银环蛇粗毒若干有效组分对 SWO 细胞的作用

刘洁生1*, 邢少璟2, 陈 勇1, 杨维东1

(1. 广州暨南大学生命科技学院, 2. 广州暨南生物医药研究开发基地, 广东 广州 510632)

摘要:目的 测定银环蛇毒素组分是否抑制人神经 胶质瘤细胞 SWO 的生长,以及确定抑制的原因是诱 导凋亡或是杀伤。方法 用 MTT 和流式细胞术等 方法探讨银环蛇粗毒及其有效组分对人神经胶质瘤 细胞 SWO 的作用。结果 MTT 试验结果显示, SWO 细胞对银环蛇粗毒、第Ⅲ峰毒素、α-银环蛇毒素(α-BTX)的作用比较敏感,同时 SWO 细胞比 3T3 细胞更 敏感。SWO 对其他组分的作用不敏感。3 种毒素作 用于 SWO 细胞,流式细胞术检测未见凋亡峰。结论 银环蛇粗毒、第Ⅲ峰毒素、α-BTX 对 SWO 细胞有杀 伤作用,无凋亡作用。

关键词:银环蛇;银环蛇毒素类;神经胶质瘤

中图分类号: R979.1 文献标识码: A

文章编号:1000-3002(2003)04-0286-03

银环蛇毒是神经毒,其抗肿瘤作用已有许多研 究^[1,2],但研究主要集中在对消化道和呼吸系统恶 性肿瘤的作用方面文献,研究对于神经胶质瘤的作 用作者目前尚未见报道。本研究的目的主要在于确 定银环蛇毒素是否能诱导神经胶质瘤细胞 SWO 凋 亡,或者只是杀伤作用,以及查找出银环蛇粗毒中导 致 SWO 细胞凋亡或杀伤的毒素组分。

1 材料与方法

1.1 细胞与试剂

SWO 神经胶质瘤细胞、K562 和 3T3 细胞由暨南 大学医学院病理实验室提供。银环蛇粗毒购自江西 樟树养蛇场, α-银环蛇毒素(α-bungarotoxin, α-BTX)

收稿日期: 2002-08-07 接受日期: 2003-02-26

作者简介:刘洁生(1957-),男,江西省九江市人,工 学博士,教授,主要从事神经生物学研究。

*联系作者 E-mail: xingis@163.net (020)85222706-

标准品购自美国 Sigma 公司。 羧甲基-纤维素 52 购自 美国 Whatman 公司,分离纯化蛋白 Sephadex G-100 购 自 Pharmacia 公司。低分子量标准蛋白从 Gibco BRL 公司购得。细胞培养基 RPMI 1640,美国 HyClone 公 司,小牛血清则购自杭州四季青公司。显色剂噻唑蓝 (MTT)、碘化丙啶(PI)染料均购自 Sigma 公司。

1.2 α-银环蛇毒素的分离、纯化及鉴定

羧甲基-纤维素 52 柱分离银环蛇粗毒[3],收集 各峰毒素,浓缩,脱盐。Sephadex G-100 分离纯化第 Ⅲ峰毒素,收集各峰毒素,浓缩,脱盐。十二烷基硫 酸钠-聚丙烯酰胺电泳技术(SDS-PAGE)测定蛋白分 子量, Lowry 法测定蛋白含量。昆明小鼠, 18~22g, ♀ 含 各 半, 每 组 10 只, 改良 寇氏 法 测定 LD₅₀。

1.3 银环蛇粗毒及其有效组分 α-银环蛇毒素对 SWO 细胞的体外实验

MTT 法测定 IC50:将终浓度 5×108 L-1 对数生长 期的细胞接种于 96 孔细胞培养板,每孔 100 µL, 37℃,体积分数为0.05的CO2 孵箱培养24h。空白 对照组(不加任何液体)、阴性对照组(不加药物)、阳 性对照组 $[5 \text{ mg} \cdot \text{L}^{-1}$ 的放线菌酮环己酰亚胺,(cycloheximide, CHX)加到 K562 细胞中] 及银环蛇毒素组 (按不同浓度加样,银环蛇粗毒的始浓度为1g·L⁻¹, 各峰毒素的始浓度为 0.6 g·L⁻¹,α-BTX 的始浓度为 0.1 g·L⁻¹,然后均按5倍递减稀释)。CO₂ 孵箱继续 培养 12, 24, 36, 48 或 72 h。取出培养板, 每孔加 5 g·L⁻¹ MTT 10 µL,4 h 后每孔加 10% SDS 100 µL, CO2 孵箱培养过夜,取出测吸光度值(A),测量波长为 570 nm,参比波长为 630 nm,计算癌细胞生长抑制 率,绘制曲线,求出细胞生长抑制 50% 时的药物浓 度,即 IC₅₀,表示细胞对药物的药敏性。

1.4 流式细胞仪实验

分组方法同 MTT 实验,收集细胞,2000 × g 离心 5 min,弃上清, PBS洗2~3次, 70%乙醇固定 30 min 以上。将固定的细胞以 4000 × g 离心 5 min, PBS 洗 1~2次, 沉淀物悬浮于 0.5 mL 的 PI(含 RNA 酶)中, 避光放置 10 min, 200 目筛网过滤, 上流式细胞仪。

1.5 统计学处理

实验结果用 $\bar{x} \pm s$ 表示,组间差异采用成组t检验。

2 结果

2.1 银环蛇粗毒的分离纯化及鉴定

江西产银环蛇粗毒经羧甲基纤维素 CM-52 柱 层析共得到 10 个峰, SDS-PAGE 电泳, 可得到 10 多 条蛋白带, 分子量最小的为 6.5 ku, 最大蛋白带的则 为 40 ku^[3]。所用的银环蛇粗毒及其若干毒素组分 (Ⅲ峰、Ⅳ峰、Ⅶ峰、Ⅷ峰和 Ⅷ峰)的 LD₅₀与 Chang 等^[4]所分离毒素的 LD₅₀相似, 提示粗毒及各组分毒 性保持良好(表 1)。

2.2 毒素对 SWO 细胞株杀伤的时效关系

随着毒素对SWO细胞作用时间的延长,粗毒、

Tab 1. The LD_{50} of crude venom and its components

Component	$LD_{50}/\mu g \cdot g^{-1}$
Crude venom	0.176 ± 0.022
Peak III	0.149 ± 0.054
Peak IV	0.130 ± 0.052
Peak VI	0.151 ± 0.064
Peak ₩	0.251 ± 0.121
Peak VII	0.418 ± 0.260
Peak IX	0.516 ± 0.102
Peak X	0.135 ± 0.052

Kunming mice were given ip crude venon or its components. LD_{50} of each peak protein was calculated by Karber's. $\bar{x} \pm s$, n = 10.

第Ⅲ峰的时效关系较为显著, α-BTX 最为显著, 其 IC₅₀ 12 h 的量是 48 h 的 3.24 倍, 而其他毒素的 IC₅₀ 与作用时间长短无明显依存关系, 部分毒素(Ⅵ峰、 Ⅶ峰、Ⅷ峰、Ⅲ峰、Ⅸ峰毒素)由于毒性甚小, 无法得出 IC₅₀ (表 2 中未列出)。72 h 时毒素 IC₅₀与 48 h 没有很大 差异(表 2)。

正常纤维细胞 3T3 细胞无论对银环蛇粗毒还是 经分离提纯的第Ⅲ峰毒素,其药敏性均低于 SWO 细 胞。说明银环蛇毒素对不同细胞的杀伤力不同。

2.3 流式细胞仪检测

图 1A 中箭头 a 所指为坏死细胞,箭头 b 所指为 凋亡细胞,可以看出,凋亡细胞数量明显少于坏死细 胞,图 1B 中未见凋亡峰。表明 24 mg·L⁻¹第Ⅲ峰毒 素只杀伤细胞,不诱导细胞凋亡。而且增殖峰也很 低,提示杀伤细胞的同时抑制细胞增殖。

图 1C 为 40 mg·L⁻¹粗毒毒素 DNA 含量分布组 方图,图 1D 为 4 mg·L⁻¹ α-BTX DNA 含量分布组方 图。不同浓度、不同毒素作用于 SWO 细胞,作用 12, 24, 36, 48 或 72 h,取其 R2 区域作图,均得到类似 于上述 3 种浓度毒素 DNA 含量分布组方图(图略)。

3 讨论

本实验所用的阳离子交换剂为羧甲基纤维素 52,分离得到 10 个蛋白峰,采用凝胶层析从第Ⅲ峰 毒素分离纯化得到 α-BTX 。各种毒素纯度较高,毒 性保持良好。MTT 比色法和流式细胞术分析结果显 示,银环蛇毒素组分可能不诱导 SWO 细胞凋亡,只 诱导杀伤,其杀伤死亡率是药物成分纯度和药物剂 量依赖的,而且对不同细胞有不同的杀伤作用。

Tab 2. IC₅₀ of different toxin incubated with SWO cells for different time

Toxin	$\mathrm{IC}_{50}/\mathrm{g}\cdot\mathrm{L}^{-1}$				
	12	24	36	48	72(h)
Crude venom	1.321 ± 0.096	0.961 ± 0.078	0.782 ± 0.028	$0.461 \pm 0.052^{*} (2.120 \pm 0.019)$	0.462 ± 0.033
Peak 🏢	0.791 ± 0.035	0.613 ± 0.021	0.436 ± 0.033	$0.290 \pm 0.031^{*} (0.794 \pm 0.081)$	0.288 ± 0.022
Peak IV	-	2.893 ± 0.082	2.546 ± 0.121	2.502 ± 0.143	2.220 ± 0.098
Peak X	-	-	4.720 ± 0.124	4.562 ± 0.133	4.672 ± 0.126
α-BTX	0.068 ± 0.011	0.044 ± 0.009	0.038 ± 0.006	$0.021 \pm 0.002^{**} (0.203 \pm 0.024)$	0.020 ± 0.003

MTT bioassay was used to test the cytotoxicity. 5×10^4 cells incubated with the crude venom, peak III, peak IV, peak X, α -BTX standard respectively for 12, 24, 36, 48 and 72 h. IC₅₀ values were calculated from curves constructed by plotting inhibitory rate of cell(%) versus the semilogarithm of drug concentration. The data in parentheses are the IC₅₀ values on 3T3 cell. $\bar{x} \pm s$, n = 5.

Fig 1. DNA analysis of the peak III-induced apoptosis on SWO cells by flow cytometry after incubation for 48 h. A, B: 24 mg·L⁻¹ peak IIII toxin; C: 40 mg·L⁻¹ crude vemon; D: 4 mg·L⁻¹ α -BTX.

上述结果提示,银环蛇毒素是通过杀伤 SWO 细胞而不是诱导细胞凋亡来抑制其增殖,其杀伤作用可能是有选择性的。正在进行的实验发现,毒素作用后的细胞表面出现许多小孔,提示毒素可能通过改变细胞膜的构象,造成物质泄漏,导致肿瘤细胞死

亡。这与毒素只杀伤细胞的结果相符。但这还需要 进一步的实验证明。毒素对不同细胞杀伤力不同, 这可能与不同细胞表面受体不同或细胞表面受体种 类数量差异有关。

4 参考文献:

- [1] Apel C, Ricny J, Wagner G, Wessler I. α-Bungarotoxin, κ-bungarotoxin, α-cobratoxin and erabutoxin-b do not affect
 [³H]acetylcholine release from the rat isolated left hemidiaphragm [J]. Naunyn Schmiedebergs Arch Pharmacol, 1995, 352(6):646 652.
- [2] Grant GA, Luetje CW, Summers R, Xu XL. Differential roles for disulfide bonds in the structural integrity and biological activity of κ-bungatotoxin, a neuronal nicotinic acetylcholine receptor antagonist [J]. Biochemistry, 1998, 37 (35):12166-12171.
- [3] Liu JS, Chang XB, Wang ZF, Chang H, Chen SQ. к-Neurotoxin basic component of *Bungarus multicinctus* venom
 [J]. *J Jinan Univ(Nat Sci)*[暨南大学学报(自然科学版)], 1994, 15(3):129-136.
- [4] Chang CC, Lee CY. Isolation of neurotoxins from the venom of *Bungarus multicinctus* and their modes of neuromuscular blocking action [J]. Arch Int Pharmacodyn, 1963, 144: 241-254.

Effect of several venom components of *Bungarus multicinctus* on SWO cells

LIU Jie-Sheng¹, XING Shao-Jing², CHEN Yong¹, YANG Wei-Dong¹

 Life Science and Technology College, Jinan University, 2. Guangzhou (Jinan) Bio-Medicine Research and Development Centre, Guangzhou 510632, China)

Abstract: AIM To determine the cytotoxicity of the venom components, and if it is induced by apoptosis. **METHODS** MTT bioassay was used to test the growth of the tumor cell. The apoptotic effect was detected by flow cytometry. **RESULTS** SWO cells were sensitive to crude venom, peak III toxin and standard α -bungarotoxin, whereas other venom components showed no effect on SWO cells. IC₅₀ of three effective toxins on SWO cells was lower than IC₅₀ on control NIH3T3 cells. The sub-G1(apoptotosis) peak did not appear in flow cytometry. **CONCLUSION** The crude venom and peak [[] toxin from *Bungarus multicinctus* showed cytotoxicity on glioma cells, but no apoptosis was observed.

Key words: Bungarus multicinctus; bungarotoxins; glioma

(本文编辑 乔 虹)