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NUMERICAL SOLUTION OF VISCOUS FLOW
PAST A SOLID SPHERE WITH THE CONTROL
VOLUME FORMULATION*

Mao Zaisha( % 7 # )**and Chen Jiayong( i X 4 )
Institute of Chemical Metallurgy, Academia Sinica, Beijing 100080, China

Abstract The control volume formulation with the QUICK finite difference scheme is used to solve
incompressible liguid flow past a solid sphere in terms of stream function and vorticity. Several tech-
nical points are addressed on improving the accuracy and efficiency of numerical simulation of similar
problems of fluid flow. In particular, the importance of suitable specification of the distortion func-
tion to enforcing the far field boundary conditions is emphasized.
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1 INTRODUCTION

The motion of a single particle (drop, bubble, or solid particle) or a swarm of particles
in a fluid medium is of extreme significance to many academic topics and in industrial
applications. In addition to theoretical and experimental investigations, numerical
simulation has been extensively and effectively employed to promote our understanding
of fluid mechanics related to the motion of a single particle, because analytical solution
is available only in very limited occasions. Analytical solution of fluid flow around a
solid or fluid sphere in creeping flow has been available decades ago'". For the case
with Re>1 and for nonspherical solid particles, boundary layer approach,
computational fluid dynamic approach and experimental investigation were equally
popular tools for acquiring in depth knowledge, and great progress has been achieved
in this area to date. LeClair et al™” Rivkind & Ryskin®, Ryskin and Leal®, and Dan-
dy and Leal® extended the numerical approach to the motion of bubbles and fluid
drops. Nowadays, computational fluid flow and heat, mass transfer has become a use-
ful and sophisticated technique.

To solve the external flow outside a solid sphere in an unbounded liquid medium,
several approaches are available for the choice of an investigator. The Navier-Stokes
equations are explicitly formulated in terms of primitive dependent variables (u and
p), and can be solved directly for velocity and pressure fields as in many numerical
studies, particularly for turbulent flows. However, in the intermediate range of the
Reynolds number but still under the laminar conditions, two-dimensional Navier-Stokes
equations may be presented in terms of two scalar variables, stream function and
vorticity (¥ and ). In general, a boundary-fitted orthogonal coordinate system is very
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efficient in dealing with evolution of free interface and whenever good accuracy is desired
in enforcing the boundary conditions. In this respect, Ryskin and Leal provided very
flexible strong constraint and weak constraint methods to generate the grid numerically
for solving such flows'd. ' :

As part of a long-term project on the mass transfer in multi-dispersed systems, the
fluid flow around a solid sphere was numerically simulated based on a similar approach
to that by Leal’s group. In this course, several technical difficulties were brought to the
authors’ attention, which were analyzed and overcome in the course of compiling a
computer code and validating it. Thus improved algorithm produced good prediction in
accordance with the experimental data. In this paper, these experiences are addressed
and discussed with an intention to benefit the numerical simulation of motion of bubbles
and drops under the similar occasions.

2 MATHEMATICAL FORMULATION
2.1 Orthogonal boundary-fitted coordinate system

In this work, the numerical procedures for grid generation and solution of fluid
mechanics equations are mainly adopted from what Ryskin and Leal®, Dandy and
Leal™ described for the cases of deformable bubbles and drops. For a solid particle,
only the infinite exterior domain needs to be solved. If a point in the physical domain
is denoted as (x, y, 6) in the cylindrical coordinates, with 6 being the azimuthal angle
measured about the axis of symmetry, x-axis, this coordinate system can be transformed
into a boundary-fitted orthogonal coordinate system (&, #, 8). The axisymmetry of the
particle shape guarantees the mapping to be carried out over a half plane region
(—oe <x<+ oo, y=20) since the rotation of the resulting coordinate system (&, #)
about the symmetric axis x will yield three-dimensional orthogonal boundary-fitted
coordinates (£, n, 6). The mapping functions x(&, #) and y(&, #) can be solved from
the covariant Laplace equations

0 Ox 0 , 1 0x 0 dy o, 1 0
——(f )t (= —)=0 = (f )+ —(— <=)=0 1
The condition of orthogonality leads to
Ox __ o0y 0y _ p0x
an o on e (2)

which must also be satisfied on the boundary of the transformed region. In Egs.(1)
and (2) the distortion function f(&, n) as termed by Ryskin and Leal®is the ratio of
the scale factors

f(&, m=h,/h, (3)
where

0x )”%%)2 (4)

B= (G (5 B= (G + (5

The distortion function measures the ratio of the sides of a small cell on the x-y
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plane which is an image of a small square on the ¢-# plane. By judicious choice of the
distortion function, the density distribution of computational grids in the x-y plane
may be controlied so as to achieve faster convergence and better accuracy in numerical
solution.

The mapping is defined such that the solution domain (for any arbitrary fixed 6) is
a unit square

0<¢, n<I

but the resulted (¢, #, ) coordinate system is left-handed. The correspondence of the
boundaries between the infinite exterior region and the transformed region is sketched in
Fig. 1, with £=1 being the solid surface (r=R), £=0 corresponding to “infinity”
approximated by a large circle with the radius equal to r=AR (A=20 being large
enough), and # varying from 0 to 1 as a point is traversed along the solid surface from
the rear stagnant point 4 to the front stagnancy C in Fig.1(a). If f (&, n) is specified
and fixed, the value of A may be determined in the course of numerical grid generation
by solving Eq.(1). Note that when later solving the nondimensional equation of liquid
flow, the drop radius is normalized to unity and the computational domain extends to
A in the radial direction.

E B
olF A
1 o¢
(a) The computational grid in the x-y plane (b) The transformed domain in the ¢-n plane

Figure 1 Sketch of the computational domain exterior to a solid sphere and the mapping to the
transformed &-n plane (The correspondence between two domains is indicated by the

capital letters 4 through F)

The orthogonal mapping by the numerical solution of Eq.(I1) is subject to the

following boundary conditions
0x

—— =0, y=0, at =0 or n=1 )
on
ax———_a_-y_ __ai:—ﬂ at 1:::'0 Orézl (6)

The orthogonal conditions (6) mean that if the distortion function f (&, n) is specified
explicitly throughout the ¢-n region, both x(1, n) and y(l, n), which represent a
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prescribed distribution of grid points along the boundary {=1, can not be given
simultaneously. In the case of a solid sphere, orthogonality simply indicates that the
boundary nodes are right on the radial straight lines from the center of the sphere
passing through its nearest neighboring node. However, the orthogonal coordinate system
may be specified analytically without resorting to solving the partial differential equa-
tions numerically in some simple cases, as exemplified later in Section 3.3.
2.2 Formulation of fluid flow
Suppose a solid sphere moving under gravity at its terminal velocity U in a quies-
cent fluid (density p and viscosity p), which is assumed to be incompressible and
Newtonian. In addition, attention is focused on steady, isothermal, laminar and
axisymmetric flow which is physically realistic under controlled experimental conditions.
By taking the uniform velocity U at upstream infinity along the direction of x-axis
as the characteristic velocity, and the radius of the sphere R as the characteristic length,
the Navier-Stokes equations can be written in terms of stream function W and vorticity
o and in dimensionless form as

_Re 1 oy 94 o |// 0 o
LY +w=0 (8)
where the differential operator is
o 1 o0 S 0y 0,1 0

Re=2URp/u is the Reynolds number based on the physical properties of the liquid
phase. The velocity components, as the auxiliary variables, are related to the stream
functions by
1 oy 1 oy
u = — —— s u = e e———

4 yh,, a” 4 yhf aé (10)
in this left-hand coordinate system. To solve the vorticity equation by the control vol-
ume formulation, it is convenient to work with a new variable w*=yw instead of the
original w. Eq.(7) is further manipulated to

_ Re 1 0 oy o*
on y?

o o

0
"5’7( T _yT)] (11)

by making use of the following relationships

oy a( )___ W ) ot Y
o on oty y? 0&on
oy 0 oy w* )~ w* Y
on 0¢& on y y: 0&on

The control volume formulation is more suitable for solving Eq.(11) when both sides
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are multiplied by h;h,, and Eq.(11) is integrated separately over control volumes when
being discretized. The dimensionless variables and the operator are related to its
dimensional counterpart as follows

o' =(U/R)w, ¥ =R*Uy, L"*=(1/R*L?

The governing equations of fluid dynamics are subject to the following boundary
conditions. At the symmetry axis

v =0, =0 at n=0, 1 (12)

The farfield boundary conditions representing undisturbed parallel flow outside the
sphere are

y > (1/2)y*, wo— 0 for ¢~ 0 (13)
At the solid surface (£=1)
Yy=0 (14)

corresponds to zero normal velocity. In addition, the boundary value w(l, n) is also
needed, which should be evaluated from the no-slip condition on the solid surface

U, =0 (15)

Once the fields of ¥ and w are solved, other flow properties can be calculated as
described by Dandy and Leal®. The drag coefficient defined by

C,=2 (drag force)/(pU*nR?)

can be calculated by integration along the solid surface

1
_ oy Ox (16)
C,=2 Ty —— — T, —— )yd
D J;)(Eéan ﬁnan)yn
with
_4 (" s o
T ™ “I‘{‘e‘L v —ag(yw)d’? (17)
7, = —(4/Re)w (18)

2.3 The QUICK differencing scheme

The Power-Law Differencing Scheme suggested by Patankar is an efficient and
numerically stable one!”. However, as the cell Peclet number increases, the scheme shifts
automatically toward the Upwind Differencing Scheme with first-order accuracy. It is de-
sired to incorporate a second-order scheme in the control volume formulation. For this
purpose, the QUICK scheme with quadratic interpolation on convective terms was
adopted in the present work. QUICK was first proposed by Leonard™ and successfully
used by many investigators® ', This scheme is also used here to achieve second-order
accuracy of the solution.
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Discretization of Eq(11) can be exemplified with a general differential equation such as

0 0¢ 0 0
)+ ——
S+ £ (M50 )= S (up+ 5 w) (19)
integration of Eq.(19) can be carried out over a control cell to give l

A @0+ LA G 0~ [ 6,0 =
(ugd,— e, @,)A0 + (u,,,,aﬁ,, —u,,0,)AL (20)

in which the capital letter subscripts (N, S, E, W) denote the position of neighboring
nodes and the lower-case letter subscripts (n, s, ¢, w) mark the cell faces as indicated in
Fig.2 (a). It is possible to use upwind quadratic interpolation to get a second-order esti-
mation of velocity components at the cell faces, and this leads to

B, =(a_Byyta_Sy+apytod) M) +(B_Byw+B_ 0y +Bdpt o) M, (21)

An
I35 @00~ Ty

$.= (- B T VBpt 1105+ 2Bp)M, + (8 By + 0ubpt 6,05+ 6, Ber)M, (22)
¢s = (“-2¢ss +a_ 1¢s + “o¢p+ °‘1¢N)Ms+ + (ﬁfz(bss + ﬂ l¢s + ﬂo¢P+ ﬁ1¢1v) Ms— (23)
0, = (-1 Bs T+ 7e@p+ 11O T V2O IM, + (0 _\Bs+ 3Bt O By + 6,0y IM, (24)

with
M =g+ ug)2ugy, M7 == uD/2uy,, i=w, e
M;V = (um‘ + lunjl)/zunj > Mj/ = (uw' - ‘unjD/zu'rJ” j= S, n

deciding which three upwind nodes to be chosen for the quadratic interpolation of
@’s. Denoting

D, =TI'(An/A), D,=I(An/A), D,=T1(A{/An), D =T (AS/An),

C.=uAn, Cy =uyAn, C,=u,Af, C,=u, AL,
the following discretized equation is resulted

abp=ay by + ad, +asps + aydy+ S,
with
ar=(Dc+Dw+D,+ D)+ CypM, + 56M,;) — C, (M + BoM)
+C (M, +6,M)— CloM] +B,M,)

ay=D,+(@_ M;+B_M)C,—(y M} +6_M;)C,

ap=D,+ (M, +5,M,)C,— (M} +5M])C,
=D, +(@ M+ M)IC—(y_ M +5_M])C,

=D, +(M; +BM)C,— (M) +6M,)C,
Sp= (@M}, + B, MIYC, By~ (M +8,M)C b

e M+ B MO)Codss — (1M, +0,M)C,8yy

Since the uniform grid in the (&, #) plane is used, the interpolation coefficients are
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simple constants as listed in Fig.2(b). With suitable relaxation to make the diagonal
elements in the coefficient matrix of the algebraic equation set dominant in magnitude and
sufficient number of meshes, convergence of the above discretized equations is well guaranteed.

ww w P E EE
" NN ° T .
u, >0 X -2 ax_ Q. a
N S0.135 9.5 0.375 o'
n
ww E EE u, <0 B- B B B
Y 4 P o - 0 0.375 0.75 0.125
w e
u, >0 Y- T " Y2
N ~0.125 0.75 0.375 0
S
u, <9 5‘-] 60 6] 62
0 0.375 0.75 ~0.125
SS

(a) The control volume and its neighbor nodes (b) Interpolation for faces w and e uses different sets
of coefficients while two upwind nodes are always utilized
Figure 2 The control volume and the coefficient sets for the second-order accurate interpolation
of ¢ values at the cell faces

2.4 Solution algorithm
The numerical procedure consists of the following steps

(1) Generation of the orthogonal grid numerically or analytically specifying the dis-
tortion function f(&, #n), x(&, n) and y(¢, n), and then initialization of the fields,
including all the auxiliary variables and scaling factors.

(2) Discretize Eqs.(8) and (11) by the Power-Law Scheme as described by Patankar!”
or the QUICK scheme outlined in the previous section.

(3) Solve successively the stream function and vorticity equations Eqs.(8) and (11),
subject to the boundary conditions (12) through (15).

(4) Implementation of boundary condition (15) may be done iteratively

[w*(1, Ml =[w*(1, MI™ +ecu,1, n* (25)

where n denotes the iteration number and ¢, is a specified constant.
(5) Repeat steps 3 and 4 till convergence [average deviation of Eq.(15) below 10 °].

3 NUMERICAL RESULTS AND DISCUSSION

3.1 Modification of the infinite boundary condition

A modification to remove the infinite boundary condition for ¥ as & — 0 [Eq.(15)] was
adopted by Ryskin and Leal [4]. The modified stream function

Y= y—(1/2)y"(1-&)

would result in ¥*=0 for £=0 and maintains the homogeneous boundary conditions on
the other three boundaries. The term y*(1—¢%)/2 is the potential flow solution for a
spherical bubble, but it has no simple physical meaning for the viscous flow outside a
solid sphere. When y* and w are finally solved, ¥* is then converted to ¥ for further
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calculation of C, and other hydrodynamic parameters. However, Eq.(11) demands
calculating the derivatives of the original stream function numerically in each iteration.
This operation involves differentiation of the term y*(1—¢°)/2 and would introduce addi-
tional numerical error to the discretized equations of w if y* is used. In this work, we
choose to solve the Y equation in its original form when investigating the dependence
of flow on the Reynolds number. However, the results of numerical experiments in sec-
tion 3.3 suggest that the solution in terms of ¥ or ¥* is equally acceptable.

3.2 Boundary conditions at far downstream

The boundary conditions for ¥ and w at the far downstream require attention from the
view point of computational accuracy and efficiency. For a solid sphere with
intermediate Reynolds number, the vorticity is created in the neighborhood of the sphere
and transported downstream by liquid convection. If the solution domain is trun-
cated at the outer computational radius where the vorticity is not heavily dissipated,
enforcing the zero vorticity condition is hardly justified. On the other hand, the vorticity
at far downstream presents only very weak effect on the recirculating wake, and it is
not economic to use a large computational domain just for minor improvement in
computational accuracy. As a compromise, it seems acceptable to use the condition of
zero derivative in the flow direction to replace the Dirichlet boundary condition. With
0p/0x=0, the boundary value of stream function or vorticity can be simply designated
with the upstream one from interpolation as sketched in Fig.3.

Figure 3 Scheme for implementing the downstream
boundary conditions of zero derivative at
the outer computational border (£, =0)

The value of ¢ at point a obtained from linear

interpolation is designated to node b

3.3 Suitable specification of distortion function
In this work, the distortion function is specified as

F &, m=(=/r) (1-0.5cosnn) (26)

which offers small values for n in the lower range (near the trailing stagnant point)
where more grid lines are desired to be allocated for better numerical resolution of a
possible recirculating wake. For this specification and a spherical particle, the
orthogonal transform is found in the analytical form of

x=exp[A(1 — &)Jcos(nyn — 0.5 sinnn)
{ y=exp[A(1 = &)lsin(ny —0.5 sinnzy) (27)

The factor A indicates the speed of increase for the spacing between two adjacent con-
stant-{ lines, and fis maintained at finite level since the spacing in two coordinate dir-
ection increases synchronously. Fig.1(a) depicts such an orthogonal coordinate system
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around a spherical particle.
Ryskin and Leal suggested another specification of the distortion function

S n=rl(1-0.5 cosny) (28)

for both the flow field and an auxiliary domain. The latter was essentially the half cir-
cle in the X-Y plane, and then used a conformal mapping

x—iy=1/(X+iY) (29)

to transform the half circle into the infinite region in the x-y plane'®. That is to trans-
form the analytical orthogonal grid system
{ X =¢cos(nn —0.5sinmy)
(30)
Y =¢&sin(nn —0.5sinny)
into the computational grids with specified distortion function Eq.(28) intact. This trans-
form had the advantage that the nodes with £=0 were at the “real” infinity where the
grid density became vanishingly low as one may intuitively incline to have.
However, this distortion function may not be suitable for effectively enforcing the
boundary value of y as prescribed by Eq.(13). Upon discretization according to the
control volume formulation™, Eq.(8) multiplied by h.h, will result in

apl,bP = awl,l/w + aE|/IE + agl//g + aNI/lN + h;h,,(l)pAéA'] (31)
with
a,=ay,ta,+as+a,
Yy ALy | AT AT Y il A

As Eq.(28) gives very small value of f (&, n) near £=0 (in the far field), the coefficients
a, and a, become rather small as compared with a; and a,. In the limit Eq.(31)
becomes

agypXaghst+agy+ hghquAéAﬂ (32)

and this in turn means a Newmann boundary condition of zero derivative of ¥ in the
¢direction would be enforced instead of the original Dirichlet boundary condition at
the outer computational radius. In fact, from the comparison among the computational
results on a 41 %41 grid listed in Table 1 it is observed that only the distortion func-
tion Eq. (26) generates reasonable results on the drag coefficients and length of
recirculation zone behind the sphere, L,. It is also noticed that modifying ¢ or
adopting either Dirichlet or Newmann downstream boundary conditions play only
a minor role in our case of numerical simulation.

Reviewing earlier literatures on flow past a sphere, it is noticed that many authors
adopted the uniform grid in the transformed polar coordinate system (lnr, ¢), so that
the mesh size Ar in the radial direction grows exponentially to match the increasing rA¢
in the far flow field">~'. Thus, finite values of the distortion function were established
throughout the flow domain.
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Table 1 Comparison of C, and L, from simulation and literature data

(Re=50, QUICK scheme, 41 %41 grid)

Downstream B. C. Distortion function ¢ modified? Cp L,
Literature data 1.574 0.42
Simulated results Dirichlet B. C. Eq.(26) No 1.5529 0.3798
Eq.(26) Yes 1.5472 0.4106
Eq.(28) No 1.9173  0.4902
Eq.(28) Yes 1.9865 0.5861
0 -0 Eq.(26) No 1.5497 0.3855
dx Eq.(26) Yes 1.5435 0.4166
Eq.(28) No © 2.0848 0.4545
Eq.(28) Yes 2.1195 0.5360

3.4 Validation of the numerical scheme
The computational results on the drag coefficient and the wake length for a sphere with
Re=50 using two differencing schemes on a series of computational grids (41 %41,
61x61, 81x81, 101 x101, and 121X%121) indicate that the Power-Law Difference
scheme is roughly of first order accuracy as obviously suggested by the linearity of the
predicted L, against the mesh size used, A{(Fig4). On the contrary, the QUICK scheme
shows apparent superiority in the order of accuracy. As the grid is refined from 61 % 61
to 121 x121, the predicted C, is only changed by 1.0% and L, is increased by 1.2%.
Therefore, a 81 X 81 grid and the QUICK scheme are used in latter simulations.
Simulation of a solid sphere in unbounded quiescent liquid was performed for the
cases with Re=50, 100, and 200. Fig.5 presents the stream line maps of these cases.
The numerical results of C, and L, were compared with typical literature data. Table 2
i1s the comparison on the drag coefficient, and its coincidence to the values of C,
calculated from a correlation for the range of Re from 20 to 200 as recommended by
Clift et al. (page 112 in Ref.[1]) is quite reasonable. Comparison of the length of the
wake is shown in Fig.6, where our numerical results are cornpafed with the experi-
mental results by Taneda"¥, and the agreement seems satisfactory. For the cases of Re=
150 and 200, the prediction deviates from the trend of experimental data, and the pos-
sible reason is that the real wake becomes oscillatory while the numerical simulation was
based on the assumption of a steady wake.

0.45

"‘3‘ 0.40F . T Figure 4 Grid dependence of computed wake length on
8 . the discretizing schemes with different
[3] -
2 4 g5t orders of accuracy
2 . — QUICK scheme; m Power-law scheme
0.30 : .
0 0.01 0.02 0.03

Mesh size

4 CONCLUSIONS
(1) Numerical solution of the motion of a solid sphere with the stream func-
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Table 2 Comparison of C,, from simulation and
available correlation
(in y, distortion function Eq.(26), downstream zero
derivative, QUICK scheme, 81x81 grid)

-\\" -
T—— Re This work Correlation
20 2.696 2.735
(a) Re=350 50 1.564 1.574
100 1.087 1.085
150 0.896 0.889
F’/——*’—‘ﬁm‘
e T T 200 0.787 0.776
VS
1.2 w
/
/
1.0
{b) Re=100
0.8
————— s
T T T T — =~ 0.6
— e R .
I
— 0.4 :
0.2
0 J 4 A i i 1
(¢} Re=200 20 40 60 80 100 200 300
Re

Figure 5 Streamline contour maps for viscous flow past

a solid sphere (81 %81 grid, QUICK scheme. Figure 6 Comparison of predicted wake length with

experimental data®! (Re=Udp/u)

downstream zero derivative)
) @ = experimental data''”; xthis work

d/mm: ¢ 19.82; @ 15.08; = 9.52
tion- vorticity formulation is confirmed to be efficient for laminar viscous flow when the
inertia term is not negligible (in the intermediate range of Re). Eq.(11) is found to be
a more suitable form for solution with the control volume formulation. It seems that
there is no need to modify the stream function in order to obtain homogeneous bounda-
ry conditions at the outer computational radius.

(2) Suitable choice of the computational grid, including that in the far flow field, is
of critical importance for accurate solution of the fluid flow and correct enforcement of
the far field boundary conditions. The proposed distortion function Eq.(26) maintains to
be the order of unity in the far flow field is proved to be advantageous to higher
computational precision. -

(3) It is confirmed that second-order QUICK scheme is more accurate than the
popular Power-Law Scheme which degenerates to first-order accuracy as Re is
increased. It seems that the QUICK scheme is easy to be implemented for a uniform
grid, which is often the case when a boundary-fitted coordinate system is adopted.
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NOMENCLATURE
a coefficient of discretized equation
Cp drag coefficient

FACIE)) distortion function

h scale factor

L differential operator

L, wake length measured with spherical diameter
n iteration number

R drop radius, m

Re Reynolds number (Re=2URp/u)

r radial coordinate, m

U far field flow velocity, m+ s™!

u nondimensional local velocity

XY Cartesian coordinates in auxiliary plane

nondimensional Cartesian coordinates
interpolation coefficient

=™ <
=
&

general diffusivity for ¢
azimuthal coordinate
constant in Eq.(26)
viscosity, N* s* m
transformed boundary-fitted coordinates
density, kg* m™

nondimensional stress tensor

general physical variable

-2

stream function

€ & & 9 D™y E > DNR K
=

vorticity
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