
Signature Bouquets: Immutability for Aggregated/Condensed Signatures

Einar Mykletun, Maithili Narasimha, Gene Tsudik
Computer Science Department

School of Information and Computer Science
University of California, Irvine�

mykletun, mnarasim, gts � @ics.uci.edu

Abstract

Database outsourcing is a popular industry trend which involves organizations delegating their data
management needs to an external service provider. In this model, a service provider hosts its clients’
databases and offers mechanisms for clients to create, store, update and access (query) their databases.
Since a service provider is almost never fully trusted, security and privacy of outsourced data are impor-
tant concerns.

This paper focuses on integrity and authenticity issues in outsourced databases. Whenever someone
queries a hosted database, the returned results must be demonstrably authentic: the querier needs to
establish – in an efficient manner – that both integrity and authenticity (with respect to the actual data
owner) are assured. To this end, some recent work [19] examined two relevant signature schemes: one
based on a condensed variant of batch RSA [3] and the other – on aggregated signature scheme by Boneh,
et al. [4]

In this paper, we introduce the notion of immutability for aggregated signature schemes. Immutabil-
ity refers to the difficulty of computing new valid aggregated signatures from a set of other aggregated
signatures. This is an important feature, particularly for outsourced databases, as lack thereof would
enable a frequent querier to eventually amass enough aggregated signatures to answer other (un-posed)
queries, thus becoming a de facto service provider. Since the schemes considered in [19] do not offer
immutability, we propose several practical methods to achieve it.

1 Introduction

Database outsourcing is a prominent example of the more general commercial trend of outsourcing non-core
competencies. In the Outsourced Database (ODB) Model, a third-party database service provider offers
adequate software, hardware and network resources to host its clients’ databases as well as mechanisms to
efficiently create, update and access outsourced data.

The ODB model poses numerous research challenges which influence overall performance, usability
and scalability. One of the biggest challenges is the security of hosted data. A client stores its data (which
is usually a critical asset) at an external, and potentially untrusted, database service provider. It is thus
important to secure outsourced data from potential attacks not only by malicious outsiders but also from the
service provider itself.

The two pillars of data security are privacy and integrity. (We use the term integrity in a somewhat broad
sense, encompassing both data integrity and authentication of origin.) The need for data privacy in the ODB
model has been recognized and addressed, to some degree, in prior work by Hacigümüş, et al. [13]. The
central problem in the context of privacy is allowing a client to efficiently query its own data hosted by a
third-party service provider (referred to as simply “server” from here on) while revealing to the latter neither
the actual query nor the data over which the query is executed.

Other relevant prior work [9, 14] examined integrity issues in outsourced databases and suggested some
limited solutions.1 Recently, more general techniques were investigated in a paper by Mykletun, et al. [19]
which proposed using two signature schemes suitable for querying outsourced databases: one based on
a variant of RSA and the other – on the aggregated signature scheme by Boneh, et al. [4]. Essentially,
these schemes enable bandwidth- and computation-efficient integrity verification for any possible query
reply. However, techniques proposed in [19] (as well as in [9]) are mutable, i.e., any entity in possession of
multiple authentic query replies can derive other, equally authentic query replies.

We view mutability not as a flaw of the underlying signature schemes but rather as an issue with their
specific application in the ODB model. In this paper, we focus on providing a feature that we term im-
mutability for aggregated signature schemes.

Contributions: This work makes several contributions. First, it defines (albeit, informally) the new notion
of immutability for aggregated signatures which is, at some level, equivalent to resistance of aggregated
signature schemes to adaptive attacks. Second, it demonstrates some simple add-on techniques for schemes
considered in [19]. These techniques provide, at a little additional cost, immutability for the respective
underlying signature schemes.

Organization: In section 2, we describe the ODB model in more detail. Section 3 motivates the need
for immutable aggregated signature schemes. Next, section 4 describes the variant of RSA that allows ag-
gregation of signatures by a single signer and the aggregated signature scheme by Boneh et al. [4] which
allows aggregation of signatures by multiple signers. Section 5 then presents some techniques to achieve
immutability for these two schemes. Section 6 discusses the overhead associated with the proposed tech-
niques, followed by section 7 which overviews relevant prior work. The paper concludes with the summary
of results in section 8.

2 System Model

The ODB model is an example of the well-known Client-Server paradigm. In ODB, a Database Service
Provider (which we refer to as a server) has the infrastructure to host outsourced databases and provides
efficient mechanisms for remote clients to create, store, update and query their databases.

Clients are assumed to trust the server to faithfully maintain outsourced data. Specifically, the server
is relied upon for the replication, backup and availability of outsourced databases. However, the server is
assumed not to be trusted with the integrity of the actual database contents. This lack of trust is crucial as
it brings up new security issues and serves as the chief motivation for our work. Specifically, we want to
prevent the server from making unauthorized modifications to the data stored in the database.

Depending on the types of clients involved, we distinguish among three flavors of the ODB model:

1. Unified Client: a database is owned by a single client which is also the only entity querying the
same database. This is the simplest ODB scenario with relatively few security challenges (in terms of
integrity).

2. Multi-Querier: a database is owned by a single client but multiple queriers are allowed to query the
hosted database. This scenario is very similar to authentic third-party publication [9].

3. Multi-Owner: a database is jointly owned by multiple clients and multiple queriers are allowed
to query the hosted database. This scenario is typical in many organizational settings where multiple

1See section 7 for the discussion of this and other related work.

users/entities are allowed to own a subset of records within the same database. (Consider, for example,
a sales database where each salesperson owns all records for the transactions that she performed.)

Since the integrity issues in the Unified Client scenario are few and easily handled with standard textbook
techniques, in the remainder of this paper, we focus on the Multi-Querier and Multi-Owner scenarios.

We assume that a querier may be a device (or an entity) limited in all or some of: computation, communi-
cation and storage facilities. A cellphone, a wireless PDA or a computer communicating over a slow dial-up
line are all examples of such anemic queriers. Limited amount of battery power may be an additional, yet
orthogonal, issue.

All of these constraints incentivize new techniques that optimize (i.e., minimize) both communication
and computation overhead for the queriers in the ODB model. To this end, the recent work in [19] considered
two signature schemes: Condensed-RSA and Aggregated-BGLS both of which allow the server to return
to the querier a set of records2 matching the query predicate along with a single aggregated signature.
Condensed-RSA is very efficient but only permits aggregation of signatures produced by a single signer.
In contrast, Aggregated-BGLS is less efficient but supports aggregation of signatures produced by multiple
signers. Hence, Condensed-RSA is more suitable for the Multi-Querier, and Aggregated-BGLS – for the
Multi-Owner, scenario.

3 Motivation

Although both techniques explored in [19] are fairly practical, each exhibits a potentially undesirable mu-
tability feature. Mutability means that anyone in possession of multiple aggregated signatures can derive
new and valid (authentic) aggregated signatures which may correspond to un-posed queries. For example,
consider a database with two relations employee and department with the following respective schemas: em-
ployee(empID, name, salary, deptID) and department(deptID, managerID). We now suppose that two SQL
queries: Q1 and Q2 (in Figure 1) are posed. Essentially, Q1 asks for all managers’ names and salaries where
managers’ salary ��������� and Q2 asks for the same information for all managers whose salary ���	�
��� .

Q1. SELECT e.name, e.salary
FROM employee e, department d
WHERE e.empID = d.managerID AND e.salary � 100000

Q2. SELECT e.name, e.salary
FROM employee e, department d
WHERE e.empID = d.managerID AND e.salary � 140000

Q3. SELECT e.name, e.salary
FROM employee e, department d
WHERE e.empID = d.managerID AND

e.salary BETWEEN 100000 AND 140000

Figure 1: SQL Queries

A querier who posed SQL queries Q1 and Q2 and obtained the corresponding aggregated signatures

2In our setting, the client’s database is a typical relational database (RDBMS) where data is organized in tables (or relations).
Each table has multiple rows and columns. A column represents an attribute of the table and a row (or a record) is an instance of
the table

S1 and S2, can compute, on her own, a valid new signature for the un-posed query Q3, also in Figure 1.
Q3, in essence, is (Q1 � Q2) i.e., information about all managers who earn more than 100K and less than
140K. The specifics of computing a new signature from a set of existing signatures depend on the underlying
aggregated signature scheme, as described in the next section.

We note that the above example is not specific to the use of aggregated signature schemes for integrity
purposes in the ODB context. In fact, without aggregated signatures, it suffices to obtain a single authentic
query reply in order to construct other such replies. Suppose that, instead, plain record-level signatures were
used (e.g., DSA or RSA). In this case, a single SELECT-style query would cause the server to construct a
query reply containing a set of records (matching the query predicate), each accompanied by its signature.
Clearly, it is then trivial for a querier to construct legitimate and authentic query replies for un-posed queries
since she is free to manipulate individual record-level signatures. Furthermore, other more efficient methods,
such as the elegant constructs based on Merkle Hash Trees (MHTs) suggested by Devanbu, et al. [9], are
equally susceptible to mutability of authentic query replies.3

At this point, one might wonder about the dangers of mutability in aggregated signature schemes, i.e.,
whether it is really an undesirable feature. The answer is clearly application dependent; in some settings,
it might indeed be desirable to derive, propagate and/or transfer authentic query replies. For example, if
queriers are expected, over time, to be able to propagate or answer queries from other queriers (e.g., to
reduce load on a busy server), mutability might be an attractive feature. However, in the present setting of
outsourced databases, mutability may indeed be undesirable. Recall that, in both Multi-Querier and Multi-
Owner ODB scenarios, owner(s) outsource the database to an external server. The server handles all queries
and provides each querier the result set matching a query along with an aggregated signature by the original
data owner. In other words, the server is the authorized agent for re-distributing the information stored in,
or derived from, the outsourced database.

It is safe to assume that Multi-Querier and Multi-Owner scenarios involve more queriers than data own-
ers. Consequently, one reason for avoiding mutability is to prevent unauthorized splitting and re-distribution
of authentic query replies. For example, consider the case of data owners and/or servers who wish to charge
a fee for each query over the outsourced database. Consequently, it might be important to prevent queriers
from deriving new valid aggregated signatures (new query reply sets are easy to derive) from prior query
reply sets and re-selling information that has not been paid for. In this case, we would like the server to be
the sole data distributor.

As noted in section 1, we stress that mutability can be a blessing in some application scenarios. For
instance, if a server does not get paid on a per query basis, in order to reduce load, it might be beneficial to
allow some queriers to themselves process queries from other queriers (i.e., to cache parts of the outsourced
database).

4 Aggregated Signature Schemes

In this section, we take a closer look at the two signature schemes considered in [19] and illustrate their
respective mutability properties.

3In [9], a querier receives from a server a set of records matching a posed query along with a set of of non-leaf nodes of an
MHT. The exact composition of this set depends on the type of a query.

4.1 Condensed-RSA

The RSA [20] signature scheme is multiplicatively homomorphic which makes it suitable for combining
multiple signatures generated by a single signer into one condensed signature.4 A valid condensed signature
signifies to the verifier that each individual signature contained in the condensed signature is valid, i.e., gen-
erated by the purported signer. Aggregation of single-signer RSA signatures can be performed incrementally
by anyone in possession of individual RSA signatures. By incrementally, we mean that the signatures can
be combined in any order and the aggregation need not be carried out in a single operation.

RSA Signature Scheme: We first describe the setup of the standard RSA signature scheme. A party
has a public key ���������
	���
 and a secret key � ����� , where � is a � -bit modulus formed as a product of
two ����� -bit primes � and � . Both public and private exponents ��	��������� and satisfy � �"! ��#%$'&)(���*
 ,
where (���*
+�,�-�

� �
.� � � �
 . The minimum currently recommended � is 1024. The security of the RSA
cryptosystem is widely believed to be based on the conjectured intractability of the large integer factorization
problem.

In practice, an RSA signature is computed on the hash of an input message. Let / �0
 denote a cryp-
tographically suitable hash function (such as, MD5 or SHA-1) which takes a variable length input 1 and
produces a fixed-length output denoted as / � 1
 . A standard RSA signature on message 1 is computed as:2 � / � 1
435� #6$'& �*
 . Verifying a signature involves checking that 287 ! / � 1
 #%$9& � . Both signature
generation and verification involve computing one modular exponentiation.

Condensed-RSA Signature Scheme: Given : different messages ;<1>= 	@?A?A?A	 1CBED and their corresponding
signatures ; 2 = 	@?A?A?A	 2 B D generated by the same signer, a Condensed-RSA signature is computed as the product
of all : individual signatures:

2 =EF B �
BG

HJI =
2 H � #%$9& �*

The resulting aggregated (or condensed) signature 2 =EF B is of the same size as a single standard RSA signature.
Verifying an aggregated signature requires the verifier to multiply the hashes of all : messages and checking
that:

� 2 =EF B
 7 ! BG
HJI = /

� 1 H
 � #%$9& �*

Mutability of Condensed RSA: Given two condensed signatures: 2 =EF H on messages ;<1�= 	@?A?A?A	 1 H D and2 =EF K on messages ;<1�= 	@?A?A?A	 1LKMD where N5OQP , it is possible to obtain a new condensed signature 2 KSR*=EF H on
messages ;<1TKSR*= 	@?A?A?A	 1 H D by simply dividing 2 =EF H by 2 =EF K (modulo �)5.

� 2 KSR*=EF H

!Q� 2 =EF H
E�9� 2 =EF K
 � #%$9& �*

Similarly, given two condensed signatures 2 =EF H on messages ;<1�= 	@?A?A?A	 1 H D and 2 H R*=EF K on messages ;<1 H R*= 	@?A?A?A	 1LK�D ,
anyone can obtain a new condensed signature 2 =EF K on messages ;<1�= 	@?A?A?A	 1 H 	 1 H R*= 	@?A?A?A	 1LKMD by multiplying2 =EF H and 2 H R*=EF K assuming all the messages are distinct.

� 2 =EF K

!Q� 2 =EF H
VUW� 2 H R*=EF K
 � #%$'& �*

4We use the term condensed in the context of a single signer and aggregated in the context of multiple signers. Clearly, former

is a special case of the latter.
5Of course, this is possible if X'Y[Z \ is relatively prime to]

4.2 BGLS

Boneh, et al. in [4] construct an interesting aggregated signature scheme that allows aggregation of signa-
tures generated by multiple signers on different messages into one short signature based on elliptic curves
and bilinear mappings. This scheme (BGLS) operates in a Gap Diffie-Hellman group (GDH) – a group
where the Decisional Diffie-Hellman problem (DDH) is easy while the Computational Diffie-Hellman prob-
lem (CDH) is hard. The first instance of such a group was illustrated in [16]. Prior to describing the BGLS
signature scheme, we briefly overview the necessary parameters [4].

��� = is a cyclic additive group with generator ��=
����� is a cyclic group with generator � �
��� is a computable isomorphism from ��� to � = , with � � � �
 � � =
��� is a computable bilinear map ��	
� = U�����
���� as described below

A bilinear mapping ��	�� = U�� �
�� � , where � � = � � � � � � � � � � � , satisfies the following two properties.

1. Bilinearity: � �"��� = , � ����� and � 	�� ��� , � � � � 	�� �
 � � �-�*	 �
����
2. Non-degenerativity: � � � = 	 � �
 �� �

These two properties imply that, for any � = 	 �!�%�"� = 	 � �#����	�� �-� =%$ �&��	 �
 � � �-� = 	 �
('�� �-�!��	 �
 ; and, for
any � 	 � ��� � 	�� �)� �-��
 	 �
 � � �)� � �
 	 ��
 .

BGLS Signature Scheme: BGLS requires the use of a full-domain hash function / �0
*	 ; � 	 � D �
 � = .
Key generation involves picking a random + �,�.- , and computing / � +0� � . The public key is / �1���
and the secret key is + �2�(- . Signing a message 1 involves computing 3 � / � 1
 , where 3 ��� = and2 � +!3 . The signature is 2 . To verify a signature one needs to compute 3 � / � 1
 and check that� � 2 	 � ��
 � � � 3 	 /
 .

BGLS Aggregated Signature Scheme To aggregate : BGLS signatures one computes the point-addition
operation (on the elliptic curve) of the individual signatures as follows: 2 =EF B �54 BHJI = 2 H , where 2 H cor-
responds to the signature of message 1 H . The aggregated signature 2 =EF B is of the same size as a single
BGLS signature, i.e., � � � bits. Similar to Condensed-RSA, the aggregation of signatures can be performed
incrementally and by anyone.

Verification of an aggregate BGLS signature 2 =EF B involves computing the point-addition of all hashes
and verifying that:

� � 2 =EF B 	 � �
 �
B6

HAI =
� � 3 H 	 / H

Due to the properties of the bilinear maps, we can expand the left hand side of the equation as follows:

� � 2 =EF B 	 � �
 � � � B6
HJI = +

H 3 H 	 � �
 �
B6

HJI =
� � 3 H 	 � �
87:9*�

B6
HJI =

� � 3 H 	 + H � �

�
BG

HJI =
� � 3 H 	 / H

Mutability of Aggregated BGLS: Similar to Condensed-RSA, aggregated BGLS signatures can be ma-
nipulated to obtain new and valid signatures that correspond to un-posed query replies. Specifically, it is
possible to either (or both) add and subtract available aggregated signatures to obtain new ones.

For example, given 2 aggregated BGLS signatures 2 =EF H on messages ;<1�= 	@?A?A?A	 1 H D and 2 H R*=EF K on mes-
sages ;<1 H R*= 	@?A?A?A	 1LK�D , if the messages ;<1�= 	@?A?A?A	 1 H D and ;<1 H R*= 	@?A?A?A	 1LK�D are all distinct (i.e.,the two queries
do not overlap), the verifier can obtain a new BGLS signature 2 =EF K on messages ;<1�= 	@?A?A?A	 1 H 	 1 H R*= 	@?A?A? 1LKMD
by adding 2 =EF H and 2 H R*=EF K . � 2 =EF K
 !Q� 2 =EF H
 $ � 2 H R*=EF K
 � #6$'& �

5 Immutable Signature Schemes

In this section, we propose extensions that strengthen previously described signature schemes and make
them immutable.

5.1 Immutable Condensed RSA (IC-RSA)

To make condensed-RSA signatures immutable, we use the technique that can be broadly classified as a
zero-knowledge proof of knowledge of signatures. The server, instead of revealing the actual aggregated
signature for a posed query, reveals only the proof of knowledge of that signature. We present two variants:
one that requires interaction, based on the well-known Guillou-Quisquater scheme, and the other that is
non-interactive, based on so-called “signatures of knowledge”.

5.1.1 Interactive Variant

This technique uses the well-known Guillou-Quisquater (GQ) identification scheme [12] which is among the
most efficient follow-ons to the original Fiat-Shamir zero-knowledge identification Scheme [2]. The version
we present is an interactive protocol between the server (Prover) and the querier (Verifier) that provides the
latter with a zero-knowledge proof that the Prover has a valid Condensed-RSA signature corresponding to
the records in the query result set.

Basically, as shown in Figure 2, the server returns to the querier the result set along with a witness.
The querier then sends a random challenge to which the server replies with a valid response. The response
together with the witness convince the querier of server’s knowledge of the Condensed-RSA signature,
without revealing any knowledge about the Condensed-RSA signature itself.

The actual protocol is shown, in more detail, in Figure 3. We use the terms Prover (P) and Verifier
(V) instead of Server and Querier, respectively, since the protocol is not specific to the ODB setting 6. Let� � 2 =EF B ��� BHJI = 2 H � #%$9& �*
 be the condensed-RSA signature computed as shown above. Recall that�[��	E�*
 is the public key of the original data-owner which all concerned parties are assumed to possess. Let� ! � BHJI = / � 1 H
C� #%$9& �*
 and

� 7 �Q� 2 =EF B
 7 ! � � #%$9& �*
 .
In step � , the querier poses a query (not shown in figure 3). In step � , the server (prover) replies with

the result set for that query as well as a commitment � . Note that � ��� 7 � #6$'& �*
 where � is a randomly
chosen element in � �� and � is the RSA modulus of the data owner who generated the individual RSA
signatures corresponding to the records in the result set 7 and � , the corresponding public exponent. In step
2, the verifier (querier) sends back a challenge / that is chosen randomly from ; � 	 � D��
	���
 where � �[��
 is the

6The original GQ scheme proposed in [12] is identity-based since it is used by the Prover to prove his “identity” to the verifier.
However, in the current scenario, we present a version that is not id-based and does not require a key generation phase since the
server uses the public key of the data owner to prove knowledge of the condensed-RSA signature by that data owner

7Recall that Condensed-RSA allows only single signer aggregation

Server Querier

���������	�
�

�
�
�
�

�
�
�
�

Execute Query � �������������������! "�����
�
�
�

�
�
�
�

�
�
�
$#

Generate random challenge%'&�(�)*)+�� -,.�	/
�
�

�
�
�
�

�
�
�
�
0

Compute Response � ���21��� 3���
�
�
�

�
�
�
�

�
�
�
4#

If test verifies
then accept, else reject

Figure 2: Protocol Overview

bit-length of the public exponent � . In Step 3, server, upon receiving the challenge / , computes the response5 � � �76 � #%$9& �*
 where
�

is the Condensed-RSA signature of the result set. In Step 4, the verifier accepts
the proof if 5 7+! � �86 � #6$'& �*
 where

�
is the product of (hashes of) all messages in the result set. Note

that 5 7 ! � � � 6
 7 ! � 7 � 7 6 ! � � � 7
 6 ! � � 6 � #%$9& �*
 . Hence the protocol works.

Prover 9 Verifier :
�%�<;�� ��

�
 ��7)� #%$'& �*
 =

�
�
�

�

�
�
4#

/ �<; ; � 	 � D �
	��
>	?
�
�
�
�
�

�
@
5
 � � 6 � #%$'& �*
 A

@
�

�
�
�
�
B#

If 5 7 ! � � 6 � #6$'& �*

then accept, else reject

Figure 3: IC-RSA GQ-based Interactive Technique

Security Considerations: GQ is RSA-based; the protocol is known to be honest-verifier zero-knowledge
and is secure against impersonation under passive attacks, assuming RSA is one-way [12].
Forgery: The public exponent � defines the security level, i.e., a cheating prover can convince the verifier,
and thus defeat the protocol with probability � ��� , by correctly guessing the value of the challenge / a priori.
Therefore, the bit-length of / should be large enough. Note that the above protocol can be run multiple times
for commensurably lower probability of successful forgery. In general, if it is run : times, the probability of
forgery is �DC B .
Security Assumptions: The security of the protocol is based on the hardness of the RSA problem (i.e.,
computing � -th roots mod a composite integer � which is formed as a product of two large primes.)

5.1.2 Non-Interactive Immutable Condensed-RSA

The second, non-interactive, variant uses the technique of Signatures of Knowledge first popularized by
Camenisch and Stadler in [6]. Specifically, we use the so-called SKROOTLOG primitive which can be used
to prove knowledge of an � -th root of the discrete logarithm of a value to a given base. Before presenting
the details, we briefly describe how this technique is used in our scenario. Conceptually, the server reveals
all records matching the query as well as a signature of knowledge for the actual condensed-RSA signature
corresponding to these records. A querier verifies by checking the SKROOTLOG proof. However, since the
querier never actually gets the condensed signature, she can not exploit the mutability of Condensed-RSA
to derive new signatures. In general, the querier can not derive proofs for any other queries by using proofs
for any number of previously posed queries.

SKROOTLOG Details: Let � � O � � be a cyclic group of order � . An e-th root of the discrete
logarithm of � � � to the base � is an integer � satisfying � 	�� �
 � � if such a � exists. If the factorization
of � is unknown, for instance if � is an RSA modulus, computing � -th roots in � �� , is assumed to be
infeasible. A signature of knowledge of an � -th root of the discrete logarithm of � to the base � is denoted� ���	�	��

��� ��� � 	 � � ��� ��� � 1

Below, we briefly outline an efficient version of SKROOTLOG proposed in [6] which is applicable when
the public exponent � is a small value (for instance, this efficient SKROOTLOG version is applicable when
the value of � is set to �).

Definition 1 If � is small, it is possible to show the proof of knowledge of the � -th root of the discrete log of� � � � � to the base � by computing the following �
� � values:�9= � � � 	 � � � � ��� 	@?@?@?�	 � 7�C = � � � ��� Y

and showing the signature of knowledge:� � � �����	� � � 	 �9= � � �	� � �+� � � = � ?@?@? � � � � �7�C = �
that the discrete logarithms between two subsequent values in the list � , ��= , ?@?@? , � 7�C = are all equal (to �)
and known (to the prover).

Below, we give the formal definition of
� ������� as in [6]:

Definition 2 A signature of the knowledge of representations of ��= 	@?@?@?�	 � � with respect to bases � = 	@?@?@?<	 � 6
on the message 1 is defined as follows:

� ������� !"
� �
= 	@?@?@?�	 �$#
 	�%& �9= � � YG

K I = �
� � Y-\� Y-\

'(� ?@?@? � %& � � � �*)G
K I = �

� �) \�) \
'(,+-

� 1

where the indices � H K � ; � 	@?@?@? 	/. D refer to the elements � = 	@?@?@?�	 �$# and the indices � H K � ; � 	@?@?@?�	 / D
refer to the base elements � = 	@?@?@?�	 � 6 .
The signature consists of an �0. $ �
 tuple �21 	 �'= 	@?@?@? 	 �3#
 � ; � 	 � D � U � �� satisfying the equation

1+�54 %& 1#� � �9= � � ?@?@? � � � � � � � = � � ?@?@? � � � 6 � � ;�; � H K 	�� H K�D � 9K I = D �HJI = � � �76 = � YG
K I = �78 � Y-\� Y-\ � � ?@?@? � � �76� �*)G

K I = �98 �) \�) \
'(

� �����	� can be computed easily if the . -tuple � �V= 	@?@?@? 	 � #
 is known. Prover first chooses � H � ; � � for
P � � 	@?@?@? 	/. , computes 1 as

1 � 4 %& 1#� � �9= � � ?@?@? � � � �.� � �'= � � ?@?@? � � � 6 � � ;�; � H K 	�� H K�D � 9K I = D �HAI = � � � YGK I = � � � Y-\� Y-\ � � ?@?@? � � � 6� �*)G
K I =

�
� �) \�) \

'(
and then sets � H � � H

�

1 � H � #%$9& �*
 for P � � 	@?@?@? 	/.
Non-Interactive IC-RSA: The server executing a client query is required to perform the following:

1. select records that match the query predicate;

2. fetch the signatures corresponding to these records;

3. aggregate the signatures (by multiplying them modulo � , as mentioned above) to obtain the condensed
RSA signature 2 ;

4. send the individual records
� � ;<1W= 	@?@?@?<	 1CB D back to the querier along with a proof of knowledge

of 2 which is essentially a SKROOTLOG proof showing that the server knows the � -th root of ��� � .
In other words, SKROOTLOG proof shows that the server knows the � -th root of ����� 9 . In order to
show this, the server sends � � , � � � and8 the SKREP proof computed as above.

Security Considerations: In practice, the efficient version of the SKROOTLOG proof which was de-
scribed in the previous section cannot be used as is. This is because the values � = ?@?@? � 74C = that are required
for the SKREP proofs leak additional information about the secret. Hence a randomized version that is pro-
posed in [6] needs to be used. The interactive protocol corresponding to the above definition of SKROOT-
LOG is proven honest-verifier zero-knowledge in [5]. For brevity, we skip the details of this discussion and
refer interested readers to [6]. However, we would like to note that the security of the SKROOTLOG proto-
col is based on the difficulty of the discrete logarithm problem and the RSA problem. In addition, SKREP
is based on the security of Schnorr signature scheme. The Non-Interactive IC-RSA, which in essence is
the SKROOTLOG primitive, is therefore honest-verifier zero-knowledge [5]. This implies that the querier
who is given only the proof of the condensed RSA signature, can not derive new signatures. In addition, the
querier can not derive new proofs for any other queries by using proofs for any number of previously posed
queries.

5.1.3 Discussion

In this section, we compare the two techniques presented above.

� Initialization and Parameter Generation: Non-Interactive technique (SKROOTLOG based) re-
quires an elaborate parameter generation phase at the server. For each data owner whose RSA public
key is ���
	���
 , the server needs to generate a large prime ��� N	� � $ � (where � is the RSA modulus
and N is some integer) and an element � � � �- such that order of � is � . On the other hand, Interactive
(GQ based) technique requires no additional parameter generation at the server since the server only
requires to have knowledge of each data owner’s RSA public key ���
	���
 .

8Note that the server need not send
���
���
������ explicitly since the querier can compute this value knowing
 and the individual� 9 -s

� Verifiability: In the Non-Interactive technique, the SKROOTLOG proof provided by the server is
universally verifiable (or in other words, the proof is self authenticating and hence transferrable).
On the other hand, the Interactive (GQ-based) technique provides guarantees only to the interactive
verifier who poses the challenge and the proof of knowledge in this case is non-transferrable. This is
perhaps the biggest difference between the two techniques.

� Communication Rounds: Since SKROOTLOG based technique requires no interaction with the
verifier for the proof, it requires no additional rounds of communication. In other words, the server
executes the query and returns the result set as well as the proof of knowledge of the corresponding
unified Condensed-RSA signature. On the other hand, the Interactive technique requires two addi-
tional rounds of communication with the verifier.

5.2 Immutable BGLS

The extension to aggregated BGLS to achieve immutability is very simple: The server computes its own
signature on the whole query reply and aggregates it with the aggregated BGLS signature of the owners.
In other words, for a given query whose result includes messages ;<1>= 	 1 ��	@?@?@?<	 1 � D , the server computes4 � / � 1 = � � 1 � ?A?A? � � 1 �
 where � � denotes concatenation, and signs this hash 4 using its own private key + 8to obtain + 8 4 and computes:

2 � 2 =EF B!$�+ 8 4
where 2 =EF B is the aggregated BGLS signature of : messages obtained as described above.

Now, a valid and authentic query reply comprises of the records in the result set along with an authentic
Immutable-BGLS signature on the entire result set. Due to this simple extension, it is no longer feasible for
anybody to manipulate the existing Immutable-BGLS signatures to obtain new and authentic ones or get any
information about individual component BGLS signatures. Verification of an immutable BGLS signature2 involves computing the individual hashes 3 H -s of each message as well as computing the hash of the
concatenation of all the messages 4 and verifying the following equality: � � 2 	 � �
 � 4 BHJI = � � / H 	 / H
 $� �04)	 / 8
 where / 8 is the server’s public key. Due to the properties of the bilinear mapping, we can expand
the left hand side of the equation as follows:

� � 2 	 � �
 � � � 4 BHJI = + H 3 H $�+ 8 4)	 � �

� � � 4 BHJI = + H 3 H 	 � �
 $ � � + 8 4)	 � �
 �4 BHJI = � � 3 H 	 � �
 7:9 $ � �04�	 � ��
 7�� � 4 BHJI = � � 3 H 	 + H � �@
 $ � �04)	 + 8 � �
 � 4 BHJI = � � 3 H 	 / H
 $ � �04)	 / 8

Security Considerations: Immutable-BGLS is a direct application of the original aggregate BGLS sig-
nature scheme (see section 4.2). The security of BGLS relies upon a Gap-Diffie Hellman group setting and
specifically requires that each message included in the aggregated signature be unique. Below we argue,
informally, the security of our construction of Immutable-BGLS signatures.

Let � H denote database record P . An Immutable-BGLS signature 2 is then constructed as follows: 2 =4 B R*=HJI = + H / � 1 H
 , where messages 1�= 	 1 � 	@?A?A?A	 1CB correspond to the selected records � = 	 � � 	@?A?A?A	 � B and 1 B R*= �
� � = � � � � � � ?A?A? � � � B
 , i.e., the concatenation of the these records. +
= 	 + ��	@?A?A?A	 + B are the data owner’s private keys
and + B R*= is the server’s key. We then claim that these : $ � messages are distinct. Each database record � H
contains a unique record identifier, resulting in messages 1 = 	 1 ��	@?A?A?A	 1CB being distinct. 1 B R*= will be unique
for each record set returned as it consists exactly of the selected records, and moreover, it will be different
than any 1LK where NLO�: $ � . Therefore, all : $ � messages are distinct.

Immutability Considerations: The immutability property of the above scheme relies upon the inability
of an adversary to forge the server’s signature. This, in turn, implies that such an adversary cannot use
an aggregate BGLS signature to generate a new Immutable-BGLS signature that verifies. In other words,
the Immutable-BGLS signature construction is resistant to mutations assuming that BGLS signatures are
unforgeable.

6 Performance Analysis

In this section, we present and discuss the experimental results for immutable signature schemes. We mainly
consider the overheads introduced by the extensions we made to the Condensed-RSA and BGLS signature
schemes to achieve immutability. Since these signature schemes were not implemented in their entirety,
we provide rough estimates on the running costs by showing the number of additional basic cryptographic
operations (such as modular exponentiations and multiplications) required by the extensions and also point
out any additional communication overheads. We then present the actual cost (time) required to carry out
these additional operations.

Table 1 enlists the computational as well as communication overheads associated with the various tech-
niques we propose in this paper. We use the following notation to describe the various basic cryptographic
operations:

� . ��: B �[��
�� : modular multiplications with modulus of size � � � ; ��+ � B � �[��
�� : modular
exponentiations with modulus of size � � � and exponent of size � � � ; � � � :
�� : bilinear mappings

Computation at Client Computation at Server Communication
GQ Identification

� . ��: = ���*
 $ ��+ � �7 ���*
 � . ��: = ���*
 $ ��+ � �7 ���*
 2
SKROOTLOG ��+ ������-��
 $ ��+ ���� �-��
 ��+ �	�� �-��
 $ ��+ � =� ���*
 $ � . � : = ���*
 0

BGLS Extension
� � � �
 � . ��: = �-��
 $ ��+ � =
 �-�
 0

Table 1: Cost comparison of techniques for Immutability

Table 2 gives the actual time required to generate a single signature and also the time required to verify
a single signature, multiple signatures by a single signer, and multiple signatures by multiple signers in both
condensed RSA and BGLS schemes. We set the RSA public exponent � to 3 for SKROOTLOG and set� �Q�[���
� $ �
 for GQ. Note that it is essential to have a large � for GQ since � in this case is also the security
parameter. Further, we have used a 1024 bit modulus � and the Chinese Remainder Theorem to speed up the
signing procedure. All computations were carried out on an Intel Pentium-4 2.8 GHz processor with 1GB
memory. The results for BGLS are obtained by using the MIRACL library [1] and the elliptic curve defined
by the equation � � � + � $ � over � - where � is a 512 bit prime and � is a 160 prime factor of � � � . In the
table � denotes the total number of signers and : denotes the number of signatures generated by each signer.

The next table gives the time required to generate and verify an immutable signature under the two
different RSA-based techniques as well as the BGLS extension. Here we do not count the communication
delays introduced by the protocols, particularly in the case of GQ which is multi-round protocol.

We also would like to mention at this point that SKROOTLOG, in addition to the above mentioned costs,
also incurs additional setup costs. These costs are necessary to set the parameters prime � and element � of
order � . Further, it is also worth noting that since condensed-RSA only enables single-signer aggregation, it
is necessary for the server to set up multiple sets of parameters: one for each signer. (In other words, since� -s of distinct owners are different, it becomes necessary to find distinct pairs (� , �) for each �).

Condensed-RSA BGLS� � � � � ���
� $ �
Sign 1 signature 6.82 6.82 9.939

1 signature 0.14 0.56 63.681
Verify t = 1000 sigs, k = 1 signer 29.11 29.531 186.56

t = 100 sigs, k = 10 signers 30.11 34.31 463.88
t = 1000 sigs, k = 10 signers 291.11 295.31 1570.8

Table 2: Cost comparison (time in msec): verification and signing

Technique Used Computation at Client Computation at Server Total

GQ 0.309 0.309 0.618
SKROOTLOG 41.88 47.489 89.369

Immutable BGLS 34.492 11.939 46.431

Table 3: Cost comparison (time in msec): Immutable Signature Schemes

7 Related Work

Database security has been studied extensively within the database as well as cryptographic research com-
munities. Specifically, the problem of data privacy for outsourced databases has been investigated by many.
Hacigümüş, et al. examined various challenges associated with providing database as a service in [15]. In
our work, we used a very similar system model.

Private Information Retrieval (PIR) [8, 10] deals with the exact matching problem and has been explored
extensively in the cryptographic literature. PIR is primarily concerned with private retrieval of parts of data
stored at an external server, such that no partial information about the query is leaked to the server. PIR
techniques support searching based on either the physical location [8] of the data or using keywords [7].
However, most of current PIR techniques aim for very strong security bounds and, consequently, remain
unsuitable for practical purposes. Concretely, PIR schemes typically require either multiple non-colluding
servers or multiple rounds of communication.

Song et al. [21] develop a more pragmatic scheme to search on data encrypted using a secret symmetric
key. Their scheme requires a single server and offers fairly low computational complexity. In summary,
searching on encrypted data is becoming an increasingly popular research topic with such recent interesting
results as [21, 11]. However, the aforementioned schemes only support exact-match queries, i.e., the server
returns data matching either a given address or a given keyword. Hacigümüş, et al. in [13] explore how
different types of SQL queries can be executed over encrypted data and provide detailed query processing
and optimization techniques. Specifically, they support range searches and joins in addition to exact-match
queries.

[14] investigated integrity issues in the ODB model: data encryption is used in combination with ma-
nipulation detection codes to provide integrity. As mentioned earlier [19] mainly focuses on the use of
digital signatures in order to facilitate efficient integrity assessment. Specifically, [19] constructs a simple
RSA-based aggregation technique based on fast batch verification [3] of RSA signatures. Another solution
explored in [19] uses aggregated signatures proposed by Boneh, et al. [4]. This scheme is based on bilinear
maps and provides an elegant mechanism to aggregate � individual signatures on � messages (by :�� �
signers) into one single signature.

[9] explores the applicability of Merkle Hash Tree-s (MHT-s) as a technique for providing authentic-
ity and integrity in third-party data publication settings. MHT-s are created by letting the tree leaf nodes
represent the ordered set of records of a relation, sorted by a selected attribute. With the help of a MHT, a
server can answer a client’s query by returning the tree nodes necessary to prove the existence of the selected
records. MHT-s are especially well suited for range queries due to the few nodes needing to be returned and
the relatively cheap computations required by the client (1 modular exponentiation to verify the MHT’s root
signature and computation of hash values linear in the number of records returned). Furthermore, this solu-
tion provides query completeness for queries involving a single attribute in the predicate, namely proof that
the server has included all applicable records in its query response. Merkle first introduced MHT-s in [18]
and they were initially used for the purpose of one-time signatures and authenticated public key distribution.
The use of authenticated data structures for providing data integrity in general has been studied extensively
in [17].

8 Conclusions

In this paper, we introduced the notion of immutability for aggregated signature schemes. Some aggregated
signature schemes suitable for providing data integrity and origin authentication for outsourced databases
were considered recently in [19]. In this paper, we extended this work to provide several practical mech-
anisms to achieve immutability for these schemes. We provided a detailed comparison and performance
analysis of the proposed techniques.

References
[1] MIRACL Library. http://indigo.ie/˜mscott.

[2] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature problems. In A. M.
Odlyzko, editor, Advances in Cryptology – CRYPTO ’86, number 263 in Lecture Notes in Computer Science, pages 186–194,
Santa Barbara, CA, USA, 1987. International Association for Cryptologic Research, Springer-Verlag, Berlin Germany.

[3] M. Bellare, J. Garay, and T. Rabin. Fast batch verification for modular exponentiation and digital signatures. In Eurocrypt
1998, volume 1403, pages 191–204, 1998.

[4] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and Verifiably Encrypted Signatures from Bilinear Maps. In E. Bi-
ham, editor, Advances in Cryptology – EUROCRYPT ’2003, Lecture Notes in Computer Science. International Association
for Cryptologic Research, Springer-Verlag, Berlin Germany, 2003.

[5] J. Camenisch. Group Signature Schemes and Payment Systems Based on the Discrete Logarithm Problem. Vol. 2 of ETH-
Series in Information Security and Cryptography. ISBN 3-89649-286-1, Hartung-Gorre Verlag, Konstanz, 1998.

[6] J. Camenisch and M. Stadler. Efficient Group Signature Schemes for Large Groups. In Advances in Cryptology – CRYPTO
’97, number 1294 in Lecture Notes in Computer Science, pages 410–424. International Association for Cryptologic Research,
Springer-Verlag, Berlin Germany, 1997.

[7] B. Chor, N. Gilboa, and M. Naor. Private Information Retrieval by Keywords. Technical Report TR CS0917, Department of
Computer Science, Technion, 1997.

[8] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private Information Retrieval. Journal of ACM, 45(6):965–981, Nov.
1998.

[9] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. Authentic third-party data publication. In 14th IFIP 11.3 Working
Conference in Database Security, pages 101–112, 2000.

[10] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting Data Privacy in Private Information Retrieval Schemes. In 30th
Annual Symposium on Theory of Computing (STOC), Dallas, TX, USA, 1998. ACM Press.

[11] E.-J. Goh. Secure indexes for efficient searching on encrypted compressed data. Cryptology ePrint Archive, Report 2003/216,
2003. http://eprint.iacr.org/2003/216/.

[12] L. Guillou and J. J. Quisquater. A ”Paradoxical” Identity-Based Signature Scheme Resulting from Zero-Knowledge. In
S. Goldwasser, editor, Advances in Cryptology – CRYPTO ’88, number 403 in Lecture Notes in Computer Science, Santa
Barbara, CA, USA, 1988. International Association for Cryptologic Research, Springer-Verlag, Berlin Germany.

[13] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over Encrypted Data in the Database-Service-Provider Model.
In ACM SIGMOD Conference on Management of Data, pages 216–227. ACM Press, June 2002.

[14] H. Hacigümüş, B. Iyer, and S. Mehrotra. Encrypted Database Integrity in Database Service Provider Model. In International
Workshop on Certification and Security in E-Services (CSES’02 IFIP WCC), 2002.

[15] H. Hacigümüş, B. Iyer, and S. Mehrotra. Providing Database as a Service. In International Conference on Data Engineering,
March 2002.

[16] A. Joux and K. Nguyen. Separating Decision Diffie-Hellman from Diffie-Hellman in cryptographic groups. In Cryptology
ePring Archive, number Report 2001/003, 2001.

[17] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine. A general model for authenticated data
structures. Algorithmica, 39(1), Jan. 2004.

[18] R. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on Research in Security and Privacy, 1980.

[19] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and Integrity in Outsourced Databases. In ISOC Symposium on
Network and Distributed Systems Security (NDSS’04), 2004.

[20] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, Feb. 1978.

[21] D. Song, D. Wagner, and A. Perrig. Practical Techniques for Searches on Encrypted Data. In 2000 IEEE Symposium on
Security and Privacy, May 2000.

