1N68, 1PF3)^{23,24})。 Fig. 4 に全体構造を示す。また、Fig.5 には活性部位付近 を拡大して示した。他のマルチ銅オキシダーゼと同様に タイプ1 銅部位とタイプ2 銅およびタイプ3 銅からなる 三核銅部位は約 13 Å離れているが、分子内電子伝達経路 を形成する配列 His-Cys-His によって直接結びつけられ ている。2 つのタイプ3 銅は OH によって架橋されてい るが、Cu-O-Cu の角度は 170 であり、他のマルチ銅オ キシダーゼの場合と比べて極端に直線状に近い(IKV7 の 構造で架橋配位子は O 原子としているが、CuCh をソー キングした 1N68 の構造では Cl が架橋しているとされて いる)。

CueOの構造上際立って特徴的であるのはドメイン3 に位置する355-400のアミノ酸領域であり、基質の結合

Fig. 5 The active center of CueO: the fifth Cu site, type 1 Cu site, type 3 Cu sites and type 2 Cu site from left to right.

Fig. 6 Close-up of the substrate binding site of CueO (A) and ceruloplasmin (B), in which the acidic amino acid for the binding of the substrate metal ion and the histidine residue as a ligand for type 1 Cu are hydrogen-bonded. CueO and ceruloplasmin are figured using DS ViewerPro 5.0 for the PDB data 1N68 and 1KCW, respectively.

部位と考えられる第5の銅結合部位を覆う構造をとって いる。このセグメントの構造はヘリックス5-ヘリックス 6-ループ(構造がゆらいでいるためFig.4では見えない)-ヘリックス7であり、45のアミノ酸残基中、14アミノ 酸がMetである。Metに富む構造は CueOと同様に銅 耐性に関与するPcoAやCopAでも見いだされている。 第5の銅結合部位はMet355, Asp360, Met439, Met439 から構成されており、 ヘリックス5にも配位グループが 存在している。銅タンパク質の銅結合部位を形成するア ミノ酸としてはHisが最も一般的であり、他にCys, Met, Gln, Tyrも用いられるが、2Asp2Metという組み合わせ は銅イオンを強く結合している必要のある銅タンパク質 の触媒部位の配位子セットとしては見られないものであ る。この事実は、恒常的に強く銅イオンを結合するので はなく、解離することもまた重要という基質結合部位な らではの条件を満たすものであると考えられる。Fe イオ ンを基質として結合するセルロプラスミンと Fet3p では、 それぞれ、2Glu1Asp1His²⁵⁾, 1Glu2Asp1Gln⁸⁾が用いられ ており、この場合もまた、Fe イオンとの適度な結合と解 離を可能とする配位子が組み合わせられている。Mn オ キシダーゼ活性を有するマルチ銅オキシダーゼの構造は 現在のところ明らかではないが¹⁹⁾、置換活性な基質結合 部位が形成されているものと予想される。Fig. 6 に CueO とセルロプラスミンの基質結合部位を形成する酸性アミ ノ酸がタイプ 1Cu に配位する His 残基と水素結合してい る様子を示した。この水素結合は基質からタイプ 1Cu へ の電子伝達経路となっているものと考えられる。類似し たアークテクチャーはラッカーゼ²⁶⁾、Fet3p⁹⁾、アスコル ビン酸オキシダーゼ²⁷⁾においても見られることから、マ ルチ銅オキシダーゼの機能を担う普遍的な構造であると

Fig. 7 Absorption, CD and ESR spectra of the recombinant CueO (from top to bottom).

想像される。

CueO の吸収、CD、および ESR スペクトルを Fig. 7 に掲げた。これらはC-末端に6xHis-tagを結合させた組 換え体のスペクトルである。オーセンティック酵素はこ れまで報告例がないが、最近、我々は偶然オーセンティッ ク酵素を単離し、同じスペクトルを示すことを確認して いる²⁸⁾。CueO はタイプ1 銅を有するので鮮やかな青色 を呈し、600nm に強い電荷移動帯を示す。また、三核銅 部位に由来する 330nm の OH から Cu(II) への電荷移動 帯は、他のマルチ銅オキシダーゼではショルダーとして しか観測されないが、CueO の場合は明瞭にピークを与 えている。OH は不整中心を有さないので、対応する CD バンドは通常極めて弱いのであるが、CueO によるこの バンドの CD 強度は極めて強い。ESR スペクトルではタ イプ1,2 銅が観測され、スピンハミルトニアンパラメー タはそれぞれ、 $g_{II} = 2.24$, $A_{II} = 6.7 \times 10^{-3} \text{ cm}^{-1}$, $g_{II} = 2.25$, A_{II} = 18 x 10⁻³ cm⁻¹ である。タイプ 3 銅は ESR 非検出で

Fig. 8 Consumption of O_2 by CueO (\bigcirc), Asp112Asn (Δ), Asp112Ala (∇) and Asp112Glu (\bigcirc) to determine the K_m values for the binding of O_2 to the trinuclear Cu center.

ある。

3. CueO の機能

一般にマルチ銅オキシダーゼは有機化合物を基質とす る。しかしながら、いずれのマルチ銅オキシダーゼも基 質特異性はかなり広く、ヘキサシアノ Fe(II) イオンなど の無機化合物もまた酸化することができる。CueO は Cu (I)に対する酸化活性が著しく高く、また、弱いながらFe (II)を酸化することが出来る。しかしながら、多くのマ ルチ銅オキシダーゼの基質となる 2,2'-アジノ-ビス(エチ ルベンゾチアゾリン-6-スルホン酸)(ABTS)、p-フェニ レンジアミン(PD)などに対する酸化活性は極めて低い (Table 2)。さらに、代表的なラッカーゼ基質である 2,6-ジメトキシフェノール(DMP)やカテコールに対しては全 く酵素活性を示さない。このように CueO が Cu(I)オキ シダーゼとして機能するのは、タイプ1銅部位の近傍に 基質 Cu(I)の結合部位が形成されているからであり、ま た、この部位を覆うセグメントはサイズの大きな有機化 合物がタイプ1銅部位にアクセスすることを妨げている。 このようにCu(I)結合部位がタンパク質によって覆われ ていることにより、近傍の誘電率は低下しているはずで あり、このこともまた Cu(I)や Cu(II)の結合性に影響し ていると考えられる。

Table 2 で示した様々の基質に対する反応は過剰の Cu (II)イオンが存在すると状況がかなり変化する^{7,29)}。すな わち、1mM の Cu(II)存在下で、様々の基質に対する反 応を調べると、Cu(I)の酸化活性は若干上昇するだけで あるが、Fe(II),ABTS,PD に対する活性は、20~60 倍 程度上昇している。また、酵素活性を示さなかった DMP やカテコールに対する酸化活性が新たに発現していた。 この事実は、基質結合部位に Cu(II)が存在すると基質と タイプ1 銅間の電子移動メディエーターとして機能して いる可能性を示唆するものである。酵素反応の生成物が このような機能を発現する例はこれまで知られておらず、 CueO はその分子構造のみならず、機能においても新規 性に満ちた酵素であるということができる。Cu(II)の結 合に対する K_m 値(0.13 mM)は Fe(II)に対するそれ(105 mM)よりも遥かに小さく、ここでも CueO が Cu(I)オキ シダーゼであることが裏づけられる。

次いで、Met355, Asp360, Met439, Met439 によって 構成される仮想的な基質結合部位が実際に機能している か検証するために、Met355 と Asp360 を Ala に変異さ せたところ、1 mM の Cu(II)存在下でも有機基質に対す る活性増加は 20~60 倍ではなく、3 倍程度にとどまっ た³⁰⁾。この事実は、第5 の Cu 結合部位の存在の証拠と その機能を証拠立てるものである。

次に CueO の機能を明らかにするために酸素の4電子 還元部位の背面に位置する Asp112 に着目した。このア ミノ酸残基はタイプ3 銅の一つに配位する His448、タイ プ2 銅に配位する His101 と相互作用している。また、 非配位 H₂O を介して、タイプ2 銅に配位する H₂O と水 素結合ネットワークを形成している。このアミノ酸を Glu, Ala, Asn にポイントミューテーションした結果、Glu ミュータントでは様々の基質に対する酵素活性は約半分 に低下し、Ala や Asn ミュータントでは酵素活性は5-15% 程度に低下したことから、この位置には側鎖にカル ボキシル基を有するアミノ酸が必須であることがわかっ た²²⁾。また、分光学的な結果や各ミュータントの O₂ に対 する親和性から、Asp112 は O₂ が4電子還元される際に H^{*}を供給するのをアシストするばかりでなく、O₂の結合 性もまたコントロールしていることが示された。

4. 終わりに

Cu(I)オキシダーゼである CueO に関する研究は緒に 就いたばかりであるが、数々のユニークな局面を見せて おり、Fe(II)オキシダーゼであるセルロプラスミンや Fet 3pの構造・機能研究と補完的に、構造未知の Mn オキ シダーゼや今後発見されるであろう金属イオンオキシ ダーゼ研究のパイロット的研究となることが期待される。

また、既にプロテインエンジニアリングされた CueO をヘアカラーや生物燃料電池に利用する研究がスタート しており³¹⁾、CueO には極めてユニークな Cu(I)オキシ ダーゼという枠を遥かに超えた多機能酵素としての将来 が開けている。

参考文献

- Finney L A, O'Halloran T V : Transition metal speciation in the cell : Insights from the chemistry of metal ion receptors. Science 300 : 931-936 (2003).
- 2) Rensing C, Grass G: Escherichia coli mechanism

of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27 : 197-213 (2003).

- Torsdottir J, Kristinsson S, Sveinbjornsdottir J, Snaedal J, Johannesson T : Copper, ceruloplasmin, superoxide dismutase and iron parameters in Parkinson's disease. Pharmacol. Toxicol. 85 : 239-243 (1999).
- Requena J R, Groth D, Legname G, Stadtman E R, Prusiner B, Levine R L: Copper-catalyzed oxidation of the recombinant SHa (29-231) prion protein. Proc. Natl. Acad. Sci. USA 98 : 7170-7075 (2001).
- Solioz M, Stoyanov J V: Copper homeostasis in Enterococcus hirae. FEMS Microbiol. Rev. 27: 183-195 (2003).
- Outten F W, Huffman D L, Hale J A, O'Halloran T V: The independent *cue* and *cus* systems confer copper tolerance during aerobic and anaerobic growth in *Escherichia coli*. J. Biol. Chem. 276: 60671-30677 (2001).
- Singh S K, Grass G, Rensing C, Monfort W R : Cuprous oxidase activity of CueO form *Escherichia coli*. J. Bacteriol. 186 : 7815-7817 (2004).
- Taylor A B, Stoj C S, Ziegler L, Kosman D J, Hart P J: The copper-iron connection in biology: structure of the metallo-oxidase Fet3p. Proc. Natl Acad. Sci. USA 102 : 15459-15464 (2005).
- 9) Grass G, Thakari K, Klebba P E, Thieme D, Muller A, Wildner G F, Rensing C: Linkage between catecholate siderophore and the multicopper oxidase CueO in *Escherichia coli*. J. Bacteriol. 186: 5826-5833 (2004).
- Kim C, Lorenz W W, Hoopes J T, Dean J F: Oxidation of phenolate siderophores by the multicopper oxidase encoded by the *Escherichia coli yak* gene. J. Bacteriol. 183: 4866-4875 (2001).
- Grass G, Rensing C: CueO is a multicopper oxidase that confers copper tolerance in *Escherichia coli*. Biochem. Biophys. Res. Commun. 286: 902-908 (2001).
- 12) Nitta, K, Kataoka K, Sakurai T : Primary structure of a Japanese lacquer tree laccase as a prototype enzyme of multicopper oxidase. J. Inorg. Biochem. 91 : 125-131 (2002).
- 13) Huang H, Sakurai T, Monjushiro H, Takeda S: Magnetic studies of the trinuclear center in laccase and ascorbate oxidase approached by EPR spectroscopy and magnetic susceptibility measurements. Biochim. Biophy. Acta 1384 : 160-170 (1998).
- 14) Sakurai T, Nakahara: The effect of some anions

on the spectral properties of bovine ceruloplasmin. J. Inorg. Biochem. 27 : 85-93 (1986).

- 15) Smith A W, Camara-Artigas A, Wang M, Allen A P, Francisco W A : Structure of phenoxazinoe synthase from *Streptomyces antibioticus* reveals a new type 2 copper center. Biochemistry 45 : 4378-4387 (2006).
- 16) Enguiitta F, Martins L O, Henriques A O, Carrondo M A: Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J. Biol. Chem. 278: 19416-19425 (2003).
- 17) Kwok E Y, Severance S. Kosman D J: Evidence for iron channeling in the Fet3p-Ftr1p high-affinity iron uptake complex in the yeast plasma membrane. Biochemistry 45: 6317-6327 (2006).
- 18) Griffiths, T A M, Mauk A G, MacGillivray R T A : Recombinant expression and functional characterization of human hephaestin : a multicopper oxidase with ferroxidase activity. Biochemistry 44, 14725-14731 (2005).
- 19) Brouwers G-J, de Vrind J P M, Corstjens P L A M, Cornelis P, Baysse C, de Vrind-de Jong E W: *cum*A, a gene encoding a multicopper oxidase, is involved in Mn²⁺ oxidation in *Pseudomonas putida* GB-1. Appl. Environ. Microbiol. 65 : 1762-1768 (1999).
- 20) Huffman D L, Huyett J, Outte F W, Doan P E, Finney L A, Hoffman B M, O'Halloran T V: Spectroscopy of Cu(II)-PcoC and the multicopper oxidase function of PcoA, two essential component of *Esherichia coli poc* copper resistance operon. Biocehmsitry 41: 10046-10055 (2002).
- Nakamura K, Go N : Function and molecular evolution of multicopper blue proteins. Cell. Mol. Life Sci. 62 : 2050-2066 (2005).

- 22) Ueki Y, Inoue M, Kurose S, Kataoka K, Sakurai T : Mutations at Asp112 adjacent to the trinuclear Cu center in CueO as the proton donor in the fourelectron reduction of dioxygen. FEBS Lett. 580 : 4069-4072 (2006).
- 23) Roberts S A, Weichsel A, Grass G, Thakali K, Hazzard J T, Tollin G, Rensing C, Montfort W R, Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in *Escherichia coli*. Proc. Natl. Acad. Sci. USA 99 : 2766-2771 (2002).
- 24) Robrts S A, Wildner G F, Grass G, Weichsel A, Ambrus A, Rensing C, Montfort W R : A labile regulatory copper iron lies near the T1 copper site in the multicopper oxidase CueO. J. Biol. Chem. 278 : 31958-31963 (2003).
- 25) Zaiseva I, Zaitsev V, Card G, Moshkov K, Bax B, Ralph A, Lindley P : The X-ray structure of human serum ceruloplamsin at 3.1 Å : nature of the copper centers. J. Biol. Inorg. Chem. 1 : 15-23 (1996).
- 26) Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Maddzak C, Mougin C: Crystal structure of a four-copper laccase complexes with an arylamine : insights into substrate recognition and correlation with kinetics. Biochemistry 41 : 7325-7333.
- 27) Messerschmidt A, Ladenstein R, Huber R, Bolognesi M, Petruzzelli R, Rossi A, Finazzi-Agro A : Refined crystal structure of ascorbate oxidase at 1.9 Å resolution. J. Mol. Biol. 224 : 179-205 (1992).
- 28) Sawai T, Kataoka K, Sakurai T: unpublished results.
- 29) Kataoka K, Ueki Y, Konno Y, Sakurai T : Submitted.
- 30) Kataoka K, Ueki Y, Sakurai T: Manuscript in preparation.
- 31) Japan Patent 2005-274545, 349296.