A New Stream Cipher HC-256 *

Hongjun Wu

Institute for Infocomm Research, Singapore
hongjun@i2r.a-star.edu.sg

Abstract. HC-256 is a software-efficient stream cipher. It generates
keystream from a 256-bit secret key and a 256-bit initialization vector.
The encryption speed of the C implementation of HC-256 is about 1.9
bits per clock cycle (4.2 cycle/byte) on the Intel Pentium 4 processor. A
variant of HC-256 is also introduced in this paper.

1 Introduction

Stream ciphers are used for shared-key encryption. The modern software efficient
stream ciphers can run 4-to-5 times faster than block ciphers. However, very few
efficient and secure stream ciphers have been published. Even the most widely
used stream cipher RC4 [30] has several weaknesses [18, 20, 26, 13,14, 21, 25]. In
the recent NESSIE project all the six stream cipher submissions cannot meet
the stringent security requirements [28]. In this paper we aim to design a very
simple, secure, software-efficient and freely-available stream cipher.

HC-256 is the stream cipher we proposed in this paper. It consists of two
secret tables, each one with 1024 32-bit elements. At each step we update one
element of a table with non-linear feedback function. Every 2048 steps all the
elements of the two tables are updated. At each step, HC-256 generates one
32-bit output using the 32-bit-to-32-bit mapping similar to that being used in
Blowfish [33]. Then the linear masking is applied before the output is generated.

In the design of HC-256, we take into consideration the superscalar feature
of modern (and future) microprocessors. Without compromising the security, we
try to reduce the dependency between operations. The dependency between the
steps is reduced so that three consecutive steps can be computed in parallel.
At each step, three parallel additions are used in the feedback function and
three additions are used to combine the four table lookup outputs instead of the
addition-xor-addition being used in Blowfish (similar idea has been suggested by
Schneier and Whiting to use three xors to combine those four terms [34]).

With the high degree of parallelism, HC-256 runs very efficiently on the
modern processor. We implemented HC-256 in C and tested its performance on
the Pentium 4 processor. The encryption speed of HC-256 reaches 1.93 bit/cycle.

This paper is organized as follows. We introduce HC-256 in Section 2. The
security analysis of HC-256 is given in Section 3 and Section 4. Section 5 discusses
the implementation and performance of HC-256. A variant of HC-256 is given
in Section 6. Section 7 concludes this paper.

* Full version of the FSE 2004 paper [39]. Last revised April 15, 2004.

2 Stream Cipher HC-256

In this section, we describe the stream cipher HC-256. From a 256-bit key and a
256-bit initialization vector, it generates keystream with length up to 2'® bits.

2.1 Operations, variables and functions

The following operations are used in HC-256:

+
H

<
I

>
<<
>=>>

:x +y means £ + y mod 232, where 0 < x < 232 and 0 < y < 232

: By means x — y mod 1024

: bit-wise exclusive OR

: concatenation

: right shift operator. >> n means x being right shifted n bits.

: left shift operator. £ << n means z being left shifted n bits.

: right rotation operator. x >3 n means ((z >> n)® (r << (32—n))
where 0 < n < 32,0 < z < 232,

Two tables P and @ are used in HC-256. The key and the initialization vector of
HC-256 are denoted as K and IV. We denote the keystream being generated as s.

P

Q

K
v
s

: a table with 1024 32-bit elements. Each element is denoted as P[]

with 0 <14 <1023.

: a table with 1024 32-bit elements. Each element is denoted as Q[]

with 0 <4 <1023.

: the 256-bit key of HC-256.
: the 256-bit initialization vector of HC-256.
: the keystream being generated from HC-256. The 32-bit output

of the ith step is denoted as s;. Then s = sgl|s1]|s2]| - -

There are six functions being used in HC-256. f1(z) and fz(z) are the same as
the 0'3256}(£U) and Jf%ﬁ}(:r) being used in the message schedule of SHA-256 [27].
For ¢1 () and hy(z), the table Q is used as S-box. For ga(x) and ho(z), the table
P is used as S-box.

filx)=(z>>7)& (z>> 18) @ (x > 3)
fo(z) = (x> 17) & (z >> 19) & (z > 10)
g1(z,y) = ((z >>10) & (y >> 23)) + Q[(z ® y) mod 1024]
g2(z,y) = ((z > 10) ® (y >> 23)) + P[(x & y) mod 1024]
hi(z) = Qlzo] + Q[256 + x1] + Q512 + 2] + Q[768 + x3]
ho(x) = Plxo] + P[256 4 x1] + P[512 + 25| + P[768 + x3]

where x = x3]|xs||z1]|z0, = is a 32-bit word, z¢, 1, x2 and x3 are four bytes.
x3 and x¢ denote the most significant byte and the least significant byte of =,
respectively.

2.2 Initialization process (key and IV setup)

The initialization process of HC-256 consists of expanding the key and initializa-
tion vector into P and @ (similar to the message setup in SHA-256) and running
the cipher 4096 steps without generating output.

1. Let K = Ko||K1||--- || K7 and IV = IV,||IV4||-- - ||I V7, where each K; and
IV; denotes a 32-bit number. The key and IV are expanded into an array
W; (0 < i < 2559) as:

K; 0<:i<7
W, =4 IV,_s 8<i<15
fo(Wi—2) + Wiz + fr(Wi—is) + Wi_ie + 1 16 <4 < 2559
2. Update the tables P and @ with the array W.

P[Z] = Wi+512 for 0 <) < 1023
Q[Z] = Wi+1536 for 0 < i < 1023

3. Run the cipher (the keystream generation algorithm in Subsection 2.3) 4096
steps without generating output.

The initialization process completes and the cipher is ready to generate keystream.

2.3 The keystream generation algorithm

At each step, one element of a table is updated and one 32-bit output is gen-
erated. An S-box is used to generate only 1024 outputs, then it is updated in
the next 1024 steps. The keystream generation process of HC-256 is given below
(“B” denotes “—” modulo 1024, s; denotes the output of the i-th step).

1= 0;
repeat until enough keystream bits are generated.
{

j =1 mod 1024;

if (i mod 2048) < 1024

P[j] = P[]+ P[j 810 + g:(P[j B3], P[j B51023]);
} si = hi (Pl B12]) ® P[j];

else

Qi = Q] + QI B 10] + g2(Q[7 B 3], Q[B 1023]);
} si = h2(Q[j B12]) ® Qj];
end-if
i=14+1;
}

end-repeat

2.4 Encryption and decryption

The keystream is XORed with the message for encryption. The decryption is to
XOR the keystream with the ciphertext.

3 Security Analysis of HC-256

We start with a brief review of the attakcs on stream ciphers. Many stream
ciphers are based on the linear feedback shift registers (LFSRs). A number of
correlation attacks, such as [35, 36,23, 15, 24, 5, 19], have been developed to an-
alyze them. Later, Goli¢ [16] devised the linear cryptanalysis of stream ciphers.
That technique could be applied to a wide range of stream ciphers. Recently
Coppersmith, Halevi and Jutla [7] developed the distinguishing attacks (the lin-
ear attack and low diffusion attack) on stream ciphers with linear masking. And
there are algebraic attacks that can be used to break stream ciphers with low
algebraic degrees. Recently the improved algebraic attacks (with new techniques
to reduce the algebraic degrees) can be applied to break several LFSR-based
stream ciphers [1,8-10].

Because the output and feedback functions of HC-256 are highly non-linear,
it is impossible to apply the correlation attacks and algebraic attacks to recover
the secret key of HC-256. The output function of HC-256 uses the 32-bit-to-32-
bit mapping similar to that being used in Blowfish. The past-ten year anlaysis
on Blowfish shows that the round function of Blowfish is very strong. Especially
there is no attack based on linear cryptanalysis [22] has been developed against
the large secret S-box of Blowfish. The large secret S-box of HC-256 is updated
during the keystream generation process, so it is almost impossible to develop
linear relations linking the input and output bits of the S-box. Vaudenay has
found some differential weakness of the randomly generated large S-box [37].
But it is very difficult to launch differential cryptanalysis [3] against HC-256
since it is a synchronous stream cipher for which the keystream generation is
independent of the message.

In this section, we will analyze the period of HC-256, the security of the
secret key and the security of the initialization process. The randomness of the
keystream will be analyzed separately in Section 4.

3.1 Period

The 65547-bit state of HC-256 ensures that the period of the keystream is ex-
tremely large. But the exact period of HC-256 is difficult to predict. The average
period of the keystream is estimated to be about 265546 (if we assume that the
invertible next-state function of HC-256 is random). The large number of states

also eliminates the threat of the time-memory tradeoff attack on stream ciphers
[2,17].

3.2 Security of the secret key

We note that the output function and the feedback function of HC-256 are
highly non-linear. The non-linear output function leaks very small amount of
partial information at each step. The non-linear feedback function ensures that
the secret key could not be recovered from those leaked partial information.

In this subsection, we will first illustrate that even for the HC-256 with no
linear masking, it is impossible to recover the secret key faster than exhaustive
key search. Then we show that recovering the secret key of HC-256 is more
difficult.

HC-256 with no linear masking. For HC-256 with no linear masking, the
output at the ith step is generated as s; = h1(P[iB12]) or s; = ha(Qi B 12]).
If two outputs generated from the same S-box are equal, then those two inputs
to the S-box are equal with large probability. According to the analysis of the
randomness of hy(x) and ho(x) given in Subsection 4.1, we know that for 2048 x
a <1< j <2048 xa+1024, the probability that s; = s; is about 2731 If s; = S5,
then at the j-th step, P[i B12] = P[jB12] with probability about 0.5. It means
that 15-bit information of the table P is leaked. We note that each S-box is used
in only 1024 steps. For these 1024 outputs, there are about ('%*) x 2731 ~ 2712
collisions. To recover P, we need ;921‘5;(?;% x 1024 = 2331 outputs. We also note
that P and @ interact in a very complicated way (each table is used as S-box to
update another table), so they must be recovered together. Thus 234! outputs
are needed in the attack to recover P and @ if we exploit the information being
leaked in this way. Note that the feedback function of HC-256 is highly non-linear
and it can not be simply approximated as LFSR, we conclude that recovering P
and Q from those 234! outputs would be more difficult than exhaustive search.

HC-256. The analysis above shows that the secret key of HC-256 with no linear
masking is secure. With the linear masking, the information leakage is greatly
reduced. For 2048 x o <4 < j < 2048 x a + 1024, if two outputs s; and s; are
equal, we know that hi(P[iB12]) @ P[i] = h1(P[j B 12]) & PJj]. Since hi(P[i B
12]) = h1(P[j812) with probability about 273!, the probability that P[i] = P[j]
is about 273!, It means that each collision leaks about 2726'1-bit information,
which is 230 times less than that leaked from the collison of the outputs of HC-
256 with no linear masking. The information leakage is significantly reduced
and it is obvious that the linear masking improves the security tremendously.
Note that the analysis above shows already that the key of HC-256 with no
linear masking is secure, so we conclude that the secret key of HC-256 cannot
be recovered faster than exhaustive key search.

3.3 Security of the initialization process (key/IV setup)

The initialization process of the HC-256 consists of two stages, as given in Sub-
section 2.2. We expand the key and IV into P and Q). At this stage, every bit

of the key/IV affects all the bits of the two tables and any difference in the
related keys/IVs results in uncontrollable differences in P and Q. Note that the
constants in the expansion function at this stage play significant role in reducing
the effect of related keys/IVs (If there is no constants in the expansion function,
then set key Kp and I'Vp as 16 consecutive elements in the array W, generated
from K4 and I'Vpg, the resulting W and W4 would be highly correlated). After
the expansion, we run the cipher 4096 steps without generating output so that
the P and Q become more random. After the initialization process, we expect
that any difference in the keys/IVs would not result in biased keystream.

4 Randomness of the keystream

We start with the description of a general (and obvious) distinguishing attack
that can be applied to any stream cipher. For a stream cipher with n-bit secret
key, this attack can succeed with probability 0.98 (with false negative rate and
false positive rate 0.02) with 21n x 2% bits chosen keystream. The attack goes as
follows. Assume that the secret key is randomly generated and the initialization
vector is not used (or the same initialization vector is used for many secret keys).
From each secret key k;, a keystream u; with length 7.6n bits is generated. After
generating keystream from about 2.8 x 2% secret keys, the probability that there
is collision in the keystream, i.e. u; = u; for ¢ # j, is about 0.98 due to the
collision of the n-bit keys. If the keystream is truly random, then this collision
rate is only 0.02. Thus this distinguishing attack can succeed with about 21nx2%
bits chosen keystream.

For any stream cipher with 256-bit secret key, the above general distinguish-
ing attack can succeed with about 2394 bits chosen keystream. Since the key
length of HC-256 is 256 bits, we set the security goal as that if the available
keystream (generated from the same or different key/IV) is less than 2!28 bits,
then it is computationally impossible to distinguish the keystream from random
signal.

In this section, we will investigate the randomness of the keystream of HC-
256. In Subsection 4.1, we exploit the weaknesses of HC-256 with no linear
masking. In Subsection 4.2, we will show that the linear masking eliminates
those threats. For the HC-256 with the deliberately weakened feedback function,
about 2'7* outputs are needed in the distinguishing attack. In Subsection 4.3,
we show that about 22°6 outputs are needed in the distinguishing attack against
HC-256.

4.1 Keystream of HC-256 with no linear masking

The attacks on HC-256 with no linear masking is to investigate the security
weaknesses in the output and feedback functions. We developed two attacks
against HC-256 with no linear masking.

Weakness of hy(z) and he(x). For HC-256 with no linear masking, the output
is generated as s; = hy(P[i B 12]) or s; = h2(Q[i B 12]). Because there is no
difference between the analysis of hi(z) and ho(z), we use h(x) to refer hy(x)
and ha(z) here. Assume that h(x) is a 32-bit-to-32-bit S-box H(x) with randomly
generated secret elements and the inputs to H are randomly generated. Because
the elements of the H(x) are randomly generated, the output of H(z) is not
uniformly distributed. If a lot of outputs are generated from H (z), some values
in the range [0,23?) never appear and some appear with probability larger than
2732 Then it is straightforward to distinguish the outputs from random signal.
However each H(x) in HC-256 is used to generate only 1024 outputs, then it
gets updated. The direct computation of the distribution of the outputs of H(x)
from those 1024 outputs cannot be successful. Instead, we consider the collision
between the outputs of H(x). The following theorem gives the collision rate of
the outputs of H(x).

Theorem 1. Let H be an m-bit-to-n-bit S-box and all those n-bit elements are
randomly generated, where m > n. Let x1 and xo be two m-bit random inputs to
H. Then H(x1) = H(x2) with probability 2™ 4 27" — 27m~ ",

Proof. If 1 = xo, then H(z1) = H(x2). If 1 # xo, then H(z1) = H(z2) with
probability 27". xy = zo with probability 2™ and z; # xo with probability
1 —27™. The probability that H(z1) = H(zg) is 27™ 4+ (1 —27™) x 27",

Attack 1. According to Theorem 1, for the 32-bit-to-32-bit S-box H, the collision
rate of the outputs is about 273242732 = 2731 With 235 pairs of (H (x1), H(22)),
we can distinguish the output from random signal with success rate 0.761. (The
success rate can be improved to 0.996 with 23¢ pairs.) Note that only 1024
outputs are generated from the same S-box H, so 226 outputs are needed to
distinguish the keystream of HC-256 with no linear masking.

Experiment. To compute the collision rate of the outputs of HC-256 (with no
linear masking), we generated 23° outputs (2*® pairs). The collision rate is
2731 _ 274009 The experiment confirms that the collision rate of the outputs
of h(z) is very close to 273!, and approximating h(z) with randomly generated
S-box has negligible effect on the attack.

Remarks. The distinguishing attack above can be slightly improved if we con-
sider the differential attack on Blowfish. Vaudenay [37] has pointed out that the
collision in a randomly generated S-box in Blowfish can be applied to distinguish
the outputs of Blowfish with reduced round number (8 rounds). The basic idea
of Vaudenay’s differential attack is that if Q[i] = Q[j] for 0 < 4,5 < 256, i # j,
then for ag ® af, = i ® j, hi(as||az||a1]lao) = hi(as||az||a1||a;) with probability
2=, where each a; denotes an 8-bit number. We can detect the collision in the
S-box with success rate 0.5 since that S-box @ is used as inputs to ho(z) to
produce 1024 outputs. If Q[i] = Q[j] for 256 < i,j < 256 + 256, 0 < a < 4,
i # j, and z1 and x9 are two random inputs (note that we cannot introduce

or identify inputs with particular difference to h(z)), then the probability that

hi(x1) = hi(x2) becomes 273! 4 2732, However the chance that there is one
256

useful collision in the S-box is only (223)2X4 = 2715, The average collision rate

becomes 271° x (2731 4+ 2732) 4 (1 — 2715) x 2731 = 2731 1 2747 The increase

in collision rate is so small that the collision in the S-box has negligible effect on

this attack.

Weakness of the feedback function. The table P is updated with the non-
linear feedback function P[i mod 1024] = P[i mod 1024] + P[i B 10] + ¢1(P[i B
3], P[iB1023]). The following attack is to distinguish the keystream by exploit-
ing this relation.

Attack 2. Assume that the h(z) is a one-to-one mapping function. Consider two
groups of outputs (s, si—3, 8i—10, Si—2047, Si—2048) and (s, $;_3, Sj—10, Sj—2047,
sj—o048). If i # j and 1024 x oo+ 10 < 4,5 < 1024 x a + 1023, they are equal
with probability about 27128, The collision rate is 27150 if the outputs are truely
random. 271?® is much larger than 27160, so the keystream can be distinguished
from random signal with about 2!2® pairs of such five-tuple groups of outputs.
Note that the S-box is updated every 1024 steps, 2! outputs are needed in the
attack.

The two attacks given above show that the HC-256 with no linear masking does
not generate secure keystream.

4.2 Keystream of HC-256 with the weakened feedback function

With the linear masking being applied, it is no longer possible to exploit those
two weaknesses separately and the attacks given above cannot be applied di-
rectly. We need to remove the linear masking first. We recall that at the ith
step, if (i mod 2048) < 1024, the table P is updated as
P[i mod 1024] = P[i mod 1024] + P[i 810] + g1 (P[i 53], P[i 81023])
We know that s; = hy (P[i812])® P[i mod 1024]. For 10 < (i mod 2048) < 1023,
this feedback function can be written alternatively as
5; @ hy(2i) = (Si—2048 ® h (zim20a8) + (Si—10 ® h1(zi—10) +
g1(5i-3 @ h1(2i-3), si—20a7 © h (2i—2047)) (1)
where hy(x) and b} (z) indicate two different functions since they are related to
different S-boxes; z; denotes the P[j H12] at the j-th step. The linear masking
is removed successfully in (1). However, it is very difficult to apply (1) directly
to distinguish the keystream. To simplify the analysis, we attack a weak version
of (1). We replace all the ‘+’ in the feedback function with ‘@’ and write (1) as
8; @ si—2048 D 8i—10 D (Si—3 >> 10) D (842047 >> 23)
= h1(z;) ® b (zi—2048) & h1(2zi—10) & (h1(zi—3) >> 10) &
%) (hll (Zi_2047) > 23) D Q[’I‘i], (2)

where r; = (s;—3 @ h1(2i—3) B Si—20a7 ®) (2i—2047)) mod 1024. Because of the
random nature of hy(z) and @, the right hand side of (2) is not uniformly
distributed. But each S-box is used in only 1024 steps, these 1024 outputs are
not sufficient to compute the distribution of s; ® s;—2048 ® si—10 ® (853 >>
10) @ (8;—2047 > 23). Instead we need to study the collision rate. The effective
way is to eliminate the term hq(z;) before analyzing the collision rate.

Replace the ¢ with ¢4 10. For 10 < 4 mod 2048 < 1013, (2) can be written as

Si+10 D Si—2038 B 8i B (Si47 >> 10) & (8;-2037 >> 23)
= h1(zit10) ® B (zi—2038) ® h1(2:) @ (h1(zi47) >=> 10) &
@ (P} (2i-2037) >> 23) & Q[rit10] (3)

For the left-hand sides of (2) and (3) to be equal, i.e., for the following equation

8i @ Si—2048 B Si—10 D (si—3 >> 10) ® (8;_2047 >> 23) =
Sit+10 D Si—2038 D 5; D (Si+7 > 10) (&) (81;2037 >>> 23) (4)

to hold, we require that (after eliminating the term hq(z;))

hi(zi—10) @ Py (2i—2048) © (R1(2i—3) > 10)
& () (zi—2047) == 23) @ Q[ry]
= h1(2i410) © b} (2i—2038) ® (h1(zi47) >> 10)
@ (P} (2i—2037) > 23) © Q[rit10] (5)
For 22 < i mod 2048 < 1013, we note that z;_10 = 2; ® 22048 B (zi—3 =>>
10) @ (2i—2047 > 23) ® Q[(2i—3 © zi—2047) mod 1024], and 2,10 = 2; D 2;—2038 D

(zix7 = 10) @ (2i—2037 > 23) @ Q[(zit+7 B 2zi—2037) mod 1024]. Approximate
(5) as

H(z1) = H(x2) (6)

where H denotes a random secret 106-bit-to-32-bit S-box, x1 and x4 are two 106-
bit random inputs, 21 = 2;_3||2i—2047||2i—2048||7i and x2 = 2z 7||zi—2037||2i—2038
[|7i+10- (The effect of z; is included in H.) According to Theorem 1, (6) holds
with probability 2732 4 27106 So (4) holds with probability 2732 + 27106 We
approximate the binomial distribution with the normal distribution. The mean

@ = Np and the standard deviation ¢ = /Np(1 — p), where N is the total
number of equations (4), and p =232 4 2 106 For random signal, p’ = 2732,
w = Np and o’ = \/Np (1—p). If ju—2u'] > 2(0+0) ie. N > 2184 the output

of the cipher can be dlstlngulshed from random signal with success rate 0.9772
(with false negative rate and false positive rate as 0.0228 since the cumulative
distribution function gives value 0.9772 at u + 20).

After verifying the validity of 2184 equations (4), we can successfully distin-
guish the keystream from random signal. We note that the S-box is updated
every 1024 steps, so only about 20 equations (4) can be obtained from 1024
steps in the range 1024 x o <7 < 1024 x o + 1024. To distinguish the keystream
from random signal, 2'®* outputs are needed in the attack.

The attack above can be improved by exploiting the relation r; = (s;_3 @
h1(Zi_g)@si_gozg@h/l(21_2047)) mod 1024. If (Si_3@81_2047) mod 1024 = (5i+7®
Si_2037) mod 1024, then (6) holds with probability 2732 + 279 and 2!%* equa-
tions (4) are needed in the attack. Note that only about one equation (4) can
now be obtained from 1024 steps in the range 1024 x a <14 < 1024 x o + 1024.
To distinguish the keystream from random signal, 274 outputs are needed in
the attack.

We note that the attack above can only be applied to HC-256 with all the ‘+’
in the feedback function being replaced with ‘@®’. To distinguish the keystream
of HC-256, more than 274 outputs are needed.

4.3 Keystream of HC-256

In this subsection, we investigate the randomness of the keystream of HC-256.
We note that there are three ‘+’ operations in the feedback function. We will
first investigate the least significant bits in the feedback function since they are
not affected by the ‘+’ operations. Denote the i-th least significant bit of a as
a’. From (1), we obtain that for 10 < (i mod 2048) < 1023,

8 @ 8)_5048 D 8{_10 D 5;%5 B 572 5047

= (h1(2:))° @ (R} (2i-2018))° ® (h1(2i-10))° ®

@ (h1(2i-3))"" & (R] (zi—2047))* @ (Q[r4])° (7)
In Subsection 4.2, two techniques are used in deducing the randomness of the
keystream. One is to eliminate the term hj(z;). Another one is to exploit the
relation that those five z; terms are linked by the feedback function. But due
to the ‘4’ operations in the feedback function of HC-256, only one technique
can now be used. We use the latter technique in the attack because it is about
27 times better than the former (The former technique gives probability twice
better than the latter, but the relations generated from the former technique is
about 2° less than that generated from the latter). The attack is as follows.

For 2048 x av+ 10 < 4,5 < 2048 x v + 1023 and j # 4, (7) is expressed as
82 ® 3?—2048 @ 52—10 ® 8}33 S 5332047
= (h1(2))" @ (M (2-2018))° @ (h1(2j-10))° @

@ (h1(2j-3))"" @ (b (zj—2047))** @ (Q[r;])° (8)
For the left-hand side of (7) and (8) to be equal, i.e., for the following equation

57 @ 8)_o048 D 8710 D 8,05 © 579047 =

53 B 8]_0043 D 5710 B 5523 D 87 9047 9)
to hold, we require that

(h1(2:))° @ (R} (2i-2048))° @ (b1 (2i-10))°
@ (h1(zi-3))" @ (B (zi—2047)) @ (Q[r])°
= (h1(2)° @ (B (2j-2048))" @ (h1(2j-10))°
@ (h1(z5-3))"" @ (W) (2j-20a7)) % @ (Q[r;])° (10)

10

We note that z; = z;_204s + zi—10 + 91 (2i—3, Zi—2047), and z; = 2z;_2048 + 2j—10 +
g1 (Zj_37 Zj_2047). Approximate (10) as

H(xz1) = H(xs) (11)

where H denotes a random secret 138-bit-to-1-bit S-box, 1 and x5 are two 138-
bit random inputs, x1 = z;_3|[zi—10[|2i—2047||7i—204s||7: and x2 = 2z;_3]|z;_10]]
2j—2047||2j—20a8]|7j. According to Theorem 1, (11) holds with probability % +
27139 S0 (9) holds with probability § 4+ 273%. Similar to the analysis given in
Subsection 4.2, we obtain that after testing the validity of 2280 equations (9),
the output of the cipher can be distinguished from random signal with success
rate 0.9772 (with false negative rate and false positive rate as 0.0228). Note
that only about 2! equations (9) can be obtained from every 1024 outputs, this
distinguishing attack requires about 227! outputs. After exploiting the relation
i = (Si—3 D h1(2i—3) ® Si—2047 ®) (2i—2047)) mod 1024 (similar to that given in
Subsection 4.2), the amount of outputs needed in the distinguishing attack can
be reduced to 2261,

We note that the attack above only deals with the least significant bit in
(1). It may be possible to consider the rest of the 31 bits bit-by-bit. But due
to the effect of those three ‘+’ operations in the feedback function, the attack
exploiting those 31 bits would not be as effective as that exploiting the least
significant bit. Thus more than 22°6 outputs are needed in this distinguishing
attack.

It may be possible that the distinguishing attack against HC-256 could be
improved in the future. However, it is very unlikely that our security goal could
be breached since the security margin is extremely large. We conjecture that any
successful distinguishing attack against HC-256 would require more than 274
outputs. We thus conclude that it is computationally impossible to distinguish
2128 hits keystream of HC-256 from random signal.

5 Implementation and Performance of HC-256

The direct C implementation of the encryption algorithm given in Subsection
2.3 runs at about 0.6 bit/cycle on the Pentium 4 processor. The program size
is very small but the speed is only about 1.5 times that of AES [11]. At each
step in the direct implementation, we need to compute (i mod 2048), ¢ B 3,
1EH 10 and i 8 1023. And at each step there is a branch decision based on the
value of (¢ mod 2048). These operations affect greatly the encryption speed. The
optimization process is to reduce the amount of these operations.

5.1 The optimized implementation of HC-256

This subsection describes the optimized C implementation of HC-256 given in
Appendix B (“hc256.h”). In the optimized code, loop unrolling is used and only
one branch decision is made for every 16 steps. The experiment shows that the

11

branch decision in the optimized code affects the encryption speed by less than
one percent.

There are several fast implementations of the feedback functions of P and
Q. We use the implementation given in Appendix B because it achieves the best
consistency on different platforms. The details of that implementation are given
below. The feedback function of P is given as

P[i mod 1024] = P[i mod 1024] 4+ P[i 810] + g1 (P[i B3], P[i B1023])

A register X containing 16 elements is introduced for P. If (i mod 2048) < 1024
and ¢ mod 16 = 0, then at the begining of the ith step, X[j] = P[(i — 16 +
j) mod 1024] for j = 0,1,---15, i.e. the X contains the values of P[iE16], P[iB
15],- -+, P[i B 1]. In the 16 steps starting from the ith step, the P and X are
updated as

P[i] = P[i] + X[6] + g1 (X[13], P[i + 1]);
X10] = Plil;

Pli+1] = Pli+ 1]+ X[7) 4+ g1 (X[14], Pli + 2]);
X[1] = P[i + 1];

Pli+ 2] = P[i + 2] + X[8] + g1(X[15], P[i + 3]);
X[2] = P[i + 2);

Pli +3] = P[i + 3] + X[9] 4+ g1(X[0], P[i + 4]);
X[3] = Pli + 3);

Pli+14] = Pli 4 14] + X [4] + g1 (X[11], P[i 4 15]);

Note that at the ith step, two elements of P[i H10] and P[iH3] can be obtained
directly from X. Also for the output function s; = hy(P[iEH12])® P[i mod 1024],
the P[i B 12] can be obtained from X. In this implementation, there is no need
to compute :+H3, iH10 and ¢ H12.

A register Y with 16 elements is used in the implementation of the feedback
function of @ in the same way as that given above.

To reduce the memory requirement and the program size, the initialization
process implemented in Appendix B is not as straightforward as that given in
Subsection 2.2. To reduce the memory requirement, we do not implement the
array W in the program. Instead we implement the key and IV expansion on P
and @ directly. To reduce the program size, we implement the feedback functions
of those 4096 steps without involving X and Y.

12

5.2 Performance of HC-256

Encryption Speed. We use the C codes given in Appendix B and C to mea-
sure the encryption speed. The processor used in the test is Pentium 4 (2.4
GHz, 8 KB Level 1 data cache, 512 KB Level 2 cache, no hyper-threading). The
speed is measured by repeatedly encrypting the same 512-bit buffer for 226 times
(The buffer is defined as ‘static unsigned long DATA[16]” in Appendix C). The
encryption speed is given in Table 1.

The C implementation of HC-256 is faster than the C implementations of al-
most all the other stream ciphers. (However different designers may have made
different efforts to optimize their codes. And the encryption speed may be mea-
sured in different ways. So the speed comparison is not absolutely accurate.)
SEAL [31] is a software-efficient cipher and its C implementation runs at the
speed of about 1.6 bit/cycle on Pentium III processor. The encryption speed
of Scream [6] is about the same as that of SEAL. The C implementation of
SNOW2.0 [12] runs at about 1.67 bit/cycle on Pentium 4 processor. TURING
[32] runs at about 1.3 bit/cycle on the Pentium IIT mobile processor. The C
implementation of MUGI [38] runs at about 0.45 bit/cycle on the Pentium IIT
processor. The encryption speed of Rabbit [4] is about 2.16 bit/cycle on Pentium
IIT processor, but it is programmed in assembly language inline in C.

Table 1. The speed of the C implementation of HC-256 on Pentium 4

Operating System Compiler Optimization Speed
option (bit/cycle)
Windows XP (SP1)| Intel C++ Compiler 7.1 -03 1.93
Microsoft Visual C++ 6.0| -Release 1.81
Professional (SP5)
Red Hat Linux 9 Intel C++ Compiler 7.1 -03 1.92
(Linux 2.4.20-8) gce 3.2.2 -03 1.83

Remarks. In HC-256, there is dependency between the feedback and output func-
tions since the P[i mod 1024] (or Q[¢ mod 1024]) being updated at the ith step
is immediately used as linear masking. This dependency reduces the speed of
HC-256 by about 3%. We do not remove this dependency from the design of
HC-256 for security reason. Our analysis shows that each term being used as
linear masking should not have been used in an S-box in the previous steps;
otherwise the linear masking could be removed much easier. In our optimized
implementation, we do not deal with this dependency because its effect on the
encryption speed is very limited on the Pentium 4 processor.

Initialization Process. The key setup of HC-256 requires about 74,000 clock
cycles (measured by repeating the setup process 216 times on the Pentium 4
processor with Intel C++ compiler 7.1). This amount of computation is more
than that required by most of the other stream ciphers (for example, the ini-
tialization process of Scream takes 27,500 clock cycles). The reason is that two

13

large S-boxes are used in HC-256. To eliminate the threat of related key/IV
attack, the tables should be updated with the key and IV thoroughly and this
process requires a lot of computations. So it is undesirable to use HC-256 in the
applications where key (or IV) is updated frequently.

6 HC-256" — A variant of HC-256

In this section, we introduce a variant of HC-256 called HC-256". For HC-256,
each table is updated in the consecutive 1024 steps, and then another table is
updated in the next 1024 steps, and so on. For HC-256’, it is different — after
one element of a table is updated, one element of another table gets updated
immediately, and this process repeats. (The idea in the design of HC-256" is
similar to that being used in constructing a variant of RC4, which was proposed
recently by Paul and Preneel [29].) HC-256" is expected to be slightly stronger
than HC-256. But the dependency between the consecutive steps has negative
effect on the encryption speed of the optimized implementation of HC-256'.
According to our implementation, the encryption speed of HC-256" is about
1.68 bit/cycle on the Pentium 4 processor (Microsoft Visual C++ Professional
6.0 compiler + service pack 5). This encryption speed is about 7% slower than
that of HC-256 given in Table 1. The specifications of HC-256" are given below.

From a 256-bit secret key and a 256-bit initialization vector, HC-256" gen-
erates keystream with length up to 2'2® bits. The operations, variables and
functions are the same as that given in Subsection 2.1.

6.1 Initialization process of HC-256’

The initialization process of HC-256" consists of expanding the key and initial-
ization vector into P and @ (same as that of HC-256) and running the cipher
4096 steps without generating output.

1. Let K = Ko||K1]||--- || K7 and IV = IV,||IV4]|---||IV7, where each K; and
1V; denotes a 32-bit number. The key and IV are expanded into an array
W,; (0 < i < 2559) as:

K; 0<1<7
W, =< IV,_g 8<i<15
fo(Wi—o) + Wiz + fr(WiZ15) + Wi_ie + 14 16 <7 <2559

2. Update the tables P and @ with the array W.

Pli] = Wiys12 for 0 < i <1023
Qli] = Wiy1s36 for 0 < i <1023

3. Run the cipher (the keystream generation algorithm in Subsection 6.2) 4096
steps without generating output.

The initialization process completes and the cipher is ready to generate keystream.

14

6.2 The keystream generation algorithm of HC-256'

At each step, one element of a table is updated and one 32-bit output is gener-
ated. The keystream generation process of HC-256" is given below (“B” denotes
“—” modulo 1024, s; denotes the output of the i-th step).

1= 0;
repeat until enough keystream bits are generated.
{

7 =1 mod 1024,

P[j] = P[j] + P[j B10] + g:(P[j B3], P[j B 1023]);
se; = hi(P[j B12]) © P[jl;

Q] = Qi + QI B10] + g2(Q[j B 3], Q[j B 1023]);
s2ip1 = h2(Q1 B 12]) @ Q[j];

i=14+1; //each increment of i corresponds to 2 steps

}

end-repeat

6.3 Test vectors of HC-256’

Set the key and the initialization vector of HC-256" as 0. The first 512 bits of
the keystream are given below

29092e11 5c6fd0fc 79fa96dd 9cc64£f73
19ff067b ab844971 91b9fadf £fal57303
£3865769 853d86c8 e22a5208 alOb8ab0f
fadad4dd 225855b2 890c5670 9bb35a6b

7 Conclusion

In this paper, we proposed a software-efficient stream cipher HC-256. Our anal-
ysis shows that HC-256 is very secure. However, the extensive security analysis
of any new cipher requires a lot of efforts from many researchers. We encourage
the readers to analyze the security of HC-256.

Finally we explicitly state that HC-256 and HC-256" are not covered by any
patent and they are freely available.

References

1. F. Armknecht, M. Krause, “Algebraic Attacks on Combiners with Memory”, in
Advances in Cryptology — Crypto 2003, LNCS 2729, pp. 162175, Springer-Verlag,
2003.

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

S. Babbage, “A Space/Time Tradeoff in Exhaustive Search Attacks on Stream
Ciphers”, European Convention on Security and Detection, IEE Conference pub-
lication, No. 408, May 1995.

E. Biham, A. Shamir, “Differential Cryptanalysis of DES-like Cryptosystems”, in
Advances in Cryptology — Crypto’90, LNCS 537, pp. 2-21, Springer-Verlag, 1991.
M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and O. Scavenius,
“Rabbit: A New High-Performance Stream Cipher”, in Fast Software Encryption
(FSE’08), LNCS 2887, pp. 307-329, Springer-Verlag, 2003.

. V.V. Chepyzhov, T. Johansson, and B. Smeets. “A Simple Algorithm for Fast

Correlation Attacks on Stream Ciphers”, in Fast Software Encryption (FSE’00),
LNCS 1978, pp. 181-195, Springer-Verlag, 2000.

D. Coppersmith, S. Halevi, and C. Jutla, “Scream: A Software-Efficient Stream
Cipher”, in Fast Software Encryption (FSE’02), LNCS 2365, pp. 195-209, Springer-
Verlag, 2002.

D. Coppersmith, S. Halevi, and C. Jutla, “Cryptanalysis of Stream Ciphers with
Linear Masking”, in Advances in Cryptology — Crypto 2002, LNCS 2442, pp. 515-
532, Springer-Verlag, 2002.

. N. Courtois, “Higher Order Correlation Attacks, XL algorithm and Cryptanalysis

of Toyocrypt”, in (ICISC 2002), LNCS 2587, pp. 182-199, Springer-Verlag, 2002.
N. Courtois, and W. Meier, “Algebraic Attacks on Stream Ciphers with Linear
Feedback”, in Advances in Cryptology — Furocrypt 2003, LNCS 2656, pp. 345359,
Springer-Verlag, 2003.

N. Courtois, “Fast Algebraic Attacks on Stream Ciphers with Linear Feedback”, in
Advances in Cryptology — Crypto 2003, LNCS 2729, pp. 176194, Springer-Verlag,
2003.

J. Daeman and V. Rijmen, “AES Proposal: Rijndael”, available on-line from NIST
at http://csrc.nist.gov/encryption/aes/rijndael/

P. Ekdahl and T. Johansson, “A new version of the stream cipher SNOW” in
Selected Areas in Cryptology (SAC 2002), LNCS 2595, pp. 47-61, Springer-Verlag,
2002.

S. Fluhrer and D. McGrew, “Statistical Analysis of the Alleged RC4 Keystream
Generator”, in Fast Software Encryption (FSE’00), LNCS 1978, pp. 19-30, 2001.
S. Fluhrer, I. Mantin, and A. Shamir. “Weaknesses in the Key Scheduling Algo-
rithm of RC4”, in Selected Areas in Cryptography (SAC 2001), LNCS 2259, pp.
1-24, Springer-Verlag, 2001.

J. D. Goli¢, “Towards Fast Correlation Attacks on Irregularly Clocked Shift Regis-
ters”, in Advances in Cryptography — Eurocrypt’95, pages 248-262, Springer-Verlag,
1995.

J. D. Goli¢, “Linear Models for Keystream Generator”. IEEE Trans. on Computers,
45(1):41-49, Jan 1996.

J. D. Goli¢, “Cryptanalysis of Alleged A5 Stream Cipher”, in Advances in Cryp-
tology — Eurocrypt’97, LNCS 1233, pp. 239 - 255, Springer-Verlag, 1997.

J. D. Goli¢, “Linear Statistical Weakness of Alleged RC4 Keystream Generator”,
in Advances in Cryptology — Eurocrypt’97, pp. 226 - 238, Springer-Verlag, 1997.
T. Johansson and F. Jonsson. “Fast Correlation Attacks through Reconstruction
of Linear Polynomials”, in Advances in Cryptology - CRYPTO 2000, LNCS 1880,
pp- 300-315, Springer-Verlag, 2000.

L. Knudsen, W. Meier, B. Preneel, V. Rijmen and S. Verdoolaege, “Analysis Meth-
ods for (Alleged) RC4”, in Advances in Cryptology — Asiacrypt’98, LNCS 1514, pp.
327-341, Springer-Verlag, 1998.

16

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

I. Mantin and A. Shamir, “A Practical Attack on Broadcast RC4”, in Fast Software
Encryption (FSE’01), LNCS 2355, pp. 152-164, Springer-Verlag, 2002.

M. Matsui, “Linear Cryptanalysis Method for DES Cipher”, in Advances in Cryp-
tology — Furocrypt’93, LNCS 765, pp. 386-397, Springer-Verlag, 1994.

W. Meier and O. Staffelbach, “Fast Correlation Attacks on Certain Stream Ci-
phers”. Journal of Cryptography, 1(3):159-176, 1989.

M. Mihaljevié, M.P.C. Fossorier, and H. Imai, “A Low-Complexity and High-
Performance Algorithm for Fast Correlation Attack”, in Fast Software Encryption
(FSE’00), pp. 196-212, Springer-Verlag, 2000.

I. Mironov, “(Not So) Random Shuffles of RC4”, in Advances in Cryptology —
Crypto 2002, LNCS 2442, pp. 304-319, Springer-Verlag, 2002.

S. Mister, and S.E. Tavares, “Cryptanalysis of RC4-like Ciphers”, in Selected Areas
in Cryptography (SAC’98), LNCS 1556, pp. 131-143, Springer-Verlag, 1999.
National Institute of Standards and Technology, “Secure Hash Standard (SHS)”,
Federal Information Processing Standards Publication (FIPS) 180-2. Available at
http://csrc.nist.gov/publications/fips/

NESSIE, “NESSIE Project Announces Final Selection of Crypto Algorithms”,
available at https://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/press_relea
se_feb27.pdf

S. Paul, and B. Preneel, “A New Weakness in the RC4 Keystream Generator and
an Approach to Improve the Security of the Cipher”, in Fast Software Encryption
(FSE’04), to appear.

R.L. Rivest, “The RC4 Encryption Algorithm”. RSA Data Security, Inc., March
12, 1992.

P. Rogaway and D. Coppersmith, “A Software Optimized Encryption Algorithm”.
Journal of Cryptography, 11(4), pp. 273-287, 1998.

G.G. Rose and P. Hawkes, “Turing: a Fast Stream Cipher”. Fast Software Encryp-
tion (FSE’03), LNCS 2887, pp. 290-306, Springer-Verlag, 2003.

B. Schneier, “Description of a New Variable-Length Key, 64-bit Block Cipher
(Blowfish)”, in Fast Software Encryption (FSE’93), LNCS 809, pp. 191-204,
Springer-Verlag, 1994.

B. Schneier and D. Whiting, “Fast Software Encryption: Designing Encryption
Algorithms for Optimal Software Speed on the Intel Pentium Processor”, in Fast
Software Encryption (FSE’97), LNCS 1267, pp. 242-259, Springer-Verlag, 1997.
T. Seigenthaler. “Correlation-Immunity of Nonlinear Combining Functions for
Cryptographic Applications”. IEEE Transactions on Information Theory, 1T-
30:776-780,1984.

T. Seigenthaler. “Decrypting a Class of Stream Ciphers Using Ciphertext Only”.
IEEE Transactions on Computers, C-34(1):81-85, Jan. 1985.

S. Vaudenay, “On the Weak Keys of Blowfish”, in Fast Software Encryption
(FSE’96), LNCS 1039, pp. 27-32, Springer-Verlag, 1996.

D. Watanabe, S. Furuya, H. Yoshida, K. Takaragi, and B. Preneel, “A New
Keystream Generator MUGI”, in Fast Software Encryption (FSE’02), LNCS 2365,
pp- 179-194, Springer-Verlag, 2002.

H. Wu, “A New Stream Cipher HC-256”, in Fuast Software Encryption (FSE’04),
to appear.

A Test Vectors of HC-256

Let K = Ko||Ky||---||K7 and IV = IVy||IV4||---||IV7. The first 512 bits of
keystream are given for different values of key and TV.

17

1. The key and IV are set as 0.

8589075b 0d4f3f6d8 2fc0cb42 5179b6ab
3465f053 £2891f80 8b24744e 18480b72
ec2792cd bf4dcfeb 7769bf8d faldaeed
Tb4cb0e8 eaf3a9c8 £506016c 81697e32

2. The key is set as 0, the I'V is set as 0 except that IV = 1.

bfa2e2af e9cel74f 8b05c2fe b18bbldl
ee42c05f 01312b71 c61£f50dd 502a080b
edfec706 633d9241 a6dac448 af8561ff
5e04135a 9448c434 2de7e9f3 37520bdf

3. The IV is set as 0, the key is set as 0 except that Ky = 0x55.

fed4ad01lc edbfe24f d19a8f95 6£fc036ae
3cbaab88 23e2abcO0 2f90b3ae a8d30e42
59f03a6c 6e39eb44 8f7579fb T70137abe
6d10b7d8 addO0f7cd 723423da £575dde6

Let A; = @22%5816j+i for i = 0,1,---,15, i.e. set a 512-bit buffer as 0 and

encrypt it repeatedly for 22° times. Set the key and IV as 0, the value of
Agl|Aq]] - -+ || A1 is given below:

c6b6fb99 f2ael440 a7d4ca34d 2011694e
6£36b4dbe 420db05d 4745fd90 7c630695
5f1d7bda 13ae7e36 aebcb399 733b7£37
95£34066 b601d21f 2d8cf830 a9c08937

B The optimized C implementation of HC-256
(“hc256.h")

#include <stdlib.h>

typedef unsigned long uint32;
typedef unsigned char uint8;

uint32 P[1024],Q[1024];
uint32 X[16],Y[16];
uint32 counter2048; // counter2048 = i mod 2048;

#ifndef _MSC_VER

#define rotr(x,n) ((x)>>@)) 1 ((x)<<(32-(n))))
#else

#define rotr(x,n) _lrotr(x,n)

#endif

18

#define hi(x,y) {
uint8 a,b,c,d;
a = (uint8) (x);
b = (uint8) ((x) >> 8); \
c = (uint8) ((x) >> 16); \
d = (uint8) ((x) >> 24); \
(y) = Q[al+Q[256+b]+Q[512+c]+Q[768+d]; \

~

}

#define h2(x,y) {
uint8 a,b,c,d;
a = (uint8) (x);

~ -

b = (uint8) ((x) >> 8); \
c = (uint8) ((x) >> 16); \
d = (uint8) ((x) >> 24); \
(y) = P[a]l+P[256+b]+P[512+c]+P[768+d]; \

}

#define step_A(u,v,a,b,c,d,m){ \
uint32 temO,teml,tem2,tem3; \
tem0 = rotr((v),23); \
teml = rotr((c),10); \
tem2 = ((v) =~ (c)) & Ox3ff; \
(u) += (b)+(tem0~teml)+Q[tem2]; \
() = (u); \
h1((d),tem3); \
(m) ~= tem3 "~ (u) ; \

}

#define step_B(u,v,a,b,c,d,m){ \
uint32 temO,teml,tem2,tem3; \
tem0 = rotr((v),23); \
teml = rotr((c),10); \
tem2 = ((v) ~ (c)) & Ox3ff; \
(u) += (b)+(tem0~teml)+P[tem2]; \
() = (u); \
h2((d) ,tem3); \
(m) "= tem3 ~ (u) ; \

}

void encrypt(uint32 datal[]) //each time it encrypts 512-bit data
{

uint32 cc,dd;

cc = counter2048 & O0x3ff;

19

dd = (cc+16)&0x3ff;

if (counter2048 < 1024)

{
counter2048 = (counter2048 + 16) & Ox7ff;
step_A(P[cc+0], P[cc+1], X[0], X[6], X[13],X[4], datal0]);
step_A(P[cc+1], P[cc+2], X[1], X[7], X[14],X[5], datal1l);
step_A(P[cc+2], P[cc+3], X[2], X[8], X[15],X[6], datal2]);
step_A(P[cc+3], Plcc+4], X[3], X[9], X[0], X[7], datal3]);
step_A(P[cc+4], Plcct+b], X[4], X[10],X[1], X[8], datal4]);
step_A(P[cc+5], P[cc+6], X[5], X[11],X[2], X[9], data[5]);
step_A(P[cc+6], P[cc+7], X[6], X[12],X[3], X[10],datal[6]);
step_A(P[cc+7], P[cc+8], X[7], X[13],X[4], X[11],datal7]);
step_A(P[cc+8], Plcc+9], X[8], X[14],X[5], X[12],datal[8]);
step_A(P[cc+9], P[cc+10],X[9], X[15],X[6], X[13],datal9]);
step_A(P[cc+10],P[cc+11],X[10],X[0], X[7], X[14],datal[10]);
step_A(P[cc+11],P[cc+12] ,X[11],X[1], X[8], X[15],datal[11]);
step_A(P[cc+12],P[cc+13],X[12],X[2], X[9], X[0], data[12]);
step_A(P[cc+13],P[cc+14] ,X[13],X[3], X[10],X[1], data[13]);
step_A(P[cc+14],P[cc+15] ,X[14],X[4], X[11],X[2], datal14]);
step_A(P[cc+15] ,P[dd+0], X[15],X[5], X[12],X[3], data[15]);

}

else

{
counter2048 = (counter2048 + 16) & Ox7ff;
step_B(Qlcc+0], Qlcc+1]l, Y[OIl, Y[6], Y[13],Y[4], datal0l);
step_B(Qlcc+1], Qlcc+2], Y[11, Y[7]1, Y[14],Y[5], datal1l);
step_B(Qlcc+2], Qlcc+3], Y[2], Y[8], Y[15],Y[6], datal[2]);
step_B(Q[cc+3], Qlcc+4], Y[3], Y[9], Y[0], Y[7], datal3]);
step_B(Qlcc+4], Qlcc+5], Y[4], Y[10],Y[1], Y[8], datal4]);
step_B(Qlcc+5], Qlcc+6], Y[5], Y[11],Y[2], Y[9], datal5]);
step_B(Qlcc+6], Qlcc+7], Y[61, Y[12],Y[3], Y[10],data[6]);
step_B(Qlcc+7], Qlcc+8], Y[7], Y[13],Y[4], Y[11],datal[7]);
step_B(Q[cc+8], Qlcc+9], Y[8], Y[14],Y[5], Y[12],datal[8]);
step_B(Q[cc+9], Qlcc+10]1,Y[9], Y[15],Y[6], Y[13],datal9]);
step_B(Q[cc+10],Qlcc+11],Y[10],Y[0], Y[7], Y[14],datal[10]);
step_B(Qlcc+11],Qlcc+12],Y[11],Y[1], Y[8], Y[15],datal11]);
step_B(Q[cc+12],Qlcc+13],Y[12],Y[2], Y[9], Y[0], data[12]);
step_B(Q[cc+13],Qlcc+14],Y[13],Y[3], Y[10],Y[1], data[13]);
step_B(Q[cc+14],Q[cc+15],Y[14],Y[4], Y[11],Y[2], data[14]);
step_B(Q[cc+15],Q[dd+0], Y[15],Y[5], Y[12],Y[3], datal[15]);

}

3

//The following defines the initialization functions

20

#define f1(x) (rotr((x),7) ~ rotr((x),18) ~ ((x) >> 3))
#define f2(x) (rotr((x),17) ~ rotr((x),19) -~ ((x) >> 10))
#define f(a,b,c,d) (£f2((a)) + (b) + f1((c)) + (@)

#define feedback_1(u,v,b,c) { \
uint32 temO,teml,tem?2; \
tem0 = rotr((v),23); teml = rotr((c),10); \
tem2 = ((v) = (c)) & Ox3ff; \
(u) += (b)+(tem0"teml1)+Q[tem2]; \
}
#define feedback_2(u,v,b,c) { \
uint32 temO,teml,tem2; \
tem0 = rotr((v),23); teml = rotr((c),10); \
tem2 = ((v) =~ (c)) & Ox3ff; \
(u) += (b)+(tem0"teml)+P[tem2]; \
}

void initialization(uint32 key[], uint32 iv[])
{
uint32 1i,j;

//expand the key and iv into P and Q
for (i = 0; i < 8; i++) P[i] = keyl[il;
for (i = 8; i < 16; i++) P[i] = iv[i-8];

for (i = 16; i < 528; i++)
P[i] = £(P[i-2],P[i-7],P[i-15],P[i-16])+i;
for (i = 0; i < 16; i++)
P[i] = P[i+512];
for (i = 16; i < 1024; i++)
P[i] = £(P[i-2],P[i-7],P[i-15],P[i-16])+512+i;

for (i = 0; i < 16; i++)
Q[i] = P[1024-16+i];
for (i = 16; i < 32; i++)
Qli]l = £(Q[i-2],Q[i-7],Q[1-15],Q[i-16])+1520+1;
for (i = 0; i < 16; i++)
Q[i] = Q[i+16];
for (i = 16; i < 1024;i++)
Qi] = £(Q[i-21,Q[1-71,Q[1-15],Q[i-16]1)+15636+i;

//run the cipher 4096 steps without generating output
for (i = 0; i < 2; i++) {

21

for (j = 0; j < 10; j++)
feedback_1(P[j],P[j+1],P[(j-10)&0x3ff],P[(j-3)&0x3£f]);

for (j = 10; j < 1023; j++)
feedback_1(P[j],P[j+1],P[j-10]1,P[j-31);
feedback_1(P[1023],P[0],P[1013],P[1020]);

for (j = 0; j < 10; j++)
feedback_2(Q[j1,Q[j+1],QL[(j-10)&0x3££f],Q[(j-3)&0x3£f]);

for (j = 10; j < 1023; j++)
feedback_2(Q[j]1,Q[j+1],Q[j-101,Q[j-31);
feedback_2(Q[1023],Q[0],Q[1013],Q[10201);

}

//initialize counter2048, and tables X and Y
counter2048 = 0;

for (i = 0; i < 16; i++) X[i]
for (i = 0; i < 16; i++) Y[i]

P[1008+i];
Q[1008+i];

C Test HC-256 (“test.c”)

//This program prints the first 512-bit keystream
//then measure the average encryption speed

#include "hc256.h"
#include <stdio.h>
#include <time.h>

int main()
{
uint32 key[8],iv[8];
static uint32 DATA[16]; // the DATA is encrypted

clock_t start, finish;
double duration, speed;
uint32 i;

//initializes the key and IV
for (i = 0; i < 8; i++) key[i]=O0;

for (i = 0; i < 8; i++) iv[i]=0;

//key and iv setup
initialization(key,iv);

//generate and print the first 512-bit keystream
for (i = 0; i < 16; i++) DATA[i]=0;

22

encrypt (DATA) ;
for (i = 0; i < 16; i++) printf(" %8x ", DATA[i]);

//measure the encryption speed by encrypting
//DATA repeatedly for 0x4000000 times

start = clock();

for (i = 0; i < 0x4000000; i++) encrypt(DATA);
finish = clock();

duration = ((double) (finish - start))/ CLOCKS_PER_SEC;
speed = ((double)i)*32+16/duration;

printf("\n The encryption takes %4.4f seconds.\n\
The encryption speed is %13.2f bit/second \n",\
duration,speed) ;

return (0);

23

