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ABSTRACT

A theory is given for steady wind-driven currents in shallow water (friction depth comparable to total
depth) in which the vertical eddy viscosity varies linearly with depth, from zero at the bottom to a maximum
at the surface. The theory is presented in a form suitable for numerical computations of currents in real,
enclosed basins. The local surface value of the vertical eddy viscosity depends on the surface wind stress,
the bottom roughness, and the flow itself; this leads to a quasi-linear equation for the determination of the
surface slope or the vertically-integrated mass flux. Results are given for the simple case of a pure drift
current in water of uniform depth, and these results are compared with those for a constant vertical eddy

viscosity.

1. Introduction

Welander (1957) developed a theory of wind-driven
currents and surface displacements in a shallow body
of water—shallow in the sense that the friction depth is
comparable to the total depth. This theory is basically
an extension of Ekman’s (1905) analysis to the case of
finite depth. Recently, Welander’s theory has been
successfully applied in numerical modeling of wind-
driven currents in the North American Great Lakes,
first by Gedney and Lick (1972) for Lake Erie, and
then by Bonham-Carter and Thomas (1973) for Lake
Ontario. The shallow-water theory involves several
approximations, including the neglect of both internal
friction and nonlinear acceleration terms. However, as
Welander himself points outf, the most unrealistic
assumption is that of constant vertical eddy viscosity.
The present paper deals with a formulation of shallow-
water theory under a more realistic assumption about
the behavior of the vertical eddy viscosity.

Both theory and experiment suggest that the vertical
eddy viscosity v should depend on the flow itself, and
that in general it should vary from a maximum at or
near the free surface to zero at the bottom. As a simple
model of this expected behavior, we assume here that »
varies linearly from a maximum vy at the surface to
zero at the bottom. This form of variation is defensible
on both theoretical and experimental grounds and
leads, as we shall see, to a formulation of shallow-water
theory which is suitable for numerical modeling of real
basins.

This linear variation of » with depth is intended only
to model a homogeneous, unstratified body of water.
In the case of strong thermocline conditions typical of
many large lakes in midsummer, a two-layer shallow-

water model can be used (Gedney et al., 1972), and in
this case the linear variation of v with depth might be
appropriate for one or both layers.

Fielstad (1929), using observations of currents on the
North Siberian Shelf made by Sverdrup, found that the
variation of eddy viscosity with depth was described
closely by a power law with » 2. This is reasonably
close to the form »e«sz suggested here. However,
Fjelstad’s analysis assumes that the observed current
was a pure wind-drift current, with no contribution due
to horizontal pressure gradients (surface slopes). It is
difficult to determine to what extent horizontal pressure
gradients may have contributed to the flow. Ideally,
assumptions about the variation of eddy viscosity with
depth should be tested under controlled laboratory
conditions.

Ellison (1956) analyzed the atmospheric boundary
layer between the ground and a uniform geostrophic
wind, under the assumption that the eddy viscosity
varies with height. Recent laboratory studies of the
turbulent Ekman layer by Caldwell et al. (1972) have
shown Ellison’s theory to be in good agreement with
experiment. It was Ellison’s work which suggested the
present approach to shallow-water theory.

A continuous increase in eddy viscosity from bottom
to top is to be expected for two reasons: (i) vertical
eddying motions are inhibited near the rigid bottom,
and (ii) the driving source of the turbulence, the surface
wind stress, acts at the top. A linear increase in v from
zero at the bottom is equivalent to a mixing length
theory of the bottom boundary layer, in which the
mixing length is proportional to the distance from the
bottom. This leads to a logarithmic behavior of the
velocity near the bottom, and allows for the specifica-
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tion of a “roughness length” to characterize the rough-
ness of the bottom. Near the surface the behavior of »
presents a complicated problem, with both eddying
motions and gravity waves contributing to the Reynolds
shear stress. The linear variation of » seems a reasonable
approximation here.

In the next section we formulate the theory of steady
wind-driven currents with our assumed behavior of »,
in a form suitable for numerical modeling of real,
enclosed bodies of water with variable bottom topog-
raphy. One important result is that the maximum eddy
viscosity vo depends on the surface wind stress, the
bottom topography, and the flow itself, and cannot be
specified independently as it can in the case of constant
v. Although the analysis of flow problems is greatly
complicated, this dependence of » on the flow is certainly
a more realistic situation.

In Section 3 we consider the simple case of a pure
drift current (no surface slope) in water of uniform
depth. The resulting velocity distribution is compared
with the velocity distribution for the case of constant »,
i.e., the classical Ekman spiral for finite depth.

2. Analysis

We assume that the lateral dimensions of the body
of water are large compared with the depth, but are
small enough that we can ignore the effects of the
earth’s curvature, including the variation of the
Coriolis parameter with latitude. We thus make the
“tangent plane” approximation, and choose a Cartesian
coordinate system £, §, £ (the carets denote dimensional
quantities) fixed relative to the rotating earth, with the
£ axis vertically upward and the origin at the undis-
turbed water surface (see Fig. 1).

We also assume that the water is homogeneous, that
the pressure distribution is hydrostatic, and that the
lateral friction and nonlinear “acceleration terms are
negligible {for a scale analysis to justify these approxi-
mations for Jarge lakes, see Gedney and Lick (1972) or
Bonham-Carter and Thomas (1973)]. The surface
atmospheric pressure is assumed to be uniform. The
vertical eddy viscosity is allowed to vary with depth.
The basic equations, then, are the continuity equation
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and the horizontal momentum equations
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Here = (4,9,%) is the dimensional velocity, g the
acceleration of gravity, f the Coriolis parameter,
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F16. 1. Basic coordinate system.
v=w»(%) the vertical eddy viscosity, and {={§(%£,7) the

displacement of the free surface. Egs. (2) and (3) can
be conveniently combined into the single complex

equation
arad\ . of
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where ¢=7a+i9 and 8/8A=9/35+i9/a7.
Now, we take ¥(8) in the form
3
y= vo(l -}—;): kus(h+3); 5

that is, » varies linearly from zero at the bottom
(8= —%) to a maximum v, at the surface (8=0). Here,
#s=vo/ (kh) is the friction velocity and % an empirical
constant (k~0.4), both being familiar in turbulent
boundary layer theory. In a basin of variable depth,
h=h(£,§), v will vary horizontally as well as vertically.
With the form (3) for »(2), Eq. (4) becomes

9 [(1+§>6$] i o

oo | 14- }— |—ifé=g—.
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We now put Eq. (6) in nondimensional form. Let L be
the horizontal length scale of the basin, and define

(6)

-

) 0 0 ] a
w=8/L, y=f/L, —=—ti—=L—
an dx dy 0%
z=8/h, = g?
fusL
u=12/u*, v=ﬁ/u*, ¢=‘5/u*

Although %, varies with horizontal position in a basin
with variable depth, we use some fixed value in the
above scaling. In terms of nondimensional quantities,
Eq. (6) becomes

d 0 0
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where the parameter a= f42/v, is a reciprocal Ekman
number. The surface boundary condition is, in dimen-
sional form,
9
Yo
981520

= p=2,tity,

where p is the density and # the surface wind stress.
Note that as usual this condition is applied at =0
rather than at the true free surface, $=¢; this leads to
considerable simplification, and is consistent with other
approximations we have made. In terms of dimension-
less quantities, the surface condition is

9¢

0z 2=0

=ar, (8)

where 7 is the nondimensional surface wind stress
defined as 7= 7/ (pfhuy).

We seek the solution of (7) satisfying (8), and having
the proper logarithmic behavior near the bottom. With
the change of variables n=[4a(1-+2)J}, (7) becomes

¢ 193¢ a
9y 9 dn on

and condition (8) becomes

d
-(—ﬁ =Var. (10)
0 pvita
The general solution of (9) is
. ¢
d(n)=A1 o(i*n)-l—BKo(ﬁnH-zg—, (11)
"

where I and K, are modified Bessel functions of first
and second kind.

Near the bottom, we want the solution to have the
turbulent boundary layer form

6l u*l (/z-i—é)
~— 1Y N
¢ k

20

where 7 is the roughness length. In nondimensional
form, this becomes

11<1+z) 11(772)
~—in = In{ —— ,
19! k € B \dae

where e=zo/. Using the limiting form of the modified

Bessel functions for small argument, we have from (11)
for n~0,

(12)

3
qb(n)~A_—B[In(gei”/4>+'y:]+i(—9—, (13)

n
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where y=0.57721 is Euler’s constant. Comparing (12)
and (13), we see that we obtain the proper behavior at
the bottom with

2 1 T o
B=——¢, A= B(—— ln(ae)—‘ri——i—'y) —i—. (14)
k 2 4 on

Here, 6, is the direction of the flow at the bottom,
measured from the x axis. With the values of 4 and B
in (14), the general solution (11) becomes

2 1 T
() = ——etto l I:- 1n(a€)+i—+v:|
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The surfaée boundary condition (10) then becomes

2 ¢
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where

Ula,e€)
1 T
= “:E ln(ae)-}-iz‘l“)/:l[l( Vdia) — Ky(Vdia) p . (17)

Vo) = —i*1(Vdia)

Assuming the surface slope d¢/dn at a fixed x, ¥ point
is known, (15) and (16) together determine the vertical
distribution of horizontal velocity at that point. The
procedure is as follows: the surface wind stress 7 and
the bottom roughness ¢ are specified, and then (16)
provides a single complex equation for the determina-
tion of the two real quantities o and #,. Using the deter-
mined values of o and 8, in (15) gives the velocity
distribution. Although (16) can be solved explicitly for
6y, it is transcendental in «; thus, we cannot write a
single explicit expression for the velocity distribution.
Eq. (16) may be solved numerically by standard
methods.

An important point here is that the value of @, and
hence the value of vy and u,, is not specified inde-
pendently; it is determined at each point as a function
of the wind stress, surface slope and bottom roughness.
This is quite different from the case of constant eddy
viscosity, where the value of » can be specified quite
independently of the wind stress (although it shouldn’t
be). The present situation is more realistic—one expects
the eddy viscosity to depend in some manner on the
wind stress and flow. As a result of this dependence,
vo will vary with horizontal position x, vy as well as
depth z, even in a closed basin of constant depth.
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TaBLE 1. Values of &, /D, 7, and the angles 6o, §: and 8 (cf. Fig. 2) for ¢ = 0.01.*

Vg o /D T ‘N o [

0.4 0.04 0.064 1.01 — 8122 — 6.92 - 1.30
0.8 0.16 0.127 1.13 — 30.64 —25.46 — 5.18
1.2 0.36 0.191 1.55 — 56.26 —44.63 — 11.63
1.6 0.64 0.255 2.35 — 7597 —55.47 — 20.50
2.0 1.00 0.318 3.50 — 90.78 —59.26 — 31.52
2.4 1.44 0.382 5.01 —103.41 —59.20 — 421
2.8 1.96 0.446 6.94 —115.37 —57.42 — 5795
32 2.56 0.509 9.38 —127.35 —55.21 — 72.14
3.6 3.24 0.573 12.50 —139.59 —53.20 — 86.39
4.0 4.00 0.637 16.53 —152.14 —51.67 —100.47
4.4 4.84 0.700 21.76 —164.93 —50.59 —114.34
4.8 5.76 0.764 28.63 —177.88 —49.87 —128.01
5.2 6.76 0.828 37.67 —190.90 —49.38 —141.52
5.6 7.84 0.891 49.61 —203.96 —49.03 —154.93
6.0 9.00 0.955 65.42 —217.00 —48.75 —168.25
6.8 11.56 1.08 114.28 —243.04 —48.30 —194.74
7.6 14.44 1.21 201.00 —269.04 —47.94 —221.10
8.4 17.64 1.34 356.38 —295.08 —47.63 —247.45
9.2 21.16 1.46 637.17 —321.26 —47.38 -273.88

10.0 25.00 1.59 1148.54 —347.67 —47.17 —300.50

* Anglesin degrees.

We now turn to the problem of determining the sur-

face slopes 3¢{/8» in a closed basin. We introduce the

Eq. (16) and substitute it into (18) in order to obtain

nondimensional vertically-integrated volume flux o of _ o oY .
M= M +iM,, defined by P ’;yﬁl 5;—15 +B(r,tiry), (21)
0 where -
M= q‘)dZ. = ¢
~1 U+1
. . . s .- ) (22)
Using the basic equation (7) in this definition of M, we \/;(U-I—l)
obtain B=——_
. VaU+iV
if dB\|°  d¢
M= ‘“‘(Z—) +i— where U= U (a,¢) and V=V (a) are given in (17).
a4 az —1 an’

61’00 ag—

= —12(7——>+i—. (18)
ka omn

Eq. (18) expresses the fact that the vertically-integrated
volume flux M is in a direction 90° clockwise (in the
Northern Hemisphere) from the resultant of the surface
stress 7, the bottom stress —e¢%¢/ka, and the horizontal
pressure gradient — 3t/ d#. The continuity equation (1),
after integrating over depth, implies that for steady
motion

. oM, oM,
divM = -+ =0
ox ay

: (19)

so we can introduce a streamfunction ¥(x,y) for M,
and M, with

(20)

We can obtain an explicit expression for e from

We can eliminate either  or ¢ from (21) to form a
single, real, second-order elliptic equation. Here we
choose to eliminate {, since the lateral boundary

'
T o u
8,
3,
/ o
._9/
z=0

Fi1G. 2. Definition of the angles 8o, 6, and §=8—8, for a typical
hodograph of the vertical distribution of horizontal velocity. The
wind stress 7 is in the positive x direction.
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TABLE 2. The variation of «, 8o, 8; and 8 with e for fixed values of r.*

7 € @ h/D G 6, [}
1.35 0.1 0.640 0.255 — 39.50 —34.60 — 490
1.35 0.01 0.276 0.167 — 47.14 —38.23 — 891
1.35 0.001 0.164 0.129 — 45.80 —-39.13 —  6.67
1.35 0.0001 0.116 0.108 — 44.13 —39.66 — 447
9.99 0.1 4.00 0.637 — 91.01 —51.95 — 39.06
9.99 0.01 271 0.524 —129.92 —54.75 — 75.17
9.99 0.001 1.69 0414 —120.92 —358.78 — 62.14
9.99 0.0001 1.18 0.346 —113.38 ~61.92 — 51.46
42.95 0.1 7.84 0.891 —132.39 —49.19 — 83.20
42.95 0.01 7.26 0.858 —197.30 —49.20 —148.10
42.95 0.001 5.09 0.718 —188.25 ~50.13 —138.12
42.95 0.0001 3.92 0.630 —174.50 ~51.11 —123.39
694.72 0.1 19.36 1.40 —241.70 —47.50 —194.27
694.72 0.01 21.64 1.48 —324.68 —47.35 —2717.33
694.72 0.001 17.64 1.34 —336.21 —47.63 —288.58
694.72 0.0001 14.80 1.23 —320.14 —47.90 —272.24

* Angles in degrees.

condition is more easily expressed in terms of y. Let
A=Ag+1A4;, B=Bgr+1iBi, and then eliminate {; the
result is

o W 4 g
An (5
dx®  dy? ox

6/11)61# dAr 0Ar\oY
(2 ey
dy /ox dy dx /3y

0 i)
=—~—(Brry+Br7;) ——(Brr.—Br7y). (23)
ox . dy

Eq. (23) is to be solved subject to the condition of no
flow normal to the boundary (=0 on the boundary).
Or, changes in ¢ along the boundary may be specified
to represent inflows or outflows. Eq. (23) is similar in
form to the corresponding equation in the case of con-
stant vertical eddy viscosity. There is one very impor-
tant difference, however; Eq. (23) is quasi-linear, rather
than linear. The coefficients depend on e, which in turn

v
- | 2 3 ? 5. u
4+ \. -+ T
\
-1 \
e
\
-2|t \\.\
-3 & .~\.‘\
—4.L\\N-<
h
— = 0.35
D
Zo
-— = 0.0l
h

E Fic. 3. Hodograph of horizontal velocity for the case a=1.21
(h/D=0.35), e=2,/h=0.01 (solid line), and that for the case
y=constant, the same value of %/D, and the same wind stress
(dashed line). The dots on each curve are at intervals of 0.1 in 2.

depends on the solution { itself through the surface
boundary condition (16). Since (16) is transcendental
in o, the nonlinearity cannot be shown explicitly in (23).
Thus, we must consider Eq. (16) along with (23) as
our basic equation.

For a realistic model basin, (23) might be solved on
a finite-difference grid as follows. From an initial guess
at the solution, o (x,y), {o(,y), the parameter a=a/(x,y)
is determined at each grid point through (16). Using
the values of a(x,y) thus determined, the coefficients
AR, A1, Br, Br are determined from (22). With these
coefficients specified, Eq. (23) may be treated as a
linear equation in ¢ and a new solution ¥, (x,y) may be
generated by a standard method (e.g., successive over-
relaxation). The procedure is then repeated; in general,
the ¢th iteration, ¥.(x,y), is used to determine the
coefficients in (23) in order to generate the (i41)st
iteration, ¥.41(x,y). Because of the implicit dependence
of the coefficients on the solution, it is not possible to

\'
u
-1 i 2 3 4 5 6
_is
!
-2
\
\
o
_3.{ \
\.
\.
E N\
N
\.
..S.F \\
\'o-___.
-6+ b
= =050
D 5
Zo
— =0.0l
h

Fi1G. 4. As in Fig. 3., except with a=2.48 (#/D=0.50).
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formulate explicit conditions for convergence of this
computational scheme.

3. Pure drift current

In order to illustrate the effect of the assumption of
a linearly varying eddy viscosity, we consider the pure
drift current in a shallow body of water with constant
depth and infinite horizontal extent, in the absence of
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surface slopes. The results will be compared to those
for a constant vertical eddy viscosity.

With zero surface slopes, the surface boundary
condition (16) reduces to

2
-—;ﬁe“"U(a,e) = VET} (24)

and the solution (15) reduces to

Var ([ In(ae) +i(r/4)+y Mo([4ia(z+1) ) +Ko([dia(z41)7T)

é(n) oy

where we have eliminated 6y through the use of (24).

For a given surface wind stress 7 and bottom rough-
ness length ¢, the parameters o and 6, are computed
from (24), and the velocity distribution is then given
by (25). Computationally, it is easier to fix « and ¢, and
then compute 6, and 7 in (24). By repeating this for a
range of values of a, the dependence of « on 7 can be
determined.

Table 1 shows values of @ and r, along with values of
the angles 8, and 6; (see Fig. 2), for the case
e=20/h=0.01, i.e., a roughness length equal to 19 of
the depth. The surface stress has been taken to be in
the positive x direction, i.e., 7= 7,. Since the depth /% is
constant, a= fk%/v, is inversely proportional to the
maximum eddy viscosity vo. In order to compare these
results with the case of constant eddy viscosity, it is
useful to introduce the concept of “friction depth.” For
v=constant, the friction depth D 1is defined as
D==(2v/f)% For the variable eddy viscosity considered
here, we define D in terms of the mean eddy viscosity
vo/2, and thus take D=m (vo/f)* An important measure
of the influence of vertical friction is then given by the

u
80 100 120

—t

Fi16. 5. Asin Fig. 3., except with =20.0 (5/D=1.42).

) 25)
Ula,e) (

z,
Pl 0.0l
\'
u
8 12 16 20 24
~201 >~
\\\*‘
—-244 e
h
D 0.78
% . 0.001

F16. 6. As in Fig. 3., with a=6.0 (4/D=0.78), for two values
of e=zo/li: (a) e=0.01, (b) e=0.001. Note that a change in €,
with « fixed, means a change in the wind stress = and the magni-
tude of # and ».
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ratio of total depth to {friction depth, given by
h/D=qa*/r. Values of 4/D are also given in Table 1.

The effect of varying the nondimensional bottom
roughness length e on the values of a and the angles 6,
and 6y, for a fixed value of 7, is shown in Table 2, for
selected values of 7.

Figs. 3-5 show hodographs of the velocity distribution
for different values of %/D and e. Also shown in these
figures, for comparison, is the velocity distribution for
the case of a constant eddy viscosity equal to the mean
of the variable eddy viscosity, i.e., for »=v¢/2 (and
hence the same friction depth), and for the same surface
wind stress. The cases of variable and constant » differ
considerably in shallow water (#/D< 1, Figs. 3 and 4),
but become more nearly the same in deeper water
(k/D>1, Fig. 5). The direction of the bottom current
is always displaced more from the wind direction in
the case of variable ».

Note in Table 1 that 64, the angular displacement of
the surface current from the wind direction, increases
with increasing #/D to a maximum of about 59° at
h/D=0.35 (see Fig. 3), and then decreases slowly. The
angular displacement of the bottom current, 6, in-
creases with increasing 4/D.

Fig. 6 shows the effect of a change in the bottom
roughness. Reducing the bottom roughness length zg
produces an effect similar to reducing the friction depth
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(cf. Fig. 5). In modeling a real basin, z; as well as z may
vary with horizontal position.

Acknowledgments. 1 would like to thank Alan J.
Witten and Stanley C. Perkins for help with the
numerical computations. Prof. Alfred Clark, Jr., kindly
read and commented on the manuscript. This work was
supported by the National Science Foundation under
Grant GA-32209.

REFERENCES

Bonham-Carter, G., and J. H. Thomas, 1973: Numerical calcula-
tion of steady wind-driven currents in Lake Ontario and the
Rochester embayment. Proc. 16th Conf. Great Lakes Re-
search, Intern. Assoc. Great Lakes Res., Ann Arbor, 640-652.

Caldwell, D. R., C. W. Van Atta and K. N. Helland, 1972: A
laboratory study of the turbulent Ekman layer. Geophys.
Fluid Dyn., 3, 125-159.

Ekman, W. V., 1905: On the influence of the earth’s rotation on
ocean currents. Arkiv Mat. Astr. Fys., 2, No. 11, 1-53.

Ellison, T. H., 1956: Atmospheric turbulence. Surveys in Me-
chanics, G. K. Batchelor and R. M. Davies, Eds., Cambridge
University Press, 400-430.

Fjelstad, J. E., 1929: Ein Beitrag zur Theorie der winderzeugten
Meeresstromungen. Beitr. Geophys., 23, 237-247.

Gedney, R. T., and W. Lick, 1972 : Wind-driven currents in Lake
Erie. J. Geophys. Res., 77, 2714-2723.

——, — and F. B. Molls, 1972: Effect of eddy diffusivity on
wind-driven currents in a two-layer stratified lake. NASA TN
D-6841.

Welander, P., 1957: Wind action on a shallow sea: Some gen-
eralizations of Ekman’s theory. Tellus, 9, 45-52.



