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ABSTRACT

The low-frequency [w<0.5 cycle per day (cpd)] current fluctuations at four depths in 100 m of water
have been investigated for two stations on the continental shelf off the coast of Oregon. One station, DB-7,
was maintained during the summer of 1972 as part of the Coastal Upwelling Experiment-1 (CUE-I), and the
other station, Carnation, was maintained during the summer of 1973 as part of CUE-IL. A decomposition of
the north-south (almost alongshore) o and the east-west (onshore-offshore) » components of the current has
' been performed in terms of two types of modal structures in the vertical direction: (i) dynamic modes deter-
mined by the separable solutions of the appropriate equations of motion, and (ii) empirical orthogonal modes
which are the eigenvectors of the correlation matrix and depend only on the statistics of the data. For the
alongshore currents, the standard deviation of the dynamic barotropic mode is found to be twice as large as
that of the first baroclinic mode. The barotropic part is found to be correlated with the north-south com-
ponent of the wind stress w and the sea level, whereas the first mode baroclinic part is found to be correlated
with the temperature fluctuations. The first empirical eigenmode accounts for about 919, of the energy and
is fairly depth-independent, whereas the second empirical eigenmode accounts for about 7%, of the energy
and resembles the first dynamic baroclinic mode. Spectral analysis shows high mutal coherence between the
barotropic modes for the % and v components and the wind stress ro- at the frequencies 0.06 cpd in 1973 and
0.14 cpd in 1972. Results from a theoretical model show that the observed values of the phase relations at
these frequencies are consistent with a resonant condition between the wind stress and forced, long, baro-
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tropic continental shelf waves.

1. Introduction

The occurrence of coastal upwelling off the coast of
Oregon due to the predominantly southward wind
during the summer months is well known. Continuous
velocity measurements were made at several stations
on the continental shelf during the Coastal Upwelling
experiments, CUE-I in 1972 and CUE-II in 1973.
Based on the experimental data taken during the
summer of 1972 as part of CUE-I, Smith (1974) has
given a detailed description of the phenomenon and
pointed out some interesting features of the low-
frequency variations in the current at one station, DB-7,
and their relationship with the wind and the sea level
fluctuations. The existence of a strong depth-indepen-
dent, or barotropic, component in the alongshore veloci-
ties is evident from the results.

In order to formally separate the barotropic and
baroclinic components of the velocity field, it was
decided to decompose the velocity field in the vertical
direction into its modal components. This was felt to be
especially important since theoretical results (see
Appendix A) indicate that there should be a large
baroclinic response which is limited to a region with
an offshore scale of the order of the internal Rossby
radius of deformation (~15 km) and hydrographic
data (e.g., Mooers ef .al., 1972; Smith, 1974) have
tended to support that picture.

In this paper, the modal decomposition has been
applied to the velocity measurements from DB-7 and
to measurements from an analogous station, Carnation,
which was maintained during CUE-IL. This enables
some of the features of the CUE-II observations to be
studied and the results from measurements at similar
stations in two different years to be compared. The
objectives of the present work are, therefore, twofold:

1) To decompose the velocity field into its modal
components and determine the relative strengths of the
various modes as well as their relationship with the

~wind, sea level and temperature. Both dynamic modes,

determined by the separable solutions of the appro-
priate equations of motion, and “empirical orthogonal
modes,” determined by the statistics of the data,
are used.

2) To present some simple dynamical arguments in an
attempt to explain some of the observed features of
the data.

The outline of the paper is as follows. The observa-
tions are described in Section 2. The hydrography is
given in Section 3 and some basic features of the
currents, wind and sea level are discussed in Section 4.
The currents are decomposed into dynamic modes in
Section 5 and into empirical orthogonal modes in
Section 6. In Section 7, the relation of the dynamical
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and empirical modes with the wind stress, sea level
and temperature is described. A dynamical discussion
of the data is given in Section 8 and the paper is sum-
marized in Section 9. In Appendix A, the relevant
theoretical considerations are presented while Appendix
B contains an interpretation of the empirical orthog-
onal decomposition.

2. The observations

The previous paper by Smith (1974) was based on
the current measurements at four depths (20, 40, 60
and 80 m below the surface) in 100 m of water at the
current meter station DB-7 (Fig. 1) for 48 days from
10 July to 26 August, 1972. The basic current meter
array for CUE-II was placed approximately 60 km
north of that of CUE-I to take advantage of the simpler
bathymetry in that region. One mooring of the CUE-II
current meter array, called Carnation (Fig. 1), was
very similar to DB-7 in the sense that current and
temperature measurements were taken at 20, 40, 60,
80 and 95 m in 100 m of water for 5¢ days from 3 July
to 25 August 1973. This similarity of the two stations
allows a comparison of the results for two different
upwelling seasons.

The currents and temperatures were measured with
Aanderaa current meters suspended beneath subsurface
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Fi16. 1. The region of the observational study off Oregon.
Bathymetric contours are in meters.
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floats at 13 m. The Aanderaa current meters recorded
speed, direction and temperature at 5 or 10 min in-
tervals. The acquisition and processing of the time
series data from the moored buoys in CUE-I and
CUE-II are described by Pillsbury ef al. (1974). This
included filtering of the 5 or 10 min observations to
obtain hourly time series. The hourly data sets were
then filtered, in a manner identical to that used by
Smith (1974), to eliminate the tidal and inertial
oscillations by means of a symmetrical filter spanning
121 h with a half-power point of 40 h (half-amplitude
at 0.7 cpd, half-power at 0.6 cpd, 90%, power at 0.5 cpd).
The resulting series was then decimated to 6-hourly
values. In 1972 the wind and atmospheric pressure were
measured at Newport, whereas the sea level was mea-
sured by a tide gauge at Depoe Bay. In 1973 the wind,
the atmospheric pressure, as well as the sea level were
measured at Newport.

3. Hydrography

The density (sigma-f) section for late June 1973,
shown in Fig. 2, is typical for the upwelling season off
Oregon and is qualitatively similar to the sections ob-
served in June 1972. Over the continental slope and
shelf the isopleths of temperature, salinity and density
slope upward toward the coast from May to Qctober.
In contrast, from late fall to early spring the isopycnals
are essentially level and deeper, e.g., the 26.0 isopyvcnal
intersects the shelf between 100 and 150 m. The shear
in the alongshore currents predicted from the density
sections, using the “thermal wind” equation, has been
found in previous studies of the CUE-I data to be in
close agreement with that obtained from the low-
frequency current meter data at the time of the section
(Smith, 1974; Huyver ¢t al., 1974).

The density distribution varies little during June,
July and August despite fluctuations in the wind, except
above 20 m or within 10 km of the coast where the
density field responds appreciably and rapidly to varia-
tions in the wind on the time scale of days to a week.
This can be seen by comparing the sigma- sections for
10 July and 13 July 1973. The wind had been weakly
northward during early July and the 10 July section
shows the warm, low-salinity water (¢,<21.3) of the
Columbia River plume covering the coastal region.

- The wind became strongly. southward on 10 July and a

strong offshore Ekman transport presumably developed.
By 13 July the Columbia River plume had been swept
offshore.

The current meter arrays (DB-7 in 1972 and Carna-
tion in 1973) were located about 13 km from the coast,
which appears to be just offshore of the zone which ex-
periences very large fluctuations in the density with
wind variations. The uppermost current meter (20 m
below the surface) was just at the bottom of the surface
layer which experiences much larger variations than
the rest of the water column.
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F1c. 2. Vertical sections of sigma-¢ along 45°61’N during June-

July 1973. The position of the current meters at Carnation are in-

dicated by solid dots. Contour intervals (0.5 sigma-¢ units for
sigma-f >24.5) are not shown for shaded area (sigma-t <24.5).
Station positions are marked by inverted tees.
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4.YDescription of the currents, wind and sea level

All quantities will be referred to a Cartesian coordi-
nate system (x, y, z) with # positive eastward, y posi-
tive northward, and z positive upward, with the
origin placed at the coast. The time mean of a variable
will be denoted by an overbar, and its time fluctuations
will be induced by a prime. The eastward, northward
and upward velocities will be denoted by %, v and w, re-
spectively, so that at point x the eastward velocity is

w(x)=a(x)+u’'(x,4).

The normalized lagged correlation function between
the fluctuating parts of two quantities ¢ and g, is de-
fined as (assuming stationarity)

a(©)ga(t+7)

(gD gD}

The zero-lag correlation r1,(0) will simply be referred
to as the correlation coefficient.

F1c. 3 shows the north-south components of the
wind and currents, as well as the barometrically ad-
justed sea level for 1973 data, and Fig, 4 shows the
same for 1972, reproduced from Smith (1974) for the
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F1c. 3. North-south component of wind and currents, and ad-
justed sea level, for 1973. The bottom curves (D1 and D) are the
amplitudes of barotropic and first baroclinic components.
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Fi1c. 4. As in Fig. 3 except for 1972.

sake of comparison. The bottom curves on both Figs.
3 and 4 are: the time series of the barotropic and the
first-mode baroclinic parts of the currents, as ex-
plained in Section 5. From the nature of the variations
of the currents at different depths, a large part of the
alongshore current variations appears to be depth-
mdependent or ba.rotroplc, with a vertical shear which
is not greatly variable in time. Note, also, that a strong,
sustained southward wind generally produces a south-
ward current at all depths. However, there are also
exceptions; for example, the large current changes at

all depths in Carnation during 28 July-3 August are

apparently not related to wind changes. Note, also, that

a southward current variation is very closely accom--

t A little caution is needed here. For example, suppose there is a
strong first baroclinic mode present in the ocean, with no baro-
tropic mode. If all the measurements are taken below the node,
then the resulting series may give a spurious impression of baro-
tropy. This indicates why a simple depth average of data inade-
quately sampled in the vertical is not a valid way of finding the
barotropic part. To decompose the motion into its barotropic and
baroclinic components, the modal shapes (and hence the density
structure which determines these shapes) must be known. This is
done in Section 5.
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panied by a depression of the sea level at the coast,
which is consistent with an alongshore barotropic
current in geostrophic balance.

The east-west components of the currents from
Carnation are plotted, along with the barotropic and
first baroclinic modes, in Fig. 5. It can be seen that,
aside from the fact that there appears to be a mean
onshore flow at all depths over the total time period,
the picture presented by these components is a great
deal more complicated than that by the alongshore
velocities. While the currents at 20, 40, 60 and 80 m are
sometimes ordered in magnitude, with the 20:m being
the largest and the 80 m the smallest (see the time
period 18 July-1 August), there are many instances
where the 20 m current violates this pattern. It is
possible ‘that at times the mixed layer deepens and .
affects the 20 m onshore-offshore current, resulting, for
example, in an offshore “Ekman-like” flow at 20 m
while an onshore flow prevails at other depths. ,

Some basic statistics of the wind, the barometrically
adjusted sea level, and the currents at DB-7 and
Carnation are compared in Table 1. The standard
errors (=e¢) of the mean, calculated according to
Kundu and Allen (1973), are included. The standard
deviation of v’ remains virtually constant with depth,
whereas that of 4’ shows a slow decrease with depth.
This may be due to the east-west slope of the bottom,
which allows a north-south excursion of the fluid
particles but obstructs their east-west excursion. The
95 m current at Carnation shows the frictional effects
of the bottom (at 100 m depth) in terms of the lower
mean and rms velocities.

CURR‘NT U AT CARNATION

cm/sec

1973

F16. 3. East-west component of currents at Carnation and their
barotropic and first baroclinic amplitudes.
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TasLE 1. Comparison of basic statistics for 1972 and 1973.

U 14
Mean S.D. Mean S.D.
72 73 72 73 72 73 72 73

Wind

(ms™) 0.7+£0.4 0.6:£0.2 1.2 0.5 —-2.2:1.3 —-2.5x1.1 42 3.5
20 m current

(cm s™1) —-3.4+1.6 3.2:1.3 5.2 4.7 " —18.1+£3.8 —23.9%3.2 12.0 10.0
40 m current )

(cm s™Y) 04419 4.3:+09 6.0 3.0 —~7.9442 —10.9%3.3 13.4 10.3
60 m current 4

(cm s7) 26+1.5 2.7+09 49 29 1.6£4.6 —-2.0£3.7 14.5 11.7
80 m current

(cm s™Y) 3.1+£13 1.1£6.3 4.1 20 6144 2.9+34 13.8 10.7
95 m current

(cm s 0.6+£0.5 1.7 2527 8.4
Sea level ' S.D. (72)=6.4

(cm) S.D. (73)=4.38

1. 1972 samples are twice daily values for 48 days, from 1200 GMT 10 July to 1200 GMT 26 August 1972, with the exception of the

60 m current which runs only up to 18 August.

2. 1973 samples are twice daily values for 54 days, from 1200 GMT 3 July to 1200 GMT 25 August.

5. Decomposition into dynamic modes

To further investigate the nature of the fluctuations
occurring in the currents, it is advantageous to separate
the motion into its barotropic (depth-independent) and
baroclinic components. It is shown in Appendix A that
the solution for the pressure of the appropriate simpli-
fied equations of motion can be written as a sum of
modes:

= Z Yn(y)t)Xn(x)Zn(z)) (51)
nw=]
where X, is given by
Xa=exp(yar), ¢.2)
and Z, satisfies
f’Zn;]
+v.2Z,.=0. (5.3
[N’(z) a )

Here IV (3) is the Brunt-Viisili frequency, f the Coriolis
parameter, the subscript z denotes the z derivative,
and v, is the eigenvalue. The mode shapes in z are
solutions of the eigenvalue problem defined by (3.3)
with homogeneous boundary conditions

Zn=0, z=0,H, (5.4)

which follows from the assumption of a flat bottom
(see Appendix A).

Because of the assumed geostrophy of the alongshore
velocity, v=—p,/(pof), v may be written, using

3.1, >as

2@t = % Dall)Za(a), (5.3)

Rl

where D,=v,Y X/ (oof) and the dependence on (x,y)
has been suppressed. It can be shown from the nature
of the present eigenvalue problem that the eigen-
functions are orthogonal with respect to a weighting
function of unity. _

It is advantageous to normalize each eigenfunction
such that :

1 rH
—_ / 2, Znd2=8,m, (5.6)
HJ :

where 6, is the Kronecker del_ta., so that
1 ¥ ®
'-—/ vdz= 3 D} (5.7)
H 0 nest

which is the Parseval identity. That is, the square of
each D, gives the instantaneous contribution of a
particular mode to the depth-integrated energy at a
certain station. Comparison of the rms values of the
time series of the various D,(f) then determines the
relative strengths of the different modes.

Mode shapes for the Oregon coast region were found
by solving the eigenvalue problem defined by (3.3) and
(5.4), with hydrographic data used to compute ¥ (z).
For Carnation, the data were taken from the measure-
ments of Holbrook and Halpern (1974), who had an
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anchor station at this position and reported a total of
193 instantaneous vertical profiles of the Brunt-
Viisdld frequency during July-August of 1973. A
smoothed average over these 193 profiles was taken
to represent N (z). For the station DB-7, the data were
from the measurements of Halpern and Holbrook
(1972), taken during the July-August of 1972, A total
of seven ¢, profiles, taken within about 4 km of DB-7,
were averaged, and N(z) was estimated from this
through a numerical differentiation scheme using a
5-point least-square parabola. The resulting NV (z) for
.the two stations are shown in Fig. 6. The two N(2)
profiles, representing different years’ data, are seen to
be somewhat similar, except that at Carnation the
. pycnocline (maximum N) is somewhat stronger (Vmax
=0.5 ¢pm) and shallower (8 m deep) compared to
DB-7 (Nmax=0.37 cpm at 13 m).

The mode shapes were computed by integrating (5.3)
by means of a fourth-order Runge-Kutta technique,
with a trial-and-error procedure for determining the
proper values for v, so that the boundary conditions
(5.4) were satisfied. The first four- baroclinic eigen-
values for the two stations are given in Table 2. The
eigenvalue v;=0.0, of course, represents the barotropic
mode, Z;=constant and X;=constant, which is just
the nearshore approximation for the barotropic motion
which varies on a larger z-scale (see Appendix A).
From (5.2) it is apparent that the higher baroclinic
modes decay in the offshore direction faster than the
lower modes. The lowest baroclinic mode decays to
exp(—3.0)=0.05 times its value at the coast in an
offshore distance of - "

6x=3.0/v2=16 km
for both stations. We call this distance the effective

N/ 2w (cpm)

20

H
o

DEPTH (meters)
[+2]
S

80

100

F16. 6. Vertical profiles of .the Brunt-Viisili frequency.
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TaBLE 2. Dynamic eigenvalues (km™1).

Carnation DB-7
v2=0.18 v2=0.18
73=0.38 v3=0.42
v4=0.61 v4=0.67
v:=0.82 v5=0.90

internal Rossby radius of deformation for the Oregon
coast. .

The first four modes calculated for Carnation are
shown in Fig. 7, all of which are normalized according
to (5.6). The modes for DB-7 are similar and are not
shown.

Having determined the mode shapes, the next step
is to fit them to the data so as to determine the relative
strengths of the barotropic and baroclinic parts of the
currents. It should be noted that, although the modes
Z,.(z) are orthogonal in the continuous sense (3.6),
thev do not necessarily satisfy a discrete analog of
(5.6); i.e., it is found that

b

'Zl Zn (Zj)Zm(Z,')?f&mn, (58)

o
where z; are specified by the sampling depths. The
orthogonality properties of the Z,, therefore, may not
be used directly to determine the coefficients D,. We
have chosen to determine the D, by least-square
fitting the data with the computed mode shapes, that
is, choosing the various D, such that the error

5~ £ D0%ETE 69

=1

is minimum. This leads to a set of simultaneous linear
algebraic equations in the D,. At both Carnation and
DB-7, currents at 20, 40, 60 and 80 m were used (J=4);
the 95 m current at Carnation was ignored because it
displayed frictional effects of the bottom. Although the
modal amplitudes D, (#) were determined with the time
mean kept in the data series, removing the mean would
have only resulted in D.(f)=0 with the time fluctua-
tions D,’(t) unchanged, both for an exact or a least-
square fit.

Only the first (barotropic) and the second (first
baroclinic) modes have been used in the least-square
fitting (5.9). The third mode could not be accurately
fitted since in the present case the discretely sampled
third mode is very similar to a linear combination of
the discretely sampled first and second modes, as is
evident from Fig. 7 for Carnation. If the data has energy

- in these higher modes, this will be reflected in the lower

mode amplitudes (‘“aliasing”). However, the higher
modes decay offshore faster than the lower modes.
In fact, from (5.2), if the second and third mode

amplitudes are equal at the coast, then at a distance
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F16. 7. Vertical profiles of first four modes at Carnation.

z from the coast their ratio is Xs/X;=exp(yv:—7vs)7,

which for Carnation or DB-7 (x=10 km) is about 0.09.2-

The data are therefore expected to contain low values
of third and higher mode energy.

The east-west component of the velocity at Carnation

~was also decomposed into a barotropic and a first
baroclinic mode. The mode shapes Z, for # are the same
as those for 9, which is easy to see from Egs. (A2b, c).
In spite of the apparent mixed layer influence on the
% at 20 m, the 20 m current was retained in the calcula-
tion for D, and D since it is the only-measurement on
the surface side of the node of the first baroclinic mode
and because it is not clear that it properly should be
omitted.

The amplitudes D,(f) and D.(¢) for the alongshore
component, determined by the least-square fitting,
are shown as the bottom curves in Fig. 3 for Carnation
and Fig. 4 for DB-7; those for the u component for
Camation are shown in Fig. 5. The means, standard
deviations and correlations of these modal amplitudes
are shown in Table 3. For the alongshore components,
note from Figs. 3 and 4 or from Table 3 that both
D, and D, have negative mean values, the former
signifying a southward flowing mean barotropic current

2 The nominal distance of DB-7 or Carnation from the shore is
about 13 km. However, due to the gradual decrease of the water
depth as the coastline is approached, it is not clear what the
“effective” distance of these statiops from the shore is in a con-
stant-depth model like the present. The distance of 10 km is a
rough guess.

S. ALLEN AND R..L. SMITH
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and the latter a mean shear such that the surface layers
flow southward and the bottom layers flow northward.
Note that D, and D; are uncorrelated in time for the
alongshore component. However, they are fairly well
correlated for the east~west component, especially from
18 July to 1 August (Fig. 5). Note also from Table 3
that the ratios of the standard deviations of the along-
shore barotropic and the first baroclinic modal ampli-
tudes are 1.7 for Carnation and 1.9 for DB-7, which is
in qualitative agreement with the conclusion of Smith
(1974). -

It is useful to get an estimate of the residual left
after fitting the first two modes to the data series. For
this, the alongshore component relative residual at
at each point (z,f) is given by :

Co(zite) = Da(t) ~D2(t) Z2(2;) 1

e(zile) = ’

1 &
— »® .,[
— L el

where K is the number of time samples. The overall
residual, defined as the time and depth average of
e(z;,te), is 13% for Carnation and 169, for DB-7.
A similar calculation was made for the % components,
and the residuals were found to be somewhat larger
(Table 3). '

The baroclinic part of the north-south current at each
depth was determined by subtracting the barotropic
part Dy (t) from the data v(z,¢). The resulting time series
for DB-7, which contain not only the first baroclinic
mode but also the residual, are shown in Fig. 8. The
series for Carnation are similar and are not shown. The
time series for 20 m is seen to be almost always out of
phase with those for 40, 60 and 80 m, which is consistent
with the presence of a first baroclinic mode since the
zero crossing of this mode is at 2bout 29 m for Carnation
and 27 m for DB-7. ’

6. Empirical orthogonal decomposition

The dynamic modes computed in the previous section
are orthogonal in the continuous sense, but due to the.
sampling at a finite number of predetermined depths
it turns out that the modes are not “discretely orthog-

TasBLE 3. Means, standard deviations and
correlations of dynamic modes.

Carnation DB-7
u v “ v
D Mean (cm s™) 3.1 =151 08 -10.1
S8.D. (cms™) 3.2 9.9 4.7 12.6
D Mean (em s™) 1.0 =207 —4.6 -—110
1S.D. (cms™) 33 5.8 3.4 6.7
‘Correlation D,,D; 0.7 —0.1 0.4_ -0.1.,
Relative residual 329, 1595 219, 16%,




690

40~
30 '.'—'.,.".‘

20ff

cm/ sec
o

-20L

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME §

AUGUST

P

F16. 8. The baroclinic component of north-south currer;t at DB-7.

onal” [see Eq. (5.8)]. Moreover, the dynamic modes
are dependent on the equations of motion and the
boundary conditions used, which are based on several
approximations including a flat bottom, linear and in-
viscid dynamics, etc. The resulting modes can be
physically significant only if these approximations are
justified. ‘

It is of interest to perform a modal analysis which
does not need these series of assumptions. That is,
one is interested in modes which are discretely orthog-

-onal, and which do not depend on any dynamic as-
sumptions but only on the statistics of the data. These
are provided by the so-called “empirical orthogonal
functions.” This method was first introduced by
Kosambi (1943); excellent discussions of it can be
found, for example, in Lumley (1970) and Busch and
Petersen (1971). A brief outline of the expansion tech-
nique is given below ; more details and a short discussion

denote the matrix of correlation coefficients, Then the
eigenvectors ¢,(z;) of this real and symmetric matrix,
defined by

N
.Zl R(z;,z,-):ﬁ,.(z.—) =)\n¢n(zl)y n=1,---,\, (6.2)

are called the empirical orthogonal eigenfunctions;
they obey the orthogonality condition

§ $a(2)dm(2) =8nm. (6.3)

fm]

It is shown in Appendix B that the eigenvalues \, are
the time average energy in the various modes, and that
the sum of the eigenvalues add up to the total energy.
Since the set {¢.} is complete, the time series can be
expanded in terms of them, i.e.,

are given in Appendix B. N
Let ©.(s;) denote the value of a variable (in t(z) = Y Exupal(zi), (6.4)
the present case the north-south velocity) at time n=l
ty (k=1, ..., K) and depth z (i=1, ..., N). Let where the expansion coefficients are given by
1 K i N
R(z-',zj)=;<‘ 2 w(2)ri(z;) (6.1) Ein= Y 0:(2:)da(3:). (6.3)
k=1 =l
TaBLE 4. Empirical eigenfunctions for north-south component (7).
Mode 1 Mode 2 Mode 3 Mode ¢
Carnation DB-7 Carnation DB-7 Camation DB-7 Carnation DB-7
Eigenvalue A, (cm?s™?) 420.2 684.8 300 51.t 8.2 6.6 3.2 2.4
Explained variance An/ZAa 91.19, 92.0%, 6.4%, 6.9% 1.8% 0.9%, 0.7% 0.3%
: 20m 0.43 0.43 0.81 0.67 0.39 0.61 0.07 -0.02
R . <, J40m 0.50 0.51 0.14 0.37 —0.85 —0.76 0.60 0.16
Eigenfunction ¢» (2) {69 m 036 054 —034- —039 022 002 -072 075
80 m 0.50 0.51 —0.45 —-0.52 0.27 0.23 0.69 0.64
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The north-south components of velocity at Carnation
and DB-7 were decomposed into these modes. Although
the 95 m current series at Carnation could now have
been included since there is no longer any assumption
on inviscid dynamics, it was left out so as to be able
to compare Carnation results with DB-7 results, and
dynamic modes with empirical modes.

Since the behavior of the time variations of the
currents are of most interest here, the eigenfunctions
were computed after removing the time mean from
each record. The computed eigenvalues and eigen-
functions for the longshore component are shown in
Table 4. The following points may be noted there:

1) If one imagines that the discrete values defining
the eigenfunctions are joined by continuous lines, then
the resulting first mode, which is fairly depth-inde-
pendent, would have no zero crossing, the second one
would have one zero crossing, and so on, This sequence,
however, is solely a characteristic of the data, and was
determined by the ordering of the explained variance.
Also, as is explained in Appendix B, the empirical
eigenfunctions resemble the dynamic modes if the
amplitudes of the latter happen to be uncorrelated in
time, The correlation coefficient between the ampli-
tudes D, and D, for the longshore component did turn
out to be very low (~0.1), which explains why the
empirical modes resemble the dynamic modes for the
alongshore component.

2) About 989, of the variance is accounted for by
the first two eigenfunctions, with the first one account-
ing for more than 91%,.

3) The first mode, which accounts for most of the
energy, is fairly barotropic. Its depth structure signifies
that the fluctuations at 60 m are on the average the
largest, those at 20 m are the lowest, and those at 40m
and 80 m fall midway between the two, and all these
fluctuations are simultaneous and of the same sign.
Since this mode accounts for most of the energy, this
structure is expected to resemble the pattern of the
variation of the rms values (actually, their squares)
of the current fluctuations with depth. This is the case,
as may be checked from Table 1.

The first two expansion coefficients Ey (%) and Ex(%),
determined by (6.5), are plotted in Fig. 9. For both
Carnation and DB-7, the behavior of E; and E; with
time is very similar to the behavior of D; and D, shown
in Figs. 3 and 5, as is expected because of the similarity
of the dynamic and empirical mode shapes. It may be
mentioned that although the structure of Zi(z;) and
#1(2:), Z5(2:) and ¢2(z;), are only qualitatively similar,
their amplitudes D;(f) and Ei(f), D:(f) and E;(¢) are
very similar; in fact, the correlation coefficient between
Dy () and E,(¢) is found to be 0.98 for both Carnation
and DB-7, and that between D;(f) and E.(¢) is 0.97
for Carnation and 0.93 for DB-T7. Note'tha.t the reason
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Fi1c. 9. The amplitudes of the first two empirical modes for the
north~south components: top curves for DB-7 and bottom curves-
for Carnation.

the amplitude of E, is larger than that for D, is because
of different methods of normalization [see (5.6) and
(6.3)]. This difference introduces a factor of approxi-
mately 2 in the first mode amplitudes, but the second
mode amplitudes are comparable. The ratio of the
standard deviations of E; and E. is (91.4/6.4)}=3.8
for Carnation, and 3.6 for DB-7. This compares with
ratios of S.D.D/S.D.D; ~1.7 and 1.9 for Carnation
and DB-T7, respectively.

The east—west components of the fluctuations were
also decomposed into the empirical modes. The results
are. summarized in Table 5. The larger eigenvalues at
DB-7 agree with larger variations of the » component
for this station, as shown in Table 1. Also, the empirical -
modes are much less similar to the dynamic modes for
this component, which is a result of the fact that the
Dy, D; correlation coefficient was not very low for «.
The shapes of the first empirical modes are consistent
with the pattern of variation of the standard deviation
with depth for both stations (Table 1), e.g., maximum
at 20 m for Carnation and at 40 m for DB-7. Note that
the first empirical eigenfunction for # accounts for
about 70%, of the variance, compared to about 919,
for the » component. Obviously the north-south fluctua-
tions are better correlated in depth.
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TaBLE 5. Empirical eigenfunctions for.east-west component (x).
Mode 1 Mode 2 Mode 3 Mode 4
Camation DB-7 Carnation DB-7 Camnation DB-7 Carnation DBy
Eigenvalue \, (cm?s™?) 293 79.7 8.9 19.6 29 6.9 1.5 18

Explained variance An/ZAn 688% 13.83% 20.1% 18.1% 6.9% 6.4% 3.5%, 1’7,7
20'm 079 052  —061  —023 006 0l 000 o2

Eigenfuncti 40m 042" 0.63 048 -0.52 -0.74 -0.351 -0.20 ~0.28
igenfunction éx (%) | 60 m 037 048 0.54 0.48 066 —027 036 o068

80 m 0.24 0.32 0.32 0.67 0.10 008 091 ~0.66

7. Relation of the dynamic and empirical modes
with the wind stress, sea level and temperature

We examine in this section the relation of the dynamic
and the empirical modes with the alongshore component
of the wind stress, the sea level, and some of the con-
tinuous temperature measurements made at the loca-
tion of the current meters. The notation Dny, Dro, Enu
and E,, will be used to denote the coefficients of the
nth modes for » and ». The correlation coefficients
between different variables are entered in Table 6.

TasLE 6. Correlation coefficients.

Carnation DB-7

Dy, 0.46 0.63

Wind stress vs g:: 8:1 gg
Sea level 0.61 0.62

D1, - 0.74 0.88

Sea level vs{Dz. ~0.47 -~0.47
E,, 0.80 091

Dy, 0.23 0.03

Temperature at 40 m vs{lzh, ~0.07 -~0.64
29 0.02 -0.67

These are zero lag values, but, for the coefficients listed,
the maximum absolute value of the correlation coeffi-
clent occurred either at zero lag or close to it (i.e.,
within one day). In all cases the correlation was com-
puted by removing the temporal mean, except for
those involving the temperature for which the appreci-
able linear trend due to seasonal heating was removed.
The north-south (alongshore) component of the wind
stress was computed from the hourly values of the
wind stress vector and then low-pass filtered in the
same manner as the currents. The formula used was

rw=psCouw’+ e vw [dyn cm?], where uy and
vw are the wind velocity components, the air density
pa=1.23X10"% g cm™, and Cp=1.4X 102, The time
series of 7w is quite similar in appearance to that for
the » component of the wind, shown in Fig. 5, except
that the peaks are accentuated in the 7w plot.

Since some of the spectral quantities for the 1972
DB-7 measurements have already been presented in
Smith (1974), and since the record lengths for Carna-
tion are greater, we shall present here the spectral
quantities for Carnation only. Autospectra of the north-
south component of the wind stress rw, sea level, and
the dynamic modes D1, D1y, D2, and Da, for the 1973
measurements are given in the left column of Fig. 10,
The coherence and phase between the various pairs
are given in the right column of the same figure.

On comparing the 1973 series of Dy, with that of the
wind (Fig. 3) it may be noted that the wind appears
to have a great deal of high-frequency (i.e., periods of
2-3 days) energy that the barotropic component does
not have. The spectra (Fig. 10) bear out this point.
The wind stress spectrum falls off much less rapidly
with increasing frequency than does the spectrum of D,.

We note from Table 6 that the wind stress and the
barotropic mode Dy, are positively correlated for both
DB-7 and for Carnation. The correlation is not very
high, however, and an examination of the time series
shows several instances where there are changes in Dy,
which are not related to the local wind stress. For
example, the large changes in the currents at Carnation
during the period 28 July~3 August are evidently not
related to the local wind variations. That event is
presumably due to the propagation or advection of a
particular disturbance. :

The correlation between the wind stress and Ds,
(Table 6) is negative. This means that the north-south
baroclinic fluctuation in the surface layer is mostly
northward when the wind is southward. This result also

F16. 10. Spectral quantities of the north-south component of the wind stress, sea level, and
the barotropic and first baroclinic components of the currents at Carnation. The autospectra
are given in the left column, and the coherence and phase spectra given in the right column. |
The superscript v refers to the north-south component, u to the east-west component. The
phase is positive if the second signal is leading the first, e.g., at 0.3 cpd the wind stress leads
D, by about 90°, The bandwidth and the 95% confidence interval are indicated in the auto-
spectra and the 809, significance level is indicated in the coherence spectra.
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shows up in the phase spectrum between the two
(Fig. 10) and will be commented on in Section 8.

The barotropic mode D, is highly correlated with
sea level for both Carnation and DB-7. The correlation
is positive, which implies that southward currents
(negative Dy,) are accompanied by lowered sea level
at the coast and this is, of course, consistent with a
barotropic, geostrophically balanced alongshore current.
The modal amplitude of the first empirical eigenfunc-
tion, Ey, is slightly better correlated than Dy, with
the wind stress and sea level for both Carnation
and DB-7.

A rough estimate for an offshore scale L of the coastal
response may be obtained from a comparison of the
change in sea level Ak at the coast and the corresponding
change AD, in the barotropic component of v at DB-7.
From Fig. 4, we find A4=30 cm, AD;=50 cm s™
during 16—22 July 1972, Assuming, for simplicity, an
exponential decay of the barotropic component A (x)
= AD, exp[ (x—x0)/ L], where xo= —10 km corresponds
to the location of DB-7, and utilizing the relation

Ak=(f/g) Arydz

for a geostrophically balanced v with A(—=)=0, we
obtain an e-folding scale of L=30 km, which is in
qualitative agreement with that observed (Kundu and
Allen, 1975).

It is of interest to check the correlation of the dy-
namic modes with the temperature measurements. If
we assume that the temperature variations will reflect
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Fic. 11. A typical vertical temperature profile near DB-7
taken on 23 August 1972 [cast number 480 of Halpern and Hol-
brook (1972)].
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density variations, then we expect the temperature
fluctuations to be related to the baroclinic mode.
Because of (3.1) and the hydrostatic relation (A2d),
the density mode will be given by the z-derivative of
the mode shape Z,. Thus, the first baroclinic density
mode has nodes at the top and bottom, and an antinode
coinciding with the point of maximum |Z,,'. The
largest fluctuation in p may be expected near this anti-
node, which appears to be (Fig. 7) somewhat above
the zero crossing of Z,(z). The density in the region of
these experiments, however, is strongly controlled by
the salinity. In fact, all the density data from which
N (z) was calculated for DB-7 showed a temperature
inversion at about 40 m (Flg 11) The temperature at
Carnation also showed an inversion near 40 m, but it
was much weaker than that at DB-7 and in many
cases the temperature was nearly constant with depth
near 40 m.

The temperature measurements at 20 m showed
relatively large fluctuations which were evidently not
related to the baroclinic velocity field but were probably
related to events in the mixed layer. The temperature
measurements at 60 and 80 m show variations of very
small magnitude, and are not very reliable. We con-
centrate, therefore, on examining the 40 m temperature
measurements. A comparison of the time series of the
40 m temperature, T'4o m, at DB-7, shows a strong visual
correlation with the series for Dy, and E,,. Those series
are plotted in Fig. 12 where, for the sake of comparison,
the linear trend is removed from each series. The
similarity is evident. The correlation . coefficients
(Table 6) are correspondingly relatively high (—0.6+
and —0.67). Note that the sign of the correlation is
determined by the sign used in defining the eigenfunc-
tion Z.. According to our definition (Fig. 6), the ob-
served sign of the correlation means that a positive
temperature fluctuation at 40 m was accompanied by
a southward baroclinic velocity fluctuation in the
surface layer, as can also be seen by comparing the
temperature series in Fig. 12 with the baroclinic long-
shore velocity series in Fig. 8. This behavior is expected
from the thermal wind relation if the baroclinic com-
ponents are assumed to decay in the offshore direction
and only if a-temperature inversion, i.e., a negative
temperature gradient, exists near 40 m.

It may be mentioned that for Carnation the 40 m
temperature was poorly correlated with Di, and E.,
which is possibly due to the fact, mentioned before,
that the temperature gradients were extremely weak
near 40 m at Carnation,

At DB-7, where T4 m and D,, were fairly well corre-
lated, a corresponding check of the correlation coeffi-
cient of Ty o with the barotropic mode D), showed a
negligible correlation. Since the vertical movement of
density surfaces due to the barotropic mode should be
much smaller than their movement due to the baro-
clinic mode, this gives us some confidence in the modal
decomposition and in the representation of baroclinic
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F16. 12. Comparison of the temperature at 40 m with the amplitudes of the
second dy'namic and empirical eigenfunctions for the north-south components.
The E; series is plotted with its sign changed for clearer visibility. The linear trend
. is removed from all series, although it was appreciable only for the temperature

senes
velocities by D,,. Continuous measurements of both
salinity and temperature, so that a time series for
density could be calculated, would, of course, provide
a means for a better check.

Referring to the autospectra plotted in Fig. 10, we
note that the most conspicuous general feature.is a low-
frequency peak in all spectra at frequencies between
0.06 and 0.1 cpd. The peak in the wind stress rw and in
Dy, is around 0.06 cpd while that for Dy, is higher, near
0.09 cpd, and that for sea level is somewhere between
these two.

Near the frequency 0.06 cpd where the autospectrum
of the wind stress 7w has a peak, the values of the
coherence between D, and rw, denoted by Dy, vs 7w,
and that between D,, vs 7w are relatively high. The
coherence Dy, vs 7w and Dy, vs 7w are also relatively
high near this frequency and likewise so are the co-
herence Dy vs Dy, and D, vs Dy,

The values of the phase spectra in these regions of
high coherence are also of interest. We shall discuss in
Section 8 some consequences, with respect to phase, of
simple theoretical models .of wind-stress-forced baro-
tropic and baroclinic motion on the continental shelf
and slope and attempt to relate them to the present
measurements. For convenience, we have listed in
Table 8 the values of the coherence and phase for the
various components mentioned above.

There are several other peaks in the autospectra and
coherence spectra at higher frequencies. We point out
two frequencies, one in connection with the barotropic
mode and the other in connection with the baroclinic
mode, where there is simultaneously a high coherence
between the wind stress and both the «# and the v com-
ponents and also a high coherence between the # and v
components themselves. These are seen in Table 7

Although the spectral calculations for 1972 from
DB-7 have not been presented, we mention one point
from those results in connection with the low-frequency
w=0.06 cpd bebavior found in the 1973 Carnation
records. A very similar low-frequency behavior is evi-
dent in the 1972 results. There is a large peak in the
autospectrum of the alongshore component of the wind

stress, in that case near w=0.14 cpd, which is ac-
companied by large relative values of the coherence
between Dy, vs tw, D, vs 7w and Dy, vs Dy,. There
is also a peak in the autospectrum of Dy, near that
frequency and high values, although not a peak, in the
autospectrum of Dy,. The values of the phase between
the variables mentioned above are similar to those
from 1973 near 0.06 cpd and are listed, with the values
of the coherence, in Table 7. These features are also
evident in the presentation of the 1972 results by
Smith (1974).

8. Dynamical discussion

An idealized model for the motion of coastal waters
in response to meteorological forcing is discussed in
Appendix A. One very useful result from that model

TaBLE 7. Values of the coherence and phase at selected fre-
quencies. For the phase, the second variable leads if the value is
positive.

~ Frequency Coherence Phase

1973

0.06 cpd Dye vs v 0.65 10°:38°

Dy vs mw 0.83 80°£23°

Dy, vs Dy 0.80 70°+32°

Dy vs 7w 0.78 —180°4:27°

Dsy vs 1w 094 45%°4 7°

Day vs Dy, 0.68 —135°+35°

0.28 cpd Diy vs w 0.90 90°£15°

. Duvsw 0.60 200°+45°

Dy vs Dy 0.74 120°+30°

0.48 cpd D1 vs T 0.94 —130°% 7°

Deu vs T 0.84 170°423°

Dey vs D!i 0.94 —‘600:*: 7°
1972

0.14 cpd Dy, vs rw 0.96 19°+ 7°

Dy vs rw 0.82 83°+32°

Dy vs Dy 0.90 62°4:18°
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is the fact that the time-dependent alongshore behavior
of both the barotropic and baroclinic components of
the motion is governed by a forced, first-order wave

equation, where the alongshore component of the wind"

stress 7w is the forcing mechanism (Gill and Schumann,
1974; Gill and Clarke, 1974). Some examples of the
solutions to' this equation, with simple representations
for 7w, are given in Appendix A. We discuss below some
" results from these examples in relation to the values
of the phase spectra at frequencies where the coherence
between the wind stress and the dynamic modes is rela-
tively high. These frequencies were pointed out in
Section 7 and the quantities of interest are summarized
in Table 7.

Some of the conclusions we draw here, based on
measurements at a single station, certainly have to be
regarded as tentative. This is especially true when they
concern results which follow from an alongshore propa-
gation or an alongshore distribution of the wind stress,
with a consequent response of the currents that varies
in the alongshore direction. We feel, nevertheless, that
it is worthwhile to examine the present single-station
records in light of the simple results from Appendix A.

We first consider the barotropic components and refer
to the results in Table 7 for the frequencies w=0.06
cpd for 1973 and w=0.14 cpd for 1972. The frequency,
w=0.06 cpd, is characterized by a peak in the auto-
spectrum of the wind stress and, relative to higher fre-
quencies, a great deal of energy in the barotropic com-
ponent D;,. With regard to the phases, one important
point is the very small lag (~10°) of D;, with the
. wind stress 7w. In addition to the small phase lag of
D,, with rw, the phase results also show that rw leads
Dy, by about 80° and that Dy, leads D;. by approxi-
mately 70°. Similar behavior was found in the 1972
measurements at w=0.14 cpd. There is a peak in the
autospectrum of the wind stress r and a small phase
lag of Dy, with 75 (~19°). In addition, ry leads Dy,
by about 83° and D, leads D, by approximately 62°.

TABLE 8. Summary of the time phase relation of v(1), (1) and
ug with the wind stress rw. The phase is the value by which the
second quantity leads, if it is positive, or lags, if it is negative.

Phase
W o(1) VS T

Independent of y: (A33)

for (A3S) withi=0], =~ 90° —_— 180°
Traveling wave (A35)
{w20). .
ém"m +1) >0 90° 0°, 180°* 180°
a17w+41) <0 -90° 0° 180°
(61™% +1) =0 (resonance) 0° 90° 180°
Standing wave (A45)
(w20;120).
a1 3wl 90° —=90°, 90°** 180°
ar ekl ' 0°, 180°* 0° 180°
a1 = (resonance) [13d 90° 180°

* The phase is 0° for 1 >0 and is 180° for —a1™'w <! <0.
** The phase may be either of these two values depending o nthe value of
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In reference to the results presented in Appendix A
and summarized in Table 8, we can make the following
points. The small phase lag of Dy, with the wind stress
and the approximate 90° lag of Dy, with 7w is definitely
not consistent with a local two-dimensional, i.e.,
y-independent, driving of the currents by the wind
stress. In that case, Dy, should lag r# by 90° and D;,
should be 180° out of phase with 7. In fact, the closest
agreement of the observed barotropic phase results at
0.06 cpd for 1973 and at 0.14 cpd for 1972, with the
theoretical examples in Table 8 is with the case where
the wind stress is represented by a traveling wave and
where there is a resonant response. In this model,
resonance results if an alongshore component of the
wind stress rw travels northward along the coast as a
wave with the same alongshore wavelength and phase
speed as a free, long (i.e., nondispersive) continental
shelf wave. Solutions from the theoretical model
(Appendix A) indicate that, in the resonant case, the
time variation of D), may be in phase with rw and
Dy, may lag rw and D, by 90°. These results are
similar to those in Table 8 for the barotropic com-
ponents at 0.06 cpd (1973) and at 0.14 cpd (1972).

For the Oregon coast, typical values of phase speeds
for the first and second mode barotropic shelf waves,
in the long wave limit, are ¢, ~400 km day— and g, = 100
km day~! (Cutchin and Smith, 1973). At a frequency
of w=0.06 cpd this implies an alongshore wavelength,
for resonance, of §,1=6670 km for the first mode and
6,2=1670 km for the second. For the corresponding
1972 frequency of w=0.14 cpd, we obtain §,;=~ 2860 km
and 8,2 710 km.

It is conceivable, based on these results, that a con-
siderable amount of the low-frequency energy in the
barotropic component of the currents on the con-
tinental shelf is transferred from the atmosphere to the
ocean by a resonant, or near-resonant, condition be-
tween the alongshore component of the wind stress and
long, barotropic continental shelf waves. The idea of a
resonant response of forced shelf waves was originally
given by Robinson (1964) and was later expanded on
in more detail by Mysak (1967). This picture is at
least consistent with the phase relationships, which

- were similar in the measurements from both years, of

the barotropic components of the currents D, and
D, with the wind stress rw. It is also consistent with
the result that the autospectrum of Dy, falls off with
increasing frequency much more rapidly than the auto-
spectrum of the wind stress rw. It appears, from that
fact, that the energy of the wind at low frequency is
more efficiently transmitted to the barotropic com-
ponent of the alongshore current than the energy at
higher frequencies. A resonant condition may well pro-
vide the mechanism for an efficient energy transfer.
For the barotropic component in 1973 at the higher
frequency, w=0.28 cpd, we see from Table 7 that Dy,
lags rw by about 90°, D, lags 7w by about 200° and
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D1 lags Dy, by approximately 120°. In contrast to the
lower frequency, these results are in fact reasonably
consistent with a local, y-independent driving of the
currents by the wind stress, as shown in Table 8. Why
this type of driving might appear at such a frequency
is not clear, but we do note that there is a definite peak
in the wind stress autospectrum near 0.28 cpd.

In connection with the baroclinic component, if the
ocean responds to Tw as predicted in the idealized
theoretical model in Appendix A, then we would
expect the directly forced parts of Dy, and D, since
their alongshore and time-dependent behavior is
governed by similar equations (Appendix A), to be
coherent with 7w at the same frequencies. We find,
however, that Dy, and D,, have a negligible correlation
at zero lag (Table 3) and that, in general, the co-
herence spectra of D, and D, vs 7w (Fig. 10) differ
considerably. In addition to this point, direct explana-
tions for the behavior of the baroclinic components
at the frequencies w=0.06 cpd and-w=0.48 cpd in
Table 7, are not readily found. It is pointed out in
Appendix A that, according to the present model, D;.
should be 180° out of phase with rw. This is close to
what is found at the higher frequency, w=0.48 cpd,
but at the lower frequency w=0.06 we find that Da,
lags rw by 45°.

R.The most puzzling behavior, however, is found with
the v component. At w=0.06 cpd, D2, is approximately
180° out of phase with rw, whereas at w=0.48 cpd,
7w lags Dy, by 130°. This phase behavior of Dy, vs rw
is also reflected in the negative correlation coefficient
of D;, and rw at zero lag (Table 6) which is found at
both Carnation and DB-7. Of the examples presented
in Table 8, the only case where D., could be 180° out
of phase with 7w is the one where the wind stress is in
the form of a standing wave and where ¢; 'w<J, so
that the balance in the y momentum equation is ap-
proximately geostrophic. In terms of w (in cpd) and an
alongshore wavelength of §,(km), the latter condition is

whye 1K1 (8.1)

With ¢,=50 km day— (Appendix A), Eq. (8.1) is
satisfied for w=0.06 and w=0.48 if §,<800 km and
8,104 km, respectively.

It seems possible that, compared with the barotropic
mode, the baroclinic mode may effectively see the wind
stress on shorter alongshore scales. This could be
because the baroclinic mode exists in a narrow region,
of onshore-offshore scale of the order of 10~15 km, for
which alongshore coastline and bottom topographic
variations could have a relatively larger effect in
causing alongshore variations in the motion than they
have for the barotropic mode, which has a greater
onshore-offshore scale. Also, the density structure
within the 10-15 km wide region, and, therefore the
basic state upon which the response depends, may
actually vary considerably in the alongshore direction.
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If the baroclinic mode is capable of responding on
relatively short alongshore scales, then the satisfaction
of a condition like (8.1) may be reasonable.

It is not clear, however, how to reconcile, at the low
frequency w=0.06 cpd, the standing wave distribution
of the stress, which may provide a possible rationaliza-
tion of the behavior of the D,, component, with the
traveling wave wind stress distribution which was used
in an attempt to explain the barotropic behavior. In
addition, at the higher frequency w=0.48, the satis-
faction of (8.1) requires alongshore wavelengths that
seemn rather small, i.e., §,<<100 km. We conclude, there-
fore, that at this point the behavior of the baroclinic
component remains somewhat of a puzzle. Hopefully,
a more complete picture of the baroclinic behavior will
emerge when the full set of current meter measurements
from CUE-I and CUE-II are analyzed and are de-
composed into barotropic and baroclinic modes.

9. Summary

Low-frequency (w<0.6 cpd) variations in the currents
in 100 m of water on the continental shelf off the coast
of Oregon during two upwelling seasons have been
investigated. The currents were measured at twe sta-
tions. One station, DB-7, was maintained for 48 days .
during the summer of 1972 as part of CUE-I and the
other station, Carnation, was maintained for 54 days
during the summer of 1973 as part of CUE-II. The
current measurements were made at 20, 40, 60 and
80 m depths at DB-7 and at 20, 40, 60, 80 and 95 m
depths at Carnation. The north-south (approximately
alongshore) v and the east-west (approximately on-
shore—offshore) # components of the currents have
been decomposed into two types of modal structure in
the vertical direction. The two modal structures are 1)
the dynamic modes, provided by the separable solution
of idealized governing equations and boundary condi-
tions and 2) empirical orthogonal modes, which depend
only on the statistics of the data. For the dynamic
modes, the barotropic (depth-independent) and the
first baroclinic mode have been fitted to the measure-
ments by minimizing the squared residual. The time-
dependent behavior of the modal coefficients has been
compared with the time variations in the wind, the sea
level, and the continuous temperature measurements
made at the location of the current meters.

Qualitatively, the results from the two separate up-
welling seasons are quite similar. When the results are
summarized below without reference to the year it
implies that the conclusion holds for both years.

The dynamic barotropic mode for the alongshore
component of the current, Dy,, has a negative mean
value, which implies a mean southward barotropic flow.
The first baroclinic dynamic mode, Dy, also has a
negative mean value, which implies a mean shear in
the current such that there is a southward flow near the
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surface and a northward flow near the bottom. The
standard deviation of the barotropic component D, is
found to be twice as large as that of the baroclinic
component Ds,. The major fluctuations of the along-
shore component of the currents are therefore baro-
tropic. It is also found that the barotropic mode D,
is very well correlated with sea level and that, at DB-7,
the baroclinic mode D, is correlated with the tempera-
ture fluctuations at 40 m.

The first empirical eigenmode of the alongshore
component of velocities, Ey,, accounts for about 91%,
of the energy and is fairly depth-independent in struc-
ture. It is also extremely well correlated with the
barotropic dynamic mode Dy, and is slightly better
correlated with sea level than Dy, is. The second em-
pirical eigenmode Ej, accounts for about 7% of the
energy and resembles the first baroclinic dynamic mode
in vertical structure.

Calculations for the 1973 measurements of the auto-
spectra of the north-south component of the wind
stress Tw, the sea level, and the dynamic modes Ds,,
Dy, D., and D., show a low-frequency peak in all
spectra between 0.06 and 0.1 cpd. Near the frequency
0.06 cpd, the values of the coherence between the
dynamic modes and the wind stress 7% and between
the respective % and v components of the dynamic
modes, i.e., between Dy, vs Dy, and D, vs Da,, are
relatively high. The low-frequency behavior of the
barotropic mode at 0.06 cpd is characterized by a small
(~10°) phase lag of D), with 7w and an approximate
80° phase lag of Dy, with r. In the 1972 measurements,
there is a similar low-frequency behavior near w=0.14
cpd, i.e., there is a peak in the autospectrum of the

wind stress and high values of the coherence between.

Dy, vs tw, Dy vs 7w, and Dy, vs Di,. The phase lag of
Dy, with 7w is small (~19°) and the phase lag of D,
with 7w is about 80°, similar to the phase results from
1973 at 0.06 cpd. In the 1973 results there are also
relatively high values of the coherence for the baro-
tropic mode between the currents and the wind stress
and between the % and v components of the currents,
i.e., between Dy, vs 7w, Dy, vs 7w, and Dy, vs Dy, at
the higher frequency of 0.28 cpd.

An idealized theoretical model for wind-driven motion
on a continental shelf and slope was utilized to provide
information on the phase relationships of the wind
stress with the barotropic and baroclinic # and » com-
ponents of the currents. The phase v_a.lues for Dy, vs
rw and Dy, vs 7w at 0.06 cpd in 1973 and at 0.14 cpd
in 1972 are consistent with the theoretical results for
the resonant response of long, barotropic continental
shelf waves to an alongshore component of the wind
stress traveling northward along the coast as a wave.
The observed phase values of the barotropic com-
ponents at the higher frequency 0.28 cpd are, in con-
trast, reasonably consistent with a local, i.e., along-
shore, independent driving of the barotropic currents
by a time-varying wind stress.
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APPENDIX A
Theoretical Considerations

We utilize the following conceptual picture for the
response of the ocean in this coastal region to meteoro-
logical forcing (Allen, 1973a). We expect a baroclinic
response, involving forced internal Kelvin waves, in
a narrow region over the continental shelf and near
the coast with an onshore-offshore scale the order of the
internal Rossby radius of deformation Sz=HYN/J,
where H is a characteristic depth, V a characteristic
Brunt-Viisild frequency, and f the Coriolis parameter.
For typical values of H=100 m, N=2X10"2 st
(corresponding to a Ap/pe=2X10"* over H) and
f=10~*571, we find 6z~ 14 km. We also expect a baro-
tropic response, consisting of forced continental shelf
waves, which extends over a broader region with off-
shore scale the order of the width L of the continental
shelf and slope. Off the Oregon coast, L~ 120 km.

It was shown by Allen (1975a) for a two-layer coastal
model that the barotropic and baroclinic components
of the motion would be coupled if the parameter
A=28g/85is O(1), where 65 is a characteristic scale length
of the bottom topography, given by ég= |H/H,|3 It
was also shown that, on the Oregon continental shelf
@.e., for || <30 km) during the upwelling season, \
has values that are close to O(1). The determination
of the coupled modes of motion when A=0(1), how-
ever, appears to be a difficult problem. In order to
make some progress in decomposing the velocity field
into barotropic and baroclinic components we will
proceed and assume that A1, in which case the baro-
clinic and barotropic components are uncoupled, and
hope that the most essential dynamics are retained.
As a result, the forced baroclinic response, within 5z
of the coast, effectively feels only a flat bottom in the

* first approximation (Allen, 1975a). We complete the

model by adding a vertical wall to represent the
coastal boundary.

 The coordinate system is defined in the main text (Section 4).
Here we assume that the coastline is straight and is aligned with
the y axs and that the origin is placed at the coast and on the
bottom.
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We first formulate the baroclinic problem. Consider
an incompressible fluid which satisfies the Boussinesq
approximation and which is situated on an f plane
which effectively rotates with uniform angular velocity
Q=3 ff(. The problem is linearized by the assumption
that the motion results in negligible nonlinear fluid
accelerations and in small departures from an equi-
librium, stable density distribution 5(z). The hydro-
static approximation is utilized. We consider inviscid
motion away from frictional regions, i.e., away from
the surface layer, the bottom boundary layer and the
very nearshore region. We will assume in addition that
the typical alongshore y scales, §,, are considerably
larger than x scales, 8,, and that the time scale o is
greater than f-3, i.e., that

8,58, 51 (Ala, b)
The resulting equations are
-t v, +w,=0, (A2a)
= fo=~p:/ oo, (A2b)
vt fu= —pu/po, (AZc)
0= —p.—pg, (A2d)
prtws,=0, (A2)

where (u,5,w) are the velocity components in the
(x,y,2) directions, p is the perturbation density field,
po a reference density, and g the acceleration of gravity.
The geostrophic balance in. (A2b) follows from (Al).

It is assumed that the motion is driven by an along-
shore component of the wind stress rw which does not
vary appreciably with x over the shelf-slope width
scale L (L>6g). The wind stress acts as a driving
mechanism through the suction of fluid into the surface
layer at the coast (x=0, z=H) (Allen, 1973). The
surface is assumed to be a rigid lid and the boundary
conditions at z=0, H are

z=0, H. (A3)

Egs. (A2) may be combined into an expression for
the conservation of potential vorticity which may be

w=0,

written in terms of the pressure alone and integrated

with respect to time. Assuming that the initial potential
vorticity is equal to zero, we obta.in
_ pzz+ (f'{V"sz)z-"- 0, (A'})
where N?= —gp,/po is the square of the Brunt-Viisild
frequency. In terms of p, (A3) becomes
$:=0, 2=0, H. (A3)

Eq. (A4) with boundary condition (AS) may be
solved by a separation of variables,

p= 3 Faly)Xa(@)Za(2), (46)

n=1

where, from (A4),
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Xnzz—Ya X = 0, (A7)
(7 Zns) et va2Z,=0, (A8)

where S=N?/f2 v, is the separation constant, and
where (A3) requires

Zne=0, 2z=0, H. (A9a, b)

The appropriate solution to (A7) is X.=exp(y.x).
Eq. (A8) with boundary conditions (A9) defines an
eigenvalue problem for v,. Similar separable solutions
for coastal problems were obtained by Walin (1972)
and by Gill and Clarke (1974) [see also Mooers and
Allen (1973)].

If the motion is forced by an alongshore component
of the wind stress rw(y,!), then the boundary condition
at x=0 may be written as (Pedlosky, 1974; Mooers and
Allen, 1973)

pofu= *(fu+f"?zz)= —rwd(z—H), x=0, (A10)

where §(z—H) is the Dirac delta function: Eq. (A10)
represents the suction into the ‘surface Ekman layer
at the coast.

An equation for ¥, results from the application of
(A10) and is

Cn Vet Yny= TWn(y;t); n= 2: 31 ey (All)

where ¢.=fy,™' and where rw,. is defined by the.
expansion

(3 )8(e—H) =hrwH-+ T riaZn.

n=2-

(A12)

[The n=1 solutions are taken to be Z,=constant,
X,=constant, and they correspond to the representa-
tion, within |x| {O(8z), of the barotropic solution,
which varies on the larger scale é.=L>>6z.] We see
that ¥, satisfies a forced first-order wave equation
(Gill and Clarke, 1974). Note that ¢, is the phase
velocity for free internal Kelvin waves. Using v, from
Table 3, we find, e.g., for Carnation, that ¢;=54 cm s™!
and ¢;=26.5 cm s~

Since a mean baroclinic alongshore current, with ac-
companying onshore~offshore density gradients, exists
on the shelf during the upwelling season (Smith, 1974;
see also Table 1), we should assess the validity of the
assumption of negligible nonlinear advective effects.
To-do this, we now formulate the problem with a mean
alongshore current.

Let us denote the total velocity compoents by
(,9,%) and the full pressure and density by p and 5. We

assume that
=f(x2)+ o4 -, (A13a)
A=ut---, (A13b)
T=wt -, (A130)
p=px2)tot---, (A13d)
B=b@a) ot ey (A13¢)
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where the variables in the basic state satisfy
P _ I 4

fi=—, Pi=—gp, Pi=—-—.

po f po

(Al4a,b, ¢)

‘The resulting equations for the perturbations are

wuz+v,4w,=0, (Al15a)

(udu,) — fo=—pz/po (A15b)

v+ ub v, twh+ fu=—p,/po (A15¢)

0=—p,—0g, (Al15d)

Pt —&v,u-}-vpy ——Nzw 0, (A15¢)
8 8

where N2(x,2)= —gp./po. The terms in the parentheses
in (A15b) may be neglected with assumptions (Al).
Ifa potentla.l vorticity equation is formed from (A15),
the resultis

6 fo\™? Pzt TPy B :”
z - - _———+— :t+ 3,
ox (”,H ) [ P f N’(p e
w foof . fon
+?_f‘+—"{ _—(P:t'i‘vpyz) _—(vs+f_‘_)
?ﬂ 77?:11 A - _
X[—?u"‘?——}—-l“N';(?u-l—va)]}—0. (A16)
Eq. (A16) reduces to (A4) if
U U
R1=——'<<1, R,= ; 2((1, (A17a, b)
Us: Ufs.
Ri=—<«K1, Ri=——<K1, (Al7cd)
5,, z lvmz

where N2 is the minimum value of N?, U is a charac-
teristic velocity scale, and §;=H is a typical s scale.
We assume that typical values are U=~20 cm s,
o.~15 km, §,~1000 km, §.~100 m, N=10"% s,
J=104s7, §,~ 14 days, vvhxch gives R,=0.13, Rg~0.04,
R;=~0.2 and R,=0.3. These values are reasonably
small and we will proceed and ignore the effect of the
basic current and use (A4).

We next consider the barotropic problem. In order
to point out some qualitative features of the barotropic
response we will simplify the problem and assume that
the bottom topography of the shelf and slope is given
by (Buchwald and Adams, 1968)

H=H, exp(—x/&B), (A18)

for —L<2<0, and that H does not vary with y. At
x= —L the slope adjoins a flat-bottomed ocean interior
with a constant depth, H=Hyexp(L/ds). We follow
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a procedure somewhat similar to that of Gill and

Schumann (1974).
For the barotropic component we may assume that

the governing equations are

#t v+ w,=0, (A192)
— fo==1p:/po, (A19b)
vt fu=—pu/po, (A19c)

0=—p, . (A19d)

where (A19b) again follows from (A1) and is eqtﬁyalent
to making a long-shelf-wave approximation. A transport
streamfunction ¥ may be defined, such that

Hu=y,, Hi=—y,, (A20a, b)
and (A19) may be combined into one equation for ¢,
which is _

(Yot 857 ¥2)e =057 fihy= (A21)
where 5~!= — H,/H. The boundary conditions for ¢ are

W= —rw/pof, x=0, (A22a)

¥:=0, z=—1L, (A22b)

where (A22b) follows from assumption (Ala) (Gill and
Schumann, 1974). It is convenient to let

b=yt 1w/ (pof), (A23a)

or

F=y=(oof) / wGds,  (A23b)

and to solve for . The term 7w/ (pof) in (A23a) just
represents a #% component which balances two-dimen-
sionally, i.e., in a plane normal to the coast, the suction
into the surface Ekman layer at x=0 (A22a). With the
substitution of (A23), Eqs. (A21) and (A22) become

(‘pzz’*’ 5B_l‘pz)t"58_lf§;v= - TW(Poaﬂ)-l’ ("\24)
¥,=0, =0, (A23a)
¥.=0, z=-L. (A25b)

The problem now is identical in form to that treated
by Gill and Schumann (1974). ¥ may be expanded in
terms of the free-shelf-wave eigenfunctions Fa.(x), i.e.,

¥= Zul Gn(n0F (), (A26)
where F, satisfies the eigenvalue problem
Fozet857 FrtB8a2Fn=0, (A27a)
F,=0, z=0, (A27b)
Fnz=0, x=-—L. (A27¢)
The solution for F, is
F o= exp(—3x/835) sin(k.x/L), (A28a)
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where k, (n=1, 2, 3, ...) is the nth root of (A30), we obtain
tank,= —20pk,/L, (A28b) barwosin(wi+ly)

Gp=rrm——————, (A36)

and fpo(an_lw+l)

2. 21 1s 2

Bat= (Ba/LV+1057" (A26c) For simplicity, we concentrate on the first mode, n= 1,
Expanding and on its contribution to # and », which we denote
(A29) by wq and vgy. From (A20), (A23) and (A26) we

1= Z ann(-"')»

and substituting (A26) and (A29) into (A24), we find
that G, satisfies the forced first-order wave equation

aﬂ—lGn¢+ Gny= T an (fpo)—l, (A30)

where

an=f/ (388+") (A31)

is the phase velocity of free, long shelf waves. We note
that the derivation of an equation of the form (A30)
does not depend on the simplified exponential bottom
topography and that a similar result will follow for
more general H=H (x) (Gill and Schumann, 1974).

To account for frictional effects, Gill and Schumann
(1974) suggest the modification of (A30) to, essentially,

an-lGnt+ Gny+ (anTF)_lGn= Tan (fpo)"'l, (A32)

where Tp is a frictional time scale. Allen (1975b) has
examined the effect of bottom friction, through Ekman
layer pumping, on forced coastal trapped waves. For
barotropic shelf waves, (A32) is a reasonable model.
The frictional effect is not so simple, however, for forced
internal Kelvin waves and the simple addition of a
frictional term is not appropriate for (A11).

Some properties of the solutions of (A30) and (A11)
are referred to in Section 8 in relation to the observa-
tions. For that purpose, a few solutions with simple
expressions for the wind stress 7w are given here.

If the wind stress 7w is independent of y, or if it may
be locally regarded as such, then ¢, =0 and (A24) may
be easily solved directly. For example, consider that
the wind stress is
(A33)

where 74, is a constant. Then the solution to {(A24) is

Hy= ._‘;:-_- TWO(wpo)—lei(ut—flz)

X {1—exp[— (z+L)/35]},

Tw= Twee’™’,

(A34a)

where

Hu= ¢”= —TWO(‘fpo)'—lei‘“. (A34b)

In this case, the time variation of % is = radians out of
phase with the wind stress and v lags 7w by 4. This
result, of course, is consistent with the balance v+ fu=0
in (A19c).

Let us now consider the solution to (A30) when 7w

has the simple form of a traveling wave, i.e., for
Tw=Two cos(wi+1y), (A35)

where we assume, for convenience, that w2>0. From

obtain
Hugy=GyFy, (A37a)

H‘L'(l)= —GlFu. (A37b)

From (A282) we find that F1<0 and Fi.20 for
—~L<x<0 and also}fromY(A27)-(A29) that’5,<0.
It follows that

|1l rwed
Hugy= cos(wi+ly) | Fu, (A38a)
fro(ar™w+
Ho e U™ ot —hr] Ful. (A380)
Ty = Cos| \w y) —3T 1z
foo(arw+1)
Recall that the expression for the total u velocity
component (A23a) is .
Hu= Z Hu(,.)-l-Hus, (A393.)
where )
Hug= —(fpo) ‘rw. (A39D)

Considering only the contribution from the first mode
and Hug, i.e.,

Hu=Hugy+Hug+---, (A40)
we obtain
Hu=—""2 cos (wt+ly)[1 —M]+- e (Adl)
Jeo (a7 w+i)

From (A38b) and (A41) we see that, at a fixed value
of y, the time variation of % may be either in phase or
= radians out of phase with the wind stress and
that, if (e %w+0)>0, 7qy lags v by 4, whereas if
(6:%w+1) <0, r1y leads 7w by 4. Note that, for /=0,
the phase results of (A34) are recovered.

For (a;'w1)=0, there is a resonance condition and
the solution for Gy, which satisfies G, ((=0)=0, is

G1= a1b1(fpo) 7 wot cos(wt—|1]5).

We then obtain '
Hugy=—a101(fpo) rwet cos(wt— |l y—=/2) | Fy]i],

(A43a)

H‘U(]) = albl(fpo)—l‘rwol FOS (wl— l lly) l Flzl . (A43b)

As far as the time oscillating part is concerned, vy is
in phase with the wind stress 7w and u(, lags v¢y and
k4 by %11'

(A42)
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Dissipative effects will, of course, limit the growth
of the resonant response. In fact, if (A32) is utilized,
the directly forced solution for Gy, when (we, "'+ 1)=0, is

Gr=a1b1Tr(foo)'rwo cos(wt—|1]y).  (A44)

It again follows that vy is in phase with 7 and that

wuqy lags vyy by 3w. If the resonant solution g, is

greater in magnitude than us, then the phase behavior

given in (A43a) should dominate, for x <0, that from us.

If the wind stress is in the form of a standing wave,
i.e., assuming /20, if

Tw=Two COSly coswt

= }rw cos(wi-t+ly)+cos(wi—1ly)], (A45)
then the solution for G, is
hr
=~—-—-1—10-—-[a1“w cosly cos{wl—3r)
fpo (a Tkt — F)
—Isinly coswt]. (Ad6)

For ey %I, corresponding to a .balance between
the first and third terms in (A30), i.e., to a two-dimen-
sional o+ fu=0 balance in (A19c), we obtain

Gi=birwo(fpearw)™? cosly cos(wt= §m), (A47a)
and
Hugy=— [b1| rwo(fpoarw) ™
' Xsinly cos(wt—37)|F1|, (A47b)
Hyvy= |b1| rwo(fpoai 'w)™? )
Xcosly cos(wt—37) | Fiz|. (A47c)

Similar to the behavior in (A38b), v, lags 7w in time
by 4x. In contrast to (A38a), however, here uy either
lags 7w by 3 or leads rw by = depending on the
value of y.

For o wk], correspondmg to a balance of the
second and third terms in (A30), i.e., to a geostrophJc
balance in (A19c), we obtain

G1= by7 wo(fpod) ™ sinly cosw!, (A48a)

and .
Hugy= | bs| rwo(fpol) ™" cosly coswt| F1|, (A48b)
Hyy= | b1 7wo(fpod) ™ sinly coswt| F1|. (A48c)

In this case, the time variation of #y is in phase with
rw and vy either is in phase or is w radians out of
phase with 7w, depending on the value of y.

For gy \w=1, there is a resonance condition due to
the northward traveling component of the standing
wave in (A45). Again, the resonant response should
dominate.

We have summarized these results on the time phase
relation of ¢y, %1y and ug with 7w in Table 8. Similar
results will hold for the .higher modes v(»y and #(n),
except that there may be changes in phase of = due to
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changes in sign, for different values of x, in F, and F,..
The addition of frictional effects, e.g., through (A32),
will lead to additional phase changes, but we do not
explore these here, except to note that the phase rela-
tions for the resonance cases, as defined in reference
to (A43) and the frictional solution (A44), are the same.

The alongshore and time, i.e., y and ¢, behavior of the
baroclinic modes is governed by a similar forced first-
order wave equation (A11). One difference in the inter-
pretation of the solutions to that equation for the
baroclinic mode, however, is that the total barochmc
% component is given by

u=Y uy=—(0of)' Y TwaXnZn  (A49)

and # is, consequently, directly determined by rwa.
Since Trwa=d.rw, where d, is a constant whose sign
depends on 7, u, is always either in phase or 180° out
of phase with r [e.g., with the signs defined as in
Section 5 such that Z,(0)<0, then d;>0, and u. is
180° out of phase with 7w]. On the other hand, the
baroclinic v component is given by ’

1= Z Un= (Pof)_l Z YanzZn; (ASO)

and v, is determined by ¥,. Since this is similar to the
way in which the barotropic v(s) is related to Ga, the
conclusions, from the previous examples on the relation
of the barotropic component of » with the wind stress
(Table 8), will hold in a similar way for the baroclinic
7 components.

APPENDIX B
Empirical Orthogonal Decomposition

To understand the meaning of the empirical orthog-
onal functions used in Section 6, consider an ensemble
of sample functions {¢(2)}, a single realization of which
can be denoted by v, (z). Assuming ergodicity, the index
% could be regarded here as time & (k=1,2, ..., K).
Also, in the present context the functions are defined
at a finite number of values of z;, =1, ..., V. To fix
ideas, the quantity v:(z;) could be regarded as the
velocity at depth z; at time ¢;. Imagine that for each
time # the data v:(z:), =1, ..., N, are plotted as a
point or a vector in an N-dimensional space; there are
therefore K points in this space.

We shall interpret the empirical eigenfunctions as
the principal directions or axes of these data points in
this iV dimensional space. Theit physical significance
is identical to the principal directions of solids or stress
fields. We consider the case of solids, where one defines
a moment of inertia tensor with respect to certain

Cartesian axes as
I;= / xixdv, (B1)
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where ¥; is the position of a volume element d, and
the integral is carried out over the entire volume of the
solid. To locate the principal direction of this solid, one
tries to find the axes which diagonalize the matrix I;;.
Then the “normal” moment of inertia (diagonal term)
is maximized along one axis and is minimized along
another axis. The third axis is another stationary
direction along which a slight change of direction de-
creases the magnitude of the inertia.

In the present case, the quantity analogous to the
inertia tensor in (B1) is obviously the real and sym-
metric matrix of correlation coefficients

ix
R(z:)2)) % 2= (20 (2)), (B2)

k=l
where the sum over time takes the place of volume in-
tegration in (B1). If a new set of orthogonal “axes”
#a(2:), defined by
%y A'.y

5 R(z5)6n(5) =hapn(z), n=1,-- ¥, (B3)

=]
i.e., by the eigenvectors of the correlation matrix, are

chosen and one defines new variables Eg, referred to
the new axes

Epn= g: (20 a(21), (B4)

$m=]

then the new correlation matrix does not have off-
diagonal terms; i.e.,

i1
- Z EknEkm=An6nm- (BS)
K k=1
From this it follows that
1 K
- Z Egn:"xm (Bé)

K k=1

so that the eigenvalues are the mean-square values of
the coefficients, that is, the average energy in the vari-
ous modes. It is easy to show that the sum of the eigen-
values add up to the total energy:

1 ¥~ 1 kK ~ N .
=2 T o¥@)=—X T Eh= X M\ (B7)
kol gl k=l nm=l el

It is well known that when a real and symmetric matrix
is diagonalized, one of the diagonal terms is maximized,
another is minimized, and the remaining also reach
stationary values. It is therefore clear that along any
orthogonal principal direction the sum of the squares of
the projections of all the data vectors in the V-dimen-
sional space is extremized. If the eigenvalues are
arranged such that A;>X\;>---Ay, then the eigen-
vector ¢, is the “best direction”* (maximum projection),

4 ¢, is really the straight-line fit to the data in the iV space,
minimizing the least-square normal error.
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¢ is the “worst direction,” and the others are simply
stationary directions for which a slight change of dircc-
tion decreases the magnitude of the projection, with
the plane formed by ¢1-¢; being the “best plane” etc,

From this discussion it is also intuitively obvious
that ¢, extracts the maximum energy out of the en-
semble, ¢, extracts the maximurmn energy out of what is
left, and so on. [For a rigorous proof, see Busch and
Peterson (1971).] This leads to the conclusion that the
expansion of the sample function in terms of the em-
pirical eigenfunctions ¢, is the one which leads to the
fastest convergence of the series. Hence, only a few terms
are needed to account for most of the variance of the
ensemble.

The connection of the empirical and dynamic mode
shapes should also be mentioned. It can be noted that
if eigenfunctions obey the orthogonality relation (6.3)
and their amplitudes obey the time uncorrelation rela-
tion (B3), then the eigenfunctions must obey relation
(B3); that is, (B3) follows if (6.3) and (B3) hold. If
the vertical resolution of the data series is high enough
and the vertical span complete so that integrals can
be replaced by sums, (5.6) would be approximated by
a relation like (6.3), and if the dynamics of the ocean
is such that ihe amplitudes of the various modes are
uncorrelated in time, then from the above discussion it
follows that the dynamic modes Z, would roughly obey
a relation like (B3) and the empirical and dynamic
modes would be similar in shape. However, if the dy-
namics is such that the amplitudes are correlated in
time, as is predicted, for example, from simple upwelling
theories where the wind stress directly drives both the
barotropic and baroclinic modes, then the empirical
modes will be linear combinations of the dynamic modes.
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