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ABSTRACT

We consider here the flow induced by applying a wind stress at the surface of an initially quiescent lake.
It is assumed that the Ekman number, based on an eddy viscosity, is small, and that the Rossby number is
at most of the order of (Ekman number)}. Under these conditions, which are met in practice, a linear
theory is applicable. The linear problem is solved using boundary layer methods. There are essentially five
distinct regions: an outer region in which the horizontal velocity is independent of depth, Ekman layers
at the upper and lower boundaries, a corner region at the edge of the lake at which the Ekman layers meet,
and a shear layer adjacent to the corner region. Study of the Ekman layers provides the equations which
hold in the outer and shear layer regions, and consideration of the corner region provides the boundary
condition. The outer flow proves to be geostrophic and directed along curves of constant depth. The shear
layer is needed to satisfy the boundary condition of zero net outward transport at the edge of the lake. If
the wind stress is constant, or, more generally, has zero line integral around curves of constant depth,

the transport is confined to the shear layer.

1. Introduction

In recent years considerable attention has been
devoted to the problem of calculating wind-driven lake
circulations. The standard method employs a one-
layer model, with the fluid assumed to be homoge-
neous. The motion is assumed to be in hydrostatic
balance and the free surface at which the wind stress is
applied is usually taken to be level. After linearization,
the horizontal momentum equations and the continuity
equation are integrated over depth and the problem is
cast in terms of either the depth-averaged velocity or
the transport. A simple form is assumed for the bottom
stress, and the equations are integrated numerically.
Examples of such calculations can be found in the
proceedings of the Conferences of Great Lakes Research
(e.g., Murty and Rao, 1970).

Though undoubtedly useful, these studies rest on
somewhat shaky foundations. There is a degree of un-
certainty about the boundary condition to apply at the
edge of the lake, where the depth vanishes and the equa-
tions have what for an ordinary differential equation
would be called a regular singular point. Horizontal
diffusion is almost always neglected, despite its im-
portance near the coast, and the equations are linearized
even though the neglected advective terms are usually
as large as the bottom friction. Finally, the form of the
the bottom friction term, often described as the result
of an Ekman layer calculation with constant eddy
viscosity, varies from paper to paper. In addition to

the theoretical difficulties, the numerical analysis is
non-trivial, particularly in the transient case.

The aim of this work is to resolve some of the above
difficulties by providing an analytical solution for a
constant eddy viscosity model. The problem treated is
that of calculating the flow due to a stress suddenly
applied at the surface of a quiescent body of fluid. It is
assumed that the fluid is homogeneous, that the bottom
slope is everywhere finite, and that curves of constant
depth are closed. The procedure, which involves the
use of matched asymptotic expansions (Van Dyke,
1964) and is similar to that of Greenspan (1968), con-
sists of isolating an outer problem by consideration of
the Ekman layers and of the region near the shore
where the Ekman layers join up. The problem can be
cast in terms of the depth-averaged velocity, and in
this formulation the bottom stress terms appear as a
given function of the depth-averaged velocity.

The resulting equations can be solved by perturbation
methods, but the solution fails to satisfy the condition
of zero net outward transport at the shore. Conse-
quently, a vertical shear layer near the shore is neces-
sary. For spatially constant wind stress, the transport
is confined to this region. The equations for the outer
problem are valid provided that the Ekman number
based on depth is small and that the Rossby number is
less than or equal to (Ekman number)’. These condi-
tions are met in practice except for very shallow lakes.
The split-up of the outer region into a basically inviscid
interior and a shear layer is valid if (Ekman number)?
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< 1. If this condition is not met, the outer problem must
be solved numerically. In this connection, it should be
pointed out that a numerical solution of the transient,
linear, shallow-water equations carried out for Grand
Traverse Bay, Lake Michigan, does confirm the prin-
cipal conclusion of this work, i.e., that the transport is

directed along contours of constant depth, and this

result is in accord with observations (Smith, 1972).

During the preparation of this manuscript the author
learned of similar work by Birchfield (1972). Birch-
field’s calculation differs from that presented here in
that 1) his results are limited to steady-state conditions,
2) he neglects horizontal mixing, and 3) he resolves the
problem of the boundary condition at the coast by
taking the boundary to be a vertical wall. In view of
these differences, separate publication of the present
work seems justifiable. The results of our solution as
time — o and Birchfield’s steady-state solution are in
agreement outside the coastal boundary layer provided
the horizontal eddy coefficient in our solution is set
equal to zero.

2. Formulation of outer problem

Let x and q denote the horizontal position vector and
particle velocity and z and w the vertical coordinate
and particle velocity, and let V denote the horizontal
gradient. We assume constant horizontal and vertical
eddy viscosities vy and vy and constant Coriolis
parameter fo, and we neglect nonlinear and nonhydro-
static effects. Given these assumptions, the equations
governing the flow of a homogeneous fluid are

dq . 1 a%q
—+ [k Xq+-Vp=vyVig+rvy—, 1)
ot o %2
ap
—=—8p, (2)
9z
Jw
V-q+—=0. 3)
0z

For the flow considered here the fluid is bounded above.

by a free surface whose undisturbed position is z=0 and
below by a rigid surface 2= —H(x). For t<0, g=w=0,
and at /=0 a stress = (x) is applied at the upper surface.
We filter out gravity waves by taking the upper surface
to be undistorted. Then the boundary conditions for
1>0 are

dq
w=0, PVV—_=7(x): (4)
0z
for 2=0, and q=w%=0 for z=—H (x).
Let D and L be characteristic vertical and horizontal
length scales and ¢ a characteristic magnitude of =.
Introducing scaled variables through

x=ILx', 5=D7, i=Q2/f)l, ==c¢x’, H=DH’ )
q=Uq, w=U(D/Ly, (p/p)+gz=%flULp'S,
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where

c
U==(2/forv)}, (6)
P
and omitting the primes, we obtain the dimensionless
equations

aq oq
—+2kXq+Vp =E<7V2q+—>, Q)
ot 022
ap
dz
dw
9z
to be solved subject to
dq
w=0, Ei—==(x), (10)

0z

for =0, q=w=0 for 3= —H (x), and q=w=0 for t=0.
The parameters are

E=2%y/(foD?, ~v=D%wn)/(Lv), (11)

and are, respectively, the Ekman number and a scaled
ratio of the eddy viscosities.

We consider here the case E<1, y<O(1), and we
assume also that the bottom slope |VH| is finite every-
where. Under these conditions we can consider the flow
domain to consist of an outer region away from the
boundaries in which the viscous force can be neglected.
Ekman layers at the upper and lower boundaries, and
a corner region near the coast at which the Ekman
layers meet (see Fig. 1). As it develops, there exists a
shear layer adjacent to the corner region, but this can
be considered at present as part of the outer region.
Our aim in this section is to derive the equations and
boundary condition governing the flow in the outer
region.

In treating the outer problem we neglect the viscous
force on the right side of (7) and note that in the outer
region the horizontal velocity is independent of z and
the vertical velocity is linear in 2. Accordingly, we seek

Fic. 1. Schematic drawing showing Ekman layers (E), corner
region (C), shear layer (S), and outer region (0),
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an outer solution of the form q=v(x,!), p=0(x,t), and
w(x,3,0) =a(x,)+b(x,t)z. (12)

To determine @ and b we write the transport outside
the corner region in the form

0 f
/ qdz=Hv+E}(f—g), (13)
-0

where Hv is the transport in the outer region, E¥ is the
transport associated with the high-vorticity flow in the
upper Ekman layer, and —E%g is the corresponding
transport in the lower Ekman layer. Conservation of
mass implies that at the edges of the Ekman layers the
outer velocity obeys the conditions

w(x,0,)=EV-{, wx, —H,t)=—v-VH+EV.¢g (14)

from which we obtain

a=E-f, Hb=v-VHH+EWV.({f—g). (15)
Hence the equations governing the outer flow are
ov .
~a——|-2k><v+V0=O, (16)
/4
V-[Hv+E(f—g)]=0. (17)
The last equation states that
0 -
V(/ qdz>=0, (18)
i d

a relation which can be derived independently by
integrating (9) over depth.

In the corner region the flow variables must vary on
the length scale E3, the Ekman layer thickness, both in
the vertical direction and in the horizontal direction
perpendicular to the coast. The equations governing
the flow in the corner region are easily obtained and
the necessary boundary condition on v derived by
integrating the corner region form of the continuity
equation over depth. The result implies that in the
corner region :

/ fi-qdz=0(E}), (19)

where
n=—VH/|VH]|

is the normal in the horizontal plane to the curves
H =constant. The physical content of (19) is that the
transport normal to the coast vanishes throughout the
corner region, subject to the error estimate. Hence,
from (13) and (19), the boundary condition at the
coast is

LHi—I}ol n-[Hv+E¥(f—g)]=0, (21)

with an O(E?) error.
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We now turn to study of the Ekman layers with the
aim of determining explicit expressions for the Ekman
layer transports. In treating the Ekman layers we take
the coordinates to be (x,{), where {=—E—¥ for the
upper layer, and (x,7), where n=E—#(z+H) for the
lower layer, and expand the dependent variables in
powers of E* as in

q=qo+Eiq:+---. (22)

The Ekman layer equations are solved through use of
the Laplace transform, denoted here by an uppercase
letter as in

Q———.,Bq:/ e~ stqdt. (23)
0

Omitting the analysis, which is straightforward but

tedious, we obtain the solutions

kXt

o =votRe g—{[ﬁ)—] exp[—<s—2z')%ﬂ}, (24)

¢
wd =0, wl= v-( / qé’a:;'),
0

ah=vo—Re &Y (Vo+ik X Vo)
Xexp[—(s—20)/A4T},

_qlﬁd"?,):

(25)

7

wo'=—q6- VH, w€=—(ﬁ-VH——V-(/

0

where the superscripts U and L refer to the upper and
lower Ekman layers, Re means “real part of,” and

A=(14+v|VH DR

In accord with the previous definitions of f dnd g, we
have

(26)

f=/ (qg]—Vo)di'
0

=1[x sin24 (kX ) (cos2t—1)] Lo

g=g[vo]= - / (g5 —vo)dn

=Re 4 &[(Vo+ikXVo)/ (s—2i)1])

In writing the governing equations for the outer
problem we can approximate g[vo] by g[v], with a
resulting error in the equations of O(E?}). Consequently,
the equations for the outer problem, correct to order E3,
are

av '
——+2kXv+V6=0 [as given in (16)7],
at i

V- (Hv-+Ed(E—g[v])} =0, (28)
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and the boundary condition is

Lim & {Hy+E(i—¢[v])} =0, (29)

with f and g given by (27). In this formulation the role
of the Ekman layer analysis is to provide explicit
expressions for the transports E¥f in the upper Ekman
layer and —E¥g in the lower layer.

Though the outer problem can be worked out in
terms of v, there are advantages to use of the depth-
averaged velocity

1 0
u=—

(30)
J_y

E
qdz=v+—({—g[v])
H

as a dependent variable. Solving for v in terms of u,
again neglecting O(E?) terms, yields the result

E}
v=u+;{-(g[vj—ﬂ; @31

and substitution into the momentum and continuity
equations yields

du
—+2kXu+-V6
ot

1

=;§{v—%A £ (s—20)}(U+4k X U)
+(+20}U—kXO), (32)

V- (Hu)=0, (33)
with boundary condition
I;{1£101 n- (Hu)=0, (34?

and initial condition u=0 at =0. For this formulation
the Ekman layer analysis serves to provide the explicit
expression for the bottom stress on the right side of (32).

The sinusoidal oscillation at the inertial frequency in
the expression for f does not appear in the solution for
the total transport because of cancellation, but never-
theless deserves comment. A detailed analysis of the
limit process used in the derivation shows that these
oscillations decay on the diffusion time scale, i~E~Y, so
that as t—w the transport settles down to its steady
value, —4E¥(kX«). It is therefore incorrect to state,
as some authors have done, that the transport in the
upper layer is oscillatory in time.

3. Solution

From previous work on rotating fluids we expect that
the solution consists of a geostrophic mode, a function
of x and a slow time 7'=E#, and inertial modes with
time dependence of the form

h(t)=J(T) exp(ivt), |w|<2, (35)
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where % stands for any of the flow variables. Thus, if
F(s) is the Laplace transform of f(¢), E-*F[E~#(s—iw)]
is the Laplace transform of #(f), and the inverse trans-
forms which occur in the expression for the bottom
stress are of the form

To=L(s£20)8 h
E-

=— / (s£20)3F[E~¥(s—iw) Jestds, (36)
2m

where the integral is taken along a Bromwich contour
in the complex s plane. We assume, subject to later
verification, that F(s) is meromorphic, with singularities
inside a circle of O(1) radius about s=0, and that
F(s)=0(|s|™® as |s|—». Hence F[E~*(s—iw)] has
its singularities in a circle of O(E?) radius about s=1w
and behaves like E|s—iw|™? for |s—iw|20(1). It
follows that there are two contributions to [, aloop
integral about the branch cut for (s2£2¢)} and a sum
of residues at the poles of F[E~}(s—iw)]. The loop
integral is O(E?) in magnitude and can be ignored, and
in the residue calculation (s#24)! can be approximated
by (tw==21)%, again with an Q(E?) error. Hence

I, = (2+w)? expli(win/4)1/(T)+OE?). (37)

The inertial modes must be included if u satisfies an
arbitrary initial condition. In the present case, for which
u=0 at =0, the inertial modes are not needed, since
we can find a geostrophic solution which vanishes to
lowest order at {=0. Hence we assume u=u(x,7),
6=0(x,T), and accordingly set w=0 in (37). The result-
ing equations for u and 6 are

Ju " E; ~
Bi—t2kXu+vo=—Tr—A4 (u+kXxu)], (38)
oT H

V- (Hu)=0 [as given in (33)],
and v is given in terms of u by
E]

=i[A (u—kXxu)—2f]+O(EH.
2H

v=u+t (39)

The solution is obtained by expanding w and € in
powers of E as in (22). To lowest order,

2k X+ V8, =0, (40)
V- (Huy) =0, (41)
and it follows that
o abg
00=00(H,T), u0=%(kXVH)—H (42)
a

We can now eliminate u; and 6, from the O(E?) equa-
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tions,

R du, 1 A
2hXm+ 98y = ——+—[e— A (uoHhkXug)], (43)
oT H

V- (Huy) =0, (44)

by taking the dot product of Hds and the momentum
equation, where ds is a directed segment of arc along a
curve H =constant, and integrating around the curve.
The result is

6o
—==26(H){1—exp[—CE)T/HT},  (43)
oH

G(H)=fe-ds/fA]VH]ds
C(H)=fA]VH1ds/f1vmds

and the integrals are taken around a curve of depth H.
Hence, if § is the unit vector tangent to the curve,

uo=3| VH|G(H){1—exp[ —C()T/H).  (47)

Except for a shear layer term to be described shortly,
this is the O(1) solution for u. This type of resuit,
stating that the O(1) solution for the transport is
directed along the depth contours and varies on the
spin-up time scale, is familiar from previous work in
rotating fluids. The new feature here is the explicit form
of the expression for the model under consideration,
that of shallow water theory with wind stress as the
driving force. It should be noted that for a constant
wind stress the transport vanishes. In this case the
transport is confined to a shear layer near the coast, as
will be seen shortly.

The cross-contour component of u; can be calculated
and behaves as

where

,  (46)

n‘u1~5}§{§-c—-G(H)[VH[
X[A+(C—4) exp(—CT/H) ]},

as H — 0. Hence the O(E?) term in the solution for u
does not satisfy the boundary condition of vanishing
outward transport at the coast; consequently, the

(48)

W
-

F1c. 2. Coordinate system used in describing shear layer.
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ordinary perturbation solution given above is locally
invalid. This implies the existence of a shear layer near
the coast in which the outward transport changes
rapidly from its value just outside the shear layer to
zero in the corner region. A treatment of the shear
layer is necessary to complete the solution, and will be
given below. )

" In studying the shear layer it is convenient to describe
the curve H=0 parametrically by x=r(s), where s is
arc length along the curve, and to let £ denote distance
out from the coast along a normal (see Fig. 2). The
horizontal position vector to any point in the shear
layer can be written as

J . .
x=r(s) ——kXr(s)], (49)
as ]

and (49) defines s and £ as orthogonal coordinates in
the x plane. Letting # and v be velocity components in
the directions of increase of ¢ and s and writing out the
equations of motion in component form yields, by trial
and error, the result that the shear layer thickness is E*.
It follows that the depth in the shear layer region is
O(EY) and that the local spin-up time is O(E~%). In
accord with these results we introduce new scaled
variables

r=E-}%, i=EY, (50)

and obtain the governing equations for the shear layer
in the form :

on 90 E?
Ei—— 2+ Et—=

o or vE[TE_A(u—'v)l

1 o B :
O T Awi)] (52)
(1+Ek%r)os H

(51)
dv

E;‘L—_+2M
at

d 9.
E+—[H(1+Ekr)u]+—[Hv]=0, (53)
ar : as

where 7; and 7, are the components of #, and « is the
curvature of the curve H=0. In the shear layer

H=—E(s)r+0(EY),

where A(s)=|VH| evaluated at the coast.
To solve the above system we expand the dependent
variables in powers of Efas in

u=uy+Etu;+Etu+- .-,

where the subscript denotes the power of Ef, substitute
into the governing equations, and equate powers of E%,
From (51) and (53) there follows

(54)

(35)

a6,

ar or

8(ruo) o, (56)

and we now need to apply matching and boundary
conditions. At the outer edge of the shear layer 8, is
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independent of s, from (42), and at r=0, ru,=0 from
(34). Hence #,=0 and 6, is independent of s. It follows
that the governing equations for determining the lowest
order non-zero velocity components are

a6,
— 2 +—=0, (87)
or
6210 a6,
- { 2u§+ = [TS-AU()], (58)
at ds A(s)r
d d ;
—[A()ru]+—{LA(s)rn ]=0, (59
or as

with 7, and A evaluated at the coast. The matching
condition, from (47), is

v — G(0)A(s){1—exp[C(0)i/A(s)r]},  (60)

as r— — o, and the boundary condition requires that
ruy=0 at r=0.
If we introduce a transport streamfunction ¥ through

Hu=vxk¥, (61)
and note that ¥ =0 (E?) in the shear layer, we find that
Gl (4
Arvg=—, Aruy=——oy (62)
or Js .
where
Y=E"tp, (63)

It is convenient to employ the new independent
variables

h=—A(s)r, <p=a/ AAds, (64)
0
where ¢ is a constant defined by
v f AAds =2, (653)

with the integral taken around the curve H=0. In
terms of the new independent variables ¢ solves

1 @ sloy\ 9718y 20 0¢ Ts

D e

A ORrOt\L O/ ORNKE Oh/ R? de AAR
with boundary condition ¢y =0 at 2=0 and matching
condition

o .
P hG(0)[1 —exp (—C(0)i/h)], (67)

as k. The new independent variables satisfy 220,
0% ¢< 2w, and it may be noted that

1 ro 7,
G(0)=———/ de.
o AA

2r

(68)
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The equation for y is non-separable and hence in-
tractible for the transient case. However, for £>1, a
steady-state solution is readily obtained. Expanding
{re/AA) in Fourier series,

To/ AA=T creire, (69)
and noting that G(0)=c¢,, we obtain the solution
=% +3 (ca/vH[1— (14wah)ent Jeie,  (70)

where v,={2in0)}, with positive real part, and the
prime on the summation sign denotes omission of the
term #=0. To lowest order, the velocity component
parallel to the depth contours is given by

V= A[CO+ZI Cne(inp—l‘nh)]’

and has the value

(71)

v=1s/A (72)

at H=0. We note again that if « is constant, or, more
generally, has zero curl, the transport is confined to the
shear layer region.

Combining previous results, we find that to lowest
order the composite solution for the depth-averaged
velocity in the limit £ — oo is

u(x,0) =8| VA|GH)+A Y caetine™0)] (73)

while the ultimate steady-state surface current, from
(24) and (39), is

47 (x,0,00) =3 (z—kX ) Fu(x,), (74)

with u(x,» ) given by (73). Also, again using (24), the
transient surface current in the region outside the shear
layeris -

07 (x,0,) =CL (4t/m)*Je—SL(@/m)¥] (kX ) +ws,  (75)
where 1 is given by (47) and C and S are the Fresnel
integrals defined by

CH)+28@) = / exp (iws?/2)ds. (76)

These results can be generalized to include winds of
limited duration. If the stress is taken to be =(x)P(t),
where P=0 for <0, and if u¥ is the depth-averaged
velocity computed previously, then, by Duhamel’s
theorem,

d rt .
u(x,t)=—/ u® (xt—t")P{)dl'. 77
atJy
1f, for example,
(0, <0
=< 12(x), 0<i<t (78)
0, hu<i
for some #,>0, then
u=u(x,NH ) —u (X, i—i)H({—t), (79)
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where H (f) is the Heaviside step function. The surface
velocities can be computed in a similar way.

The preceding analysis has been carried out under the
conditions E3K1, y¥<1, and the assumption that
advection, the B-effect, and nonhydrostatic effects can
be neglected. These neglects are permissible provided
that the aspect ratio 8, the Rossby number Ro, and a
scaled gradient of the Coriolis parameter b, defined
here by

8=D/L, Ro=2U/(foL), b=BL/f,,

are all of order E¥ or smaller. Given this condition, it
can be shown that the only difference in the analysis
due to terms hitherto neglected arises in the O(E?)
momentum equation (43) which contains the additional
terms

(80)

€1V (3o~ o) +L ek - VXug 26237 (k Xuo),

where

e =RoE-1<1, e=bE#<1, (81)

and v is the north-south coordinate. In the elimination
of u; and 6; the momentum equation is multiplied
scalarly by Hds and integrated around a curve of
constant depth. Since (kXuy) is perpendicular to ds,
the only extra term which survives is

Glfv(%“cu'uo) -Hds,

and this term integrates to zero when integrated around
a curve of constant depth. Consequently, advection
and the B-effect play no role provided (81) is satisfied.

In checking the usefulness of the theory as applied to
flow in the Great Lakes, we have assumed eddy viscosi-
ties »y =30 cm? sec™!, vyp=3X10* cm? sec™! (Huang,
1972), and a wind stress expressed in dimensional

terms by
(82)

where Cp is a drag coefficient, 4%, is the mean wind
speed at 10 m above the water surface, and 30 2 unit
vector in the direction of the mean wind. For the
conditions pair=1.25X107% gm cm™3, Cp=107%, 72,0=8
m sec™!, we obtain U=20 cm sec™! as the characteristic
magnitude for the velocity. For each of the Great Lakes
we have taken D as the maximum depth and L as the
width in computing the values of the dimensionless
parameters. For all cases

SE<0.2, v<O0.1.

t=p.i:Cp (1110)21110,

TaBLE 1. Parameters for the Great Lakes.

Lake Et Et € €
Superior 0.02 0.14 0.16 1.32
Michigan 0.03 0.17 0.15 0.69
Ontario 0.03 0.18 0.28 0.26
Huron 0.03 0.18 0.14 0.48
Erie 0.12 0.35 0.07 0.08
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Fic. 3. Surface currents at one-fourth pendulum day (upper)
and three pendulum days (lower), for stress t=1(14).

The other parameters of interest are given in Table 1.
On the basis of these results, we feel that the theory is
applicable for all of the Great Lakes except for Lake
Erie provided that the constant eddy coefficient
assumption is appropriate and that density variations
are unimportant. :

As an illustration of the theory, we have computed
the velocity for the stress

==i(1+)H O (83)
for an idealized lake with depth
H(x,y)=1—(2%/9)—» - (84)

under the conditions E¥=0.03 and v=0. The surface
current distribution is shown in Fig. 3 and the trans-
ports in the Ekman layers, averaged over an inertial
period, in Fig. 4.

4. Concluding remarks

For mathematical convenience we have filtered out
gravity waves, and this is one of the defects of the
model. However, numerical integrations for the wind
driven circulation in Grand Traverse Bay (Smith, 1972),
with gravity waves included, indicate that the current
patterns are not strongly affected by the. presence of
the waves, and consequently we consider the filtering
approximation to be acceptable.

An interesting feature of the solution is the behavior
of the transport at the inner edge of the shear layer,
r=0. From (58), it can be seen that at r=0 Eq. (72) is
valid for all £>0, and from (27) that the outward
transports at r=0, averaged over an inertial period,
are 3E¥4 v, in the upper Ekman layer, zero in the outer

¢ )

y -——

Fic. 4. Ekman layer transports at north and
south shores for stress ©=1(1-y).
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region, and —31E#4v, in the lower Ekman layer. Con-
sequently, there is a secondary circulation near the
corner which obeys a right-hand screw rule, with the
point of the screw in the direction of the horizontal
transport parallel to H=0 and the circulation in the
sense of rotation of the screw (see Fig. 4). This is of
interest with regard to theories of upwelling.

It should be noted that except for a slow viscous
decay the vertical velocity at the edge of the upper
Ekman layer oscillates with the inertial frequency. For
a confined homogeneous fluid the inertial frequency is
not a resonant frequency and forcing at the inertial
frequency does not induce a large response. However,
when the fluid is stratified there is a class of internal
waves with frequencies close to the inertial frequency,
and it is likely that the small forcing at this frequency
does induce a resonant response.

The major defect of this work lies in the use of
constant eddy coefficients. We believe that for a more
realistic model, with variable eddy viscosity, the same
type of boundary layer behavior would be found, i.e.,
Ekman layers, a corner region, and a shear layer near
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the corner region would be present. The quantitative
behavior of the solution for a variable eddy coefficient
model would, of course, be somewhat different, but the
qualitative behavior should be similar to that calculated
here.
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