Hydrology and Earth System Sciences, 4(3), 5//-515 (2000) © EGS
Hydrology & Earth

System Sciences

RESEARCH NOTE

On the parameterisation of drainflow response functions

Adrian Armstrong

ADAS Gleadthorpe, Meden Vale, Mansfield, Notts NG20 9PF, UK
e-mail for corresponding author: Adrian.Armstrong@.adas.co.uk

Abstract

A procedure for the parameterisation of drain flow hydrographs is proposed. This involves the derivation of empirical linear
response functions, which are themselves parameterised. The parameters are the time and height of the peak, and the recession
characteristics. The recession limb of the hydrograph can be approximated best by the Youngs (1985) analysis, which requires two
parameters. The merit of this method is illustrated by an analysis of data from a drainage experiment at North Wyke, Devon, UK;

this shows that the model fits the data very well.
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Introduction

Hydrological investigations on small catchments frequently
generate long runs of discharge data. Among these, drainage
experiments often record the outflow from experimental
plots over a number of years. For example, the North Wyke
drainage experiment described by Armstrong and Garwood
(1991) generated records of drain and surface flow every 30
minutes at 18 measurement points over a period of 10 years,
a data base of approximately 3 million data points. Although
field drainage systems are artificial in construction, they
represent the means of discharge for large areas of land (e.g.
Robinson and Armstrong, 1988).

This note address the problem of summarising large data
sets to determine their main characteristics, such as those
obtained from such drainage experiments. Studies of the
hydrological balance can integrate the area under the dis-
charge versus time graph, to give total flows over specified
time periods. However, other studies may require an objec-
tive method of characterising the sequence of drain flow
hydrographs, to identify changes in drain system perfor-
mance both through time and between replicate plots. This
note identifies a procedure for deriving characteristics of
drain flow data series in an objective and reproducible
manner.

Theory

The main characteristics of a drain flow data series are

identified by examining the relationship between drain
discharge and rainfall, using linear response functions. Such
functions give a generalised relationship between the input
and output of any system. They have the simple form

o(t) = / K@)t = 1)de [1]
0

in which the Input, I(?), is transformed to the Output O(2),
by convolution with the kernel function K(r). This kernel
(the response function) can then be used to describe the
transformation of the input into the output. Applying this
analysis to drain flow hydrographs, the inputs are precipi-
tation P, and the outputs, the discharges, Q. If effective
rather than total precipitation is used, then the kernel
function becomes an estimate of Unit hydrograph (Dooge,
1973). However, the empirical response function is an
objective way of characterising the rainfall-runoff response
without any theoretical pre-suppositions. Indeed, the
response function, integrated over time, is a direct measure
of the relative proportion of the rainfall that appears as
discharge. There are, thus, significant advantages in
exploring response functions without any constraints
imposed upon them. The response function derived from
a strictly empirical analysis can be examined as an objective
way of describing the relationships underlying the
observations.
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Implementation

A response function can be calculated from any paired set of
inputs and outputs.

Usually derived from equi-spaced series of data in time,
the discrete version becomes:

min(m.,z)

0= > I(k)H(—k+1) 2]

k=1

in which the unit response function, H(k) is of length m. An
efficient algorithm has been presented by Bruen and Dooge
(1984): this permits easy estimation of the form of the
response function using a least squares fit. This algorithm
has already been used, (Armstrong 1988), to describe the
interactions between rainfall and water tables. Here, the
same form of analysis is used to examine the interactions
between rainfall and drain discharge.

The programme presented by Bruen and Dooge has been
implemented to take strings of data from the North Wyke
(and similar) drainage experiments, as a sequence of rainfall
and discharge measurements. This has then generated a
number of response functions, representing variations
through time, between replicates at a site and between sites.

Generalisation of hydrograph shapes

However, in search of even greater generalisation, a simpler
parameterisation of the response function was required.
Most response functions follow the classic Unit Hydro-
graph shape, with a rapid rise to a peak, and a gradual
decline thereafter. Parameters of the response function
were, therefore, generated to reduce the overall analysis of
the variation in system behaviour to a small number of
parameters. Use. of the Bruen and Dooge algorithm to
estimate the empirical response function enabled reduction
of the description to a set of parameters that describe the
overall behaviour of the system in a small number of
parameters. The response function is similar in form to the
Unit Hydrograph, so descriptors similar to those observed
in the Unit Hydrograph are appropriate. In particular, the
response function can be split into two sections, a rising
limb and a falling limb, separated by a single peak.

The parameters describing the rising limb of the hydro-
graph are relatively easy to define using the simple time to
peak and peak height by identifying the highest point in the
response functions. Occasionally, the last point in the
response function is the highest, implying that the length of
the response function is not sufficient to encompass all the
variation in the data series—but for drain flow hydrographs
these indicate problems with the data rather than an
anomalous response function. The recession limb of the
response function proved to be more problematical to
characterise. A simple recession could neither be expected
nor observed and several parameterisations were possible.
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Initially, a simple exponential curve of the form:

O =ac [3]

was fitted using linear regression; this does not necessarily
pass through the peak and so generally gave a response
function with a step in it, corresponding to the intercept at
¢t = 0. Further attempts to force the regression through the
point of origin did not generate good fits to the form of the
response function.

Rather than examine a wide variety of empirical recession
curves, Youngs’ (1985) theoretical form for the recession of
land drainage hydrographs used a transformation of time:

T = Cght [4]

where ¢ is the rate of flow at the peak, ¢ is time, and C and f
are constants. The discharge at any time, ¢, is then given by
Youngs (1985) equation 6:

Lo+ g

90
These equations cannot be transformed easily into a
regression style equation but parameters C and f# can be
estimated by calculating the sum of squared errors and
scanning the parameter space for the minimum value, then
reducing the step size and repeating the operation around
the minimum. This procedure works robustly and without
excessive loads on computer time as it converges within a
few iterations. (Examination of the ‘fitting’ surface has
shown these are generally well behaved and contain only a
single obvious minimum that is easily reached by a simple
searching technique). From the sum of squares at the
minimum, goodness of fit of the ‘best’ parameters can be
calculated.

This adoption of the Youngs (1985) equation has reduced
the recession component of the hydrograph to two par-
ameters, and the whole response curve to four parameters.
This seems to be a reasonable degree of simplification to
adopt for analysis of the response functions.

The degree to which both the full response function and
its parameterised representation fitted the data was explored
using the sum of squares (minimised to derive the response
function) as a measure of the goodness of fit for the response
function model. A correlation coefficient was derived
between the observed and predicted data series, as was the
Nash Model efficiency criterion (Vanclooster et al., 2000).

Example

These ideas can be illustrated by examining the drain flow
responses for a single discharge point (plot 10) from the
North Wyke data set (Armstrong and Garwood 1991). Flow
from a mole-drained system was recorded every 30 minutes,
and related to rainfall records on the same time base. As this
is a drained site, the equation of Youngs (1985) might be
expected to be relevant.
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Fig. 1. Observed and predicted data: Hourly rainfall, and drain discharge from plot 10, North Wyke 1984-85.

In compiling the input data for the programme, any
periods for which there were problems associated with the
definition of either variable, perhaps because of instrument
failure, were deleted. In addition, summer periods during
which there was no drain flow were omitted.

Data were compiled for five hydrological years (running
from 1 August to 31 July, so including the whole of the
winter drainage season without any break): 1983-84, 1984—
85; 1986-87, 1988-89 and 1990-91. Years were omitted
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where the data quality was insufficient for the analysis. To
avoid any effect due to the pattern of evaporation, the
effective rainfall was calculated as the actual rainfall—minus
the MORECS estimated AET (Thompson et al, 1981).
Because ET values are very low during the winter drainage
season, the effect of this correction was minimal.

Figure 1 shows the sequence of rainfall and runoff for the
year 1984-85. The response function calculated from these
data, and the three fitted forms are shown in Fig. 2. The

Youngs
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Fig. 2. Original and modelled response functions, North Wyke 1984-85 Original data points +.
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Table 1. Response function parameters: North Wyke 1984-85.

Model For different RF models
T to peak Q peak Fit—r
Youngs 1.5 0.107 C=0413 p=0478 0912
Exponential 1.5 0.107 p=0018 «=0.042 0918
Constrained exponential L5 0.107 p=0478

Table 2. Goodness of fit measures North Wyke 1984-5 for different RF models.

RF Model Fit RF to data:  Fit RF to data: Fit Modelled RF to data:” Fit Modelled RF to data:
r ME r ME

Youngs model 0.832 0.692 0.827 0.683

Exponential 0.810 0.653

Constrained exponential

0.759 —0.593

response function was fitted with a length of 120 steps, (i.e.
up to a maximum of 60 hours), and the three alternative
models were all fitted to this function. The model
parameters are given in Table 1, and the goodness of fit
for the three forms in Table 2. The originally calculated
values of the response function (plotted as data points, +, in
Fig. 2) remain ‘noisy’, and some of the values are negative, a
result that is clearly unrealistic in this case. Modelled
response functions are ‘smooth’ whereas the directly
calculated response function is ‘noisy’. (The Bruen and
Dooge algorithm suggests the use of a ‘smoothing’
parameter to control this noise, but a smoothing parameter
value of 0.08 did not affect the form of the dlrectly
calculated response function).

In fitting an equation to these data points, the simple
unconstrained exponential also becomes unrealistically
negative, whereas the exponential constrained to go through
the hydrograph peak does not fit the data adequately. The
function fitting the observed recession best was that given
by the Youngs (1985) equation; it followed the data, did not
go negative and so was adopted for further work. Some
small reduction in information is entailed; the correlation
coefhicient is reduced, on average by 1.5%

Table 3. Response function parameters: North Wyke.

The parameters for all six years analysed are given in
Table 3, and the goodness of fit results for the same 6 years
shown in Table 4. These show a consistent pattern of
behaviour; the height of the hydrograph peak declines
through the years, and the recession becomes slower (Fig.
3). The increase in hydrograph peak in 1986 is a
consequence of the renewal of the mole drainage in the
previous year. Otherwise, the response functions show a
continued decline in performance of the drainage system as
it ages, which is to be expected for mole drainage systems
Although the response function form behaves in a
consistent manner, the parameters describing the recession
(Table 4) do not. Hence, it is not possible to use these
estimated parameters as a means of back-calculating the
performance of the drainage system, despite their origins in
the geometry of the drainage system as derived by Youngs.
Used in this manner, they can be used only as parsimonious
descriptors of response function form.

Table 4. Model results: Goodness of fit measures: correla-
tion coefficient r, and Model efficiency, ME, for both simple
Response Function (RF) and response function fitted to the
Youngs’ analysis (YRF), North Wyke.

Year T topeak Qpeak C B Fit—r Year RF: r RF: ME YRF:r YRF: ME
1983-84 1.0 0.173 0.375 0.384 0.788 1983-84 0.926 0.858 0.919 0.837
1984-85 1.5 0.108 0.409 0477 0912 1984-85 0.833 0.694 0.828 0.685
1986-87 1.0 0.159 0.137 0.258 0.912 1986-87 0.799 0.634 0.794 0.623
1988-89 1.00 0.104 0.660 0.465 0.660 1988-89 0.766 0.580 0.740 0.547
199091 4.0 0.043 0.508 0.519 0.668 1990-91 0.393 0.139 0.383 0.124
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Fig. 3. Response functions, North Wyke 1993—1990.

Conclusions

This note has described the use of linear response functions
to the rainfall inputs to characterise the response of drain
flow systems. In fitting the response function, the analysis of
Youngs (1985) gives a good fit, which is excellent con-
firmation of his theoretical analysis. The example has shown
how the use of this function can achieve a parsimonious
description of the hydrograph response of drainage systems.
although these descriptors cannot be taken to the point
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where they can be used to deduce the parameters that
underlie the system response function.
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