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ABSTRACT

Stokes mass transport by surface gravity waves is related to the often more interesting Lagrangian
transport in a manner that is complicated by the earth’s rotation. This paper discusses the conditions under
which duration- and fetch-limited gravity wave transport will be important driving mechanisms for circula-
tion models. Curves of duration and fetch-limited Stokes transport are given as functions of dimensionless

time and fetch.

1. Introduction

Analytic and numerical models of the wind-driven
ocean circulation are usually forced by imposed surface
wind stress. This mechanical driving produces mass
transport in the surface layer identified as Ekman
transport which, in turn, drives other low-frequency
motions in the models, including motion at depth. An
important additional source of mass transport, La-
grangian transport due to surface gravity waves, exists
in nature and has not been accounted for in circulation
models. Since this Lagrangian wave transport can be
comparable to the Ekman transport in magnitude, it
will in some applications be necessary to include it in
the driving to obtain realistic results.

Unlike the Ekman transport, unfortunately, La-
grangian transport due to surface gravity waves cannot
be imposed on a model @ priori. Rather, the entire fluid
dynamic problem must be addressed. Furthermore,
simple analytic forms for the Stokes drift (to which the
Lagrangian transport is related) due to duration- or
fetch-limited gravity wave fields are not available in
the literature. The purpose of this paper is thus two-
fold; first, to discuss in general the conditions under
which surface gravity wave transport will be most im-
portant to circulation models; and, second, to calculate
the Stokes transport using existing wave spectra for
duration- and fetch-limited gravity waves.

Recognition of the importance of Stokes transport
for a variety of unsteady oceanic motions has come
only recently. Longuet-Higgins (1969) called attention
to the difference between the mean current at a fixed
point (the Eulerian mean) and the mean current
following a fluid particle which passes this point (the
Lagrangian mean). Generally the Lagrangian mean
has the greater physical significance. The difference
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in these means represents the Stokes velocity, i.e.,
Lagrange= Euler+Stokes. As Longuet-Higgins noted,
the Stokes current may be comparable to or greater
than the Eulerian mean for fluctuating motion where
the velocity amplitude exceeds the mean. Unlike the
Lagrangian or Eulerian means, the Stokes drift may
be computed directly from the wave field that produces
the fluctuations.

The Stokes current associated with high-frequency
surface gravity waves was first examined by Stokes
(1847) for long-crested waves of a single frequency.
Kenyon (1969) derived a general expression for the
Stokes velocity in terms of the two-dimensional gravity
wave spectrum and showed the results of computations
using the empirical Pierson-Moskowitz spectrum (Pier-
son and Moskowitz, 1964) for fully developed seas,
i.e., for unlimited time and fetch of the wind. In a
later paper (Kenyon, 1970) he showed that under
the same conditions for winds in the range 10-20 m
s the Stokes transport, or vertical integral of the
Stokes current, was a significant fraction of the Ekman
transport.

The Stokes wave transport, however, need not be
equal to the Lagrangian wave transport which is vital
to the low-frequency (circulation) motion. In fact,
Ursell (1950) showed, using an extention of the Helm-
holtz circulation theorem, that for an unbounded ocean
the Lagrangian transport by an infinite train of waves
of infinitely long crest and form unchanging with time
must vanish on a rotating earth. Thus, for fully de-
veloped seas, the Stokes drift investigated by Kenyon
(1969, 1970) produces zero net Lagrangian transport.
Hasselmann (1970) interpreted this result and showed
that for the steady state the Coriolis force acting on
fluid particles in their wave orbits produces an Eulerian
mean transport equal and opposite to the Stokes trans-
port, so that the Lagrangian mean wave drift is zero.
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Fic. 1. Normalized Stokes transport as a function of normalized
time for duration-limited wind. The “fitted curve’’ is a representa-
tion of the results using the spectra of Barnett (1968) and Inoue
(1967). Wind speeds are indicated in knots.

For transient conditions where the wind begins to
blow abruptly, but uniformly in space, Hasselmann
showed that the Lagrangian transport is initially down-
wind and equal to the Stokes transport, but begins to
rotate in inertia circles as the mean Eulerian current
develops. The time scale for this rotation is the inertial
period 27/f, where f is the Coriolis parameter. An
inertial period is often of the order or greater than the
time needed for the wind to bring a wave field to
equilibrium. Thus, the Stokes transport for duration-
limited seas will be directly useful in circulation studies
involving transient wind fields for time scales less than
or of the order 2w/ f.

By a simple extension of Ursell’s circulation argu-
ment one can show that a long-term. or steady-state
Lagrangian wave drift velocity #5 can exist provided
that its spatial scale of variation L is less than or of the
order #;/f; in other words, the Rossby number of the
Lagrangian motion, #./(fL), must be greater than or
of order unity. Such a case may occur for spatially
variable winds, from the propagation into an area of a
finite length gravity wave train, or for coastal areas
and embayments.

The above discussion illustrates that an examination
of the Stokes wave transport for other than fully
developed seas is of importance. The Lagrangian surface
wave transport still can only be obtained by vectorially
adding the Stokes transport to the Eulerian mean
transport. Determining this latter transport, in turn,
requires solution of the circulation problem as a whole,
including the presence of boundaries. However, the
Stokes transport is a necessary starting point for ob-
taining the mean wind-driven Lagrangian motion.
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2. Stokes transport for duration-limited conditions

Kenyon (1969) has derived a general form for the
Stokes drift velocity due to random surface gravity
waves as a function of depth. The Stokes mass transport
M is then found by integrating the drift velocity over
depth. In the deep water limit this becomes (Kenyon,
1970)

Ms=p/ wS(w)dw, €))
0

where p is water density, w angular frequency, and S (w)
the one-dimensional spectrum of mean squared height,
assumed to be a function of duration or fetch. To be
general, an angular spreading factor should be included
in the integrand in (1). For the present we assume that
all waves at all frequencies travel in the same direction;;
modifications to this assumption will be discussed
briefly later.

Kenyon (1969) notes the limitations in the theory
leading to the derivation of (1) arising from the neglect
of wave breaking and the assumption of wave field
irrotationality, and cautions that his results should be
considered only as an estimate of the Stokes drift
velocity.

To find the duration- or fetch-limited Stokes trans-
port an appropriate form for the duration- or fetch-
limited spectrum is needed in (1). The growth and decay
of the wave spectrum is an area of active research.
Barnett (1968), Schule et al. (1971) and Hasselmann
(1972) review experimental and theoretical work. No
single generally accepted analytic or graphical form for
the spectrum for use in (1) is available.

We have used duration-limited spectra from Inoue
(1967) and Barnett (1968). Inoue develops his spectra
from a linear differential equation for the change of
spectral density. He fits linear and exponential growth
terms according to a “modified Miles-Phillips mecha-
nism” to experimental data, then forces the evolving
spectrum to approach the Pierson-M oskowitz spectrum
for fully aroused seas in the limit of large duration or
fetch. He gives graphical results of spectral evolution
for six wind speeds for both duration- and fetch-
limited conditions. Inoue artificially incorporates dis-
sipation in his model by forcing the evolving spectrum
to approach the Pierson-M oskowitz limit ; Barnett more
directly models nonlinear terms by including expressions
for wave breaking and ‘“wave-wave interactions”. He
gives results for a 30 kt wind for the duration-limited
case.

The results of Inoue’s spectra for 20, 35 and 45 kt
winds and for Barnett’s 30 kt spectra are shown in
Fig. 1. The ordinate is the normalized Stokes transport
M*, obtained by dividing M, from (1) by the Stokes
transport for the fully developed (Pierson-Moskowitz)
spectrum as given by Kenyon (1970):

M, (fully developed)=3.06X10-3V3/g,  (2)
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where V is the wind speed at 19.5 m. The abscissa is
normalized time {=g¢/V. A fitted curve which has the
analytic form

M*=1—exp(—0.55X 1074 —0.83 X 10—12),  (3)

is also plotted in Fig. 1 and labelled “fitted curve.” It
represents a fit of both Inoue’s and Barnett’s results
which may be used as an estimate of the duration-
limited Stokes transport and which differs at most from
the actual computed values by about 209, over the
range for ¢ shown. From (3) the normalized e-folding
or response time required for M, to approach the fully
developed value is about 2X 10% Hence the dimensional
response time is £,=2X10¢V/g. Longer response times
are required for higher wind speeds because the fully
developed wave spectrum peak then occurs at lower
wave frequencies which require a longer excitation time.

3. Fetch-limited conditions

To calculate the Stokes transport for fetch-limited
conditions we used Inoue’s (1967) spectra as well as
those of Hasselmann ef al. (1973) and Liu (1971).
Hasselmann et ¢l. fitted a functional form to an exten-
sive series of fetch-limited spectra obtained during the
Joint North Sea Wave Project (JONSWAP) by ad-
justing five parameters to produce an optimal fit for
each spectrum. Their function for the spectrum yields
the following for Stokes transport after integration
in (1):

M*=0.011aX0%, )

where o is the Phillips “constant,” and X=Xg/V?is the
dimensionless fetch. As they noted, their results for o
could be fitted by a power law with a= kX" Depending
on the particular curve fit desired, they recommended
either n=—0.22 (for which £=0.074) or n=—0.40
(for which 2=0.30). Results for M* from (4) for both
of these curve fits are shown in Fig. 2. The JONSWAP
data extended in fetch only slightly beyond X=10%
Beyond that the curves in Fig. 2 based on them are
not likely to be valid.

Liu (1971) also fitted a functional form to wave
spectra data using least-squares analysis. His form
when integrated in (1) yields

M*=0.051X°5, (5)

and is plotted also in Fig. 2. Liu’s data did not extend
significantly beyond X=105. Because M* grows as
X% for Liu’s spectra, while for the JONSWAP data
M* increases as either X077 (for n= —0.22) or X0-%
(n= —0.40), the curve for the former initially increases
more rapidly for increasing fetch and then falls below
the latter at X=3000. Even at the largest fetch shown,
Liu’s results do not reach the level corresponding to
saturation, M*=1,

Normalized mass transport from Inoue’s (1967)
spectra is also shown in Fig. 2 for wind speeds of 20,
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¥16. 2. Normalized Stokes transport as a function of normalized
fetch for fetch-limited wind computed form the JONSWAP
spectra (Hasselmann et al., 1973) as well as the spectra of Liu
(1971) and Inoue (1967). For the latter, wind speed is shown in
knots.

35 and 45 kt. An analytic form (not plotted) which
represents these results well is

M*=1—exp(—1.1X 104K —0.85X107°X2).  (6)

Because of the assumptions made by Inoue, mass trans-
port for his spectra approaches the Pierson-Moskowitz
level, as distinct from the other curves. From (6) the
dimensional fetch required to approach the fully de-
veloped value of M, is X,=~ 10tV?%/g.

In contrast to the results for duration-limited trans-
port, those for limited fetch are not in substantial agree-
ment across the range of normalized fetch examined.
Both the JONSWAP and Inoue spectra give transports
in good agreement until the limit of the JONSWAP
data (X~ 10%) is approached. For larger fetch the trans-
ports from Liu and Inoue are in fair agreement (within
about 20%). If a single representative curve is desired
for the entire range, then (6), corresponding to the
Inoue spectra, is adequate.

4. Concluding remarks

Because the Lagrangian wave transport vanishes for
fully developed seas on a rotating earth, direct applica-
tion of these results to ocean circulation models would
be primarily for transient wind forcing where the time
scale is less than or of the order of the inertial period,
or for spatially limited problems where the Rosshy
number is greater than or of the order unity. For a wind
duration ¢ equal to the inertial period at mid-latitude
{6X10* 5) and wind speed V=10 m s, the normal-
ized time would be i=gf/V=6X10% This corresponds
to about three times the response time ¢,, so that the
Stokes transport would then approximate the fully
developed value, or M*=1. The Lagrangian wave
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transport would also be of this order but would decay
subsequently for appreciably larger times as rotation
became dominant., Actual wind spectra do contain much
energy for periods near the inertial period, so that
Lagrangian transport approaching the fully developed
level can be expected in nature. We may add further
perspective by comparing the fully developed Stokes
transport with the steady-state Ekman transport. The
latter may be computed from M g=p.CpV1i/f where
pe is the air density, Vo the wind speed (m s™) at 10 m
height, and Cp the drag coefficient. From Pierson
(1964) V=1.075V1p. Using po/p=1.25X1073, f=10~*
s and Cp=1X102 (Hasselman et al., 1973), we have
for fully developed seas

M./Mr=0.029V.

Thus, for ¥ in the range 10-20 m s7, the Stokes trans-
port is between 29 and 5879 of the steady-state Ekman
transport, clearly a significant level.

In applications to spatially limited problems the
Rossby number will be of order unity for scales of about
20 km. Then, for a wind speed of 10 m s~* the normalized
fetch would be X=gX/V?=2000. Such a fetch corre-
ponds only to about X,/5. Fig. 2 shows that M*=0.25
then. In general, rotational effects will enter on small
enough space scales that the Lagrangian wave trans-
port will not approach the fully developed value for M..
On these small scales, however, the Ekman transport
(more properly, the mass transport due to wind stress)
will only be a fraction of Mg, and thus the Lagrangian
wave transport may still be relatively important.

We have not presented Stokes drift velocity profiles
with depth, but the calculations of Kenyon (1969) also
characterize the duration- and fetch-limited results.
Motion is always greatest at the suiface, but at depth
motion increases with time or fetch. For fully developed
seas, motion is confined largely to the upper 20 m.

Directional effects on the Stokes transport may be
included if desired in particular applications. The
JONSWAP data supported a cosine squared direc-
tionality factor for the two-dimensional wave spectrum.
Using it, our results may be written

(2/7 cos?0) M*,
0 ,

(0] <w/2

M*(6)=
@ [{>m/2
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Here 6 is the angle between the wind and direction of
interest and M* the normalized transport of Figs. 1
and 2.

The results given in this paper indicate that Stokes
transport in surface gravity waves may be estimated
with sufficient confidence for application to circulation
models. As further wave spectral data become avail-
able, these estimates can be further refined.
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