1AIK

Technische Universitat Graz

Institut for Applied Information Processing and Communications —

IAIK TUG

Inffeldgasse 16a

A-8010 GRAZ -

IAIK

TU Graz

SCA-Lab Technical Report Series

Secure and Efficient Masking of AES — A
Mission Impossible?

VERSION 1.0

Elisabeth Oswald, Stefan Mangard and Norbert Pramstaller

Technical Report
[AIK - TR 2003/11/1 (updated on 2004/06/04)

http://www.iaik.tu-graz.ac.at/research/sca-lab/index.php

Secure and Efficient Masking of AES — A Mission
Impossible?

Elisabeth Oswald, Stefan Mangard and Norbert Pramstaller
4th June 2004

Abstract

This document discusses masking approaches with a special focus on the AES
S-box. Firstly, we discuss previously presented masking schemes with respect to
their security and implementation. We conclude that algorithmic countermeasures
to secure the AES algorithm against side-channel attacks have not been resistant
against all first-order side-channel attacks. In this article, we introduce a new masking
countermeasure which is not only secure against first-order side-channel attacks, but
which also leads to relatively small implementations compared to other masking

schemes when implemented in dedicated hardware.
Keywords: AES, Masking, Side-Channel Attacks

1 Masking Approaches

In the following, we discuss the different approaches that have been proposed in order to
mask implementations of the Advanced Encryption Standard (AES)[Nat01]. The AES is
a byte oriented cipher, i.e., the basic data blocks are 8-bit blocks. Masking AES means
masking the intermediate bytes which are processed in an AES computation. Masking a
byte value x means to choose a random value m (the mask) and to define a function f
(the masking) which takes both values as input to calculate the masked output: f(z,m) =
xxm. The operator x is either defined as bit-wise Xor operation, denoted by +, (additive
masking), or as multiplication, denoted by X, over a finite field (multiplicative masking).

AES consists of four transformations, SubBytes(), ShiftRows(), MixColumns()
and AddRoundKey(). Except for SubBytes(), all transformations are linear,i.e., they
have the property that f(x +m) = f(z) + f(m). Hence, for such transformations, it is
an easy task to compute how the mask m has changed during the transformation. As a
consequence, it is also simple to re-establish the original mask m after a (sequence of)
transformation(s). More difficult is the transformation SubBytes(). As SubBytes() is
non-linear, re-establishing the mask after a SubBytes() transformation is difficult.. This
is because

SubBytes(x + m) = SubBytes(x) + m' # SubBytes(x) + SubBytes(m).

2

In the following subsections, we review the different methods that can be used to mask
SubBytes().

1.1 Re-computation of SubBytes()

The SubBytes() transformation can be implemented as a table lookup. Suppose we want
to define a masking such that

SubBytes(x + m) = SubBytes(x) + m.

In order to achieve this with a table lookup we have to compute a corresponding table
MaskedSubBytes() for the mask m.

Algorithm 1 Computation of Masked SubBytes()

INPUT: m

OUTPUT: MaskedSubBytes(x + m) = SubBytes(x) + m,
1: for i =0 to 255 do
2: MaskedSubBytes(i + m) = Subbytes(i) + m
3: end for
4: Return(MaskedSubBytes)

Such a table needs to be computed for each mask value m;. If ¢ different masks m are
used, then the complexity of this procedure is i x 256. If we ensure, that the same masks
m; are re-established before the SubBytes() operation in each round, the same i tables
can be used throughout the complete AES calculation.

1.2 Multiplicative Masking

Especially in a dedicated hardware implementation, tables which are implemented as ROMs
are rather area expensive. In AES, SubBytes() can be implemented very efficiently using
composite field arithmetic [WOL02]. Hence, the computation of masked tables is not an
attractive option. Another idea, presented in [AGO1], is based on using multiplicative
masks. The SubBytes() transformation is defined as

SubBytes(x) = A x 27 +b.

In this definition, A is a fixed 8 x 8 matrix, and b is a column vector of length 8. The inver-
sion operation itself, denoted by Inv(x) = 27! is calculated over the finite field GF(256).
This operation is compatible with the multiplication over the finite field:

Inv(z x y) = Inv(z) X Inv(y).

Using this property, it is an easy task to remove the additive mask m and replace it with a
multiplicative mask m’ # 0 and calculating the inversion without ever revealing the value
x.

Algorithm 2 Multiplicative Masking of SubBytes()
INPUT: z+m, m,m’
OUTPUT: Inv(x)+ m,

L (x+m) / xm/

2: (x+m)xm /+ (m xm')
3 xxm /7!

4: 7t xm/! [+ (mx m'™h)
5 (27t x m/7h) + (m x m™) / xm/

6: '+ m

Algorithm 2 requires 4 multiplications, 1 inversion and 2 Xors in addition to the original
inversion. This additional effort can be reduced to 2 multiplications, 1 squaring, 1 Xor and
one Xor with 1, by taking m’ = m.

In AES, an AddRoundKey operation is performed prior to the first encryption round
and thus, prior to the first time when the inversion needs to be computed. If a key byte
k equals a data byte d, then the result of AddRoundKey, which is x = d + k, equals
zero. This observation can readily be used in an attack which is referred to as zero-
value attack and was introduced in [GT03]. Let ¢ denote a power measurement (trace)
and let the set of all traces t be denoted by T. Suppose a number of AES encryptions
is executed and their power consumption is measured. Assume that the input texts are
known. For all 256 possible key-bytes k', we do the following. We define a set M; which
contains those measurements with k" = d right before the SubBytes() transformation.
We also define a set M, which contains the measurements with & # d right before the
SubBytes() transformation.

My={teT ¥ =d} (1)
My={teT: K #d} 2)

If k& = k', then the two sets M; and M, must show a considerable difference at the
point in time when the masked SubBytes() operation has been performed. This is due
to the fact that set M; contains the measurements in which the 0-value is manipulated in
the inversion. If k # k', then the definition of the sets is meaningless. Hence, no difference
between the sets can be observed. The difficulty in this scenario is that one needs enough
traces in M, in order to get rid of noise. As, on average, the probability of &' = d is %6, a
considerable amount of measurements have to be acquired (see Appendix B for a thorough

statistical analysis).

1.3 Simplified Multiplicative Masking

This was presented in [TSGO03]. It is equivalent to the original multiplicative masking
scheme, but sets m = m/. Hence we get Algorithm 3.

Algorithm 3 Simplified Multiplicative Masking of SubBytes()
INPUT: z+m, m
OUTPUT: Inv(z)+ m,

L (x+m) / xm

2: (x+m) xm /4 (m x m)
3 xXm /71

4 7t xm™! /+1

5 (z7hxmT) +1 / xm

6: 1 +m

In Algorithm 3, we do not need to compute the inverse of mask, and we require one less
multiplication. Of course, we are not longer allowed to have m = 0. It is also not clear,
what implications it has (at least for software implementations) if an attacker is able to
monitor x +m and z * m.

1.4 Embedded Multiplicative Masking

In order to overcome the problem with zero-values of the multiplicative masking, the
so-called embedded multiplicative masking was suggested in [GT03]. The key idea of
this masking is to embed the finite field in which the inversion operation is defined,
i.e., GF(2)[z]/P(x), and P(z) = (28 + z* + 23 + # + 1), into the larger ring R =
GF(2)[z]/(P(z)*Q(z)). The polynomial Q(x) has degree k and needs to be irreducible over
GF(2) and co-prime to P(z). To repair the multiplicative masking, a random embedding
p: GF(2)[z]/P(z) — R is defined as :

p(U)=U+RxP (3)

In Equation 3, a random polynomial R(z) # 0 of degree smaller than k is used as a mask.
If U is an additively masked value, i.e., U = x 4+ m, then the additive mask m can be
removed after the computation of p. In order to calculate the inversion in GF(2)[z]/P(x),
we define a mapping F' on R which coincides with the inversion on GF(2)[z]|/P(z). This
mapping is F': R — R with F(U) = U?*. Reducing F'(U) modulo P(z) gives the inverse
of U in GF(2)[z]/P(x). The additive masking can be restored before performing this final
reduction step. If the polynomial R is indeed random, the masking will not allow to reveal
exploitable information even in the case where z = 0.

1.5 Combinational Logic Design for AES Subbyte

The masking schemes, which we have discussed so far, are all algorithmic countermeasures
and can be implemented either in software or in hardware. However, masking on gate level,
i.e., using a special masked logic, has been proposed as well. In [Tri03], this idea has been
picked up and applied specifically for AES. The principle, which is presented in [Tri03], is
similar to what we will propose in the next section of this article. The authors of [Tri03]

5

have also observed that in order to counter zero-value attacks, all intermediate values must
be concealed by an additive mask. As we have already explained, the only operations,
which are tricky to mask occur during the computation of the AES S-box. In particular,
if the S-box is implemented in composite field arithmetic, it is the AND gate, which is
difficult to mask. The main contribution of [Tri03] is therefore the design of a masked
AND gate and its clever use to secure implementations of the AES S-box.

However, in comparison to our approach, there are several major differences which we
highlight in the subsequent paragraphs.

The countermeasure of [Tri03] works on gate level and therefore it can not be imple-
mented efficiently in software on an arbitrary processor. Another major disadvantage of this
approach is that masking on gate level is covered by several patents, for example [MDO01],
[KKGO02] and [MP03].

In contrary, our countermeasure works on the algorithmic level and can be implemented
in both hard- and software. Consequently, our proposal does not require masked gates and
our technique is not covered by patents (to our best knowledge).

2 Combined Masking in Tower Fields

In order to thwart zero-value attacks, we have developed a new scheme which works with
combinations of additive and multiplicative masks. Throughout the whole cipher, including
the S-box computation, the data is concealed by an additive mask.

Before going into the details of the new scheme, we review some facts about efficient
implementations of the inversion operation first.

2.1 Inversion in GF(256)

Our S-box design follows the architecture proposed in [WOL02] which is based on composite
field arithmetic. In this approach, each element of GF(256) is represented as a linear
polynomial a,z + a; over GF(16). The inversion of such a polynomial can be computed
using only operations in GF'(16):

(apr +a;))™t = ayx+a (4)

a, = apxd! (5)

aj = (ap+a) xd* (6)

d = ((aj, x po) + (an X @) +af). (7)

The element pg is defined in accordance with the field polynomial which is used to

define the quadratic extension of GF(16), see [WOLO02].
The finite fields which we will frequently use in the following sections are:

GF(256) ~ GF(2)[x]/(z®+2*+2° + 2+ 1)
GF(16) GF(2)[z]/(z* + 2+ 1)
GF(4) GF(2)[z]/(z* +x +1).

12

12

2.2 Masked Inversion in GF(256)

In our masking scheme for the inversion, all intermediate values as well as the input and the
output are masked additively. In order to calculate the inversion of a masked value input
value, we first map the value as well as the mask to the composite field representation shown
in [WOLO02]. This mapping is a linear operation and therefore it is easy to mask. After
the mapping, the value that needs to be inverted is represented by (as + myp)z + (a; + my)
instead of anx + a;. Both values, a;, and q;, are masked additively.

Our goal is to achieve that all input and output values in Equation 4 are masked, by
using only masked values in combination with appropriate correction terms:

1

((an +mp)x + (a +my)) " = (@), +mp)z + (a) +my).

Suppose we would calculate Equation 5 with masked input values,i.e., with a; + my,
instead of a;, and with d=* 4+ m; instead of d~*. Then we would get the following result:

(ah+mh)><(d_l—i—ml):ah><d_1+mh><d_1+ah><ml+mh><ml.

Apparently, this is not equal to a} +my, = a, x d~' + my,, because the masks m;, and
m, introduce several additional terms. We have to get rid of these additional terms in
order to establish the correct result. The correction terms which have to be added are
(d™' + my) x mp, (ap +my) x my, my, X m; and my. One has to take care when adding
those terms that no intermediate value is correlated with hypotheses, i.e., values which an
attacker can predict.

In order to achieve this secure application of correction terms, we use a fresh mask M,
which masks the summation of the correction terms. M needs to be independent from my,
and m;. Details about the computation of the correction terms for Equations 5-7 can be
found in the subsequent sections.

The remaining issue that needs to be resolved is the secure computation of the masked
inversion in GF(16). So far, we have only shifted our problem from the bigger field down to
the smaller field. However, there is no way to totally avoid the computation of the masked
inversion. Hence, we need to find an algebraic structure in which the inversion operation is a
linear operation. Although this seems to be intuitively impossible, there is a nice solution.
In the finite field with four elements, GF(4), the inversion operation is indeed a linear
operation. Fortunately, GF(16) is a quadratic extension of it, i.e. GF(16)~GF(4)x GF(4),
and GF(256) is a quadratic extension of GF(16), i.e., GF(256)~GF(16) x GF(16). Hence,
GF(256) is a tower field over GF'(4) and this is the property that we exploit.

We always use additively masked values to calculate the inversion operation according
to Equations 5-7. We have to add appropriate correction terms in order to achieve the
correct result of these equations. Because GF(256) is a tower field over GF'(4), we can shift
the computation of the masked inversion, which needs to be done for d, down to GF(4). In
this field, the inversion is a linear operation and thus, it is easy to mask. In the remainder
of this section, we provide the details for the secure calculation of the Equations 5-7.

2.3 Secure Calculation of the Masked d

We have to calculate a masked d, which we call d = d+my, according to Equation 7 based
on the input data (ap +mp)x + (a; +my) and M (a fresh mask). Note that M is just used
to mask the addition of the correction terms—it is not part of the final result.

The terms dm;y, dmo and dmg are the result of filling in masked input values into
Equation 7. In order to get a correctly masked value d, the correction terms c; ... cs have
to be added. The calculation of these correction terms ¢; requires 3 multiplications, 2
squarings and 1 multiplication with a constant term in GF(16).

dl =d +my =
= Sah +mp)? x p9+M + Sah +my) X (a; + mll+£al + my)?
dm: dms dm
—I—Sah + mh) X ml+£a1 + ml) X My
0 ’ ®)
=~

-+ mﬁ XPo + m12
——
c3 cq
+mp X m; + my, +M
R

C5 C6

2.4 Secure Calculation of the Masked a),

The coeflicient a}, in Equation 5 also needs to be calculated with masked input values.
Hence, we need to work with aj, +myp, M and d'~! = d=' 4+ my:

ay, +my = (an, +mp) x (d7" +my) +M

[S

a"'g

dmy

+ (d*l + m1> X m}l—i— (ah + mh) X rnl (9)

e e

c7 C1
+ my +mh ><m1+1\/[
~ N——

C6 C5

The value d,, that is calculated by filling in masked values into Equation 5, needs to
be corrected as shown in equation 9. The calculation of the correction term c; requires 1
multiplication in GF(16). All other correction terms can be reused from Equation 8.

2.5 Secure Calculation of the Masked ag

We use a; + my, M and d'~' = d=' + m;, to calculate the masked value a; as shown in
Equation 10.

ay+m) = (ap x d~" +my) + (a, +my) x (d' +my,) +M

(. /

vV
dms

—|—£d71 + mh) X ml—l—gal + m1> X mli
cs Cc2

+ my + my +m; X my +M
-~ =

(10)

c9 C6 C5

The calculation of the correction terms cg requires 1 multiplication in GF(16). All
other correction terms can be reused from the previous computations.

2.6 Secure Calculation of the Masked d~! in GF(4) x GF(4)

It is necessary to calculate the inverse of d in GF'(16) for Equations 5 and 6.

As explained in Section 2.2, calculating this inverse can be reduced to calculating the
inverse in GF'(4) by representing GF(16) as quadratic extension of GF(4). Details of this
representation and the transformation matrix to map elements of one representation to the
other are given in Appendix A.

An element of GF'(4) x GF(4) is a linear polynomial with coefficients in GF(4), i.e.,
a = (ap X ¢+ a;), with aj, and a; € GF(4). The same formulae as given in Equations 4-7
can be used to calculate the inverse in GF(4) x GF(4). In GF(4), the inversion operation is
equivalent to squaring: z=! = z?Vz € GF(4). Hence, in GF(4) we have that (z +m)~! =
(x +m)? = 22 + m?; the inversion operation preserves the masking in this field.

The remaining operations for the calculation of the inversion in GF'(4) x GF'(4) is done
according to Equations 4-7. Note that the mask of the inverted d equals m}. In order to
get d™! + my, as final result, we also need to change from this mask to mj, by adding first
a fresh mask M and then removing the old mask by adding m3 + my, + M.

3 Practical Implementation of the New Masking Method

We have implemented our new masked S-box (which we call SubBytes NEW) using a
0.25 pm CMOS technology with 5 metal layers. We have compared our implementation to
implementations of the schemes which are described in Section 1.2 (SubBytes Akkar),
see Figure 1 and in Section 1.3 (SubBytes Trichina), see Figure 2.

9

N

‘ GF256toGF16 ‘ GF256t0GF16 ‘ GF256t0GF16

4 4 4 4 4 4

— -

)l -

f H uh‘];h®ul ﬂ

ah B al bl
?n ® |

XV

Figure 1: Gate-level implementation of Algorithm 2.

A+X X
8 8
GF256toGF16 GF256toGF16
4 4 4 4

7

(AxX)!

(0001),;,

(AxX)l+1

4
GF16toGF256
8

AHX

Figure 2: Gate-level implementation of Algorithm 3.

10

‘ GF (16) to GF(4) ‘ ‘ GF(16) to GF(4) ‘

GF(4) to GF(16)
,;
Atex

Figure 3: Gate-level imple- Figure 4: Gate-level imple-
mentation of the inversion mentation of the inversion

in GF(16) x GF(16). in GF(4) x GF(4).

Furthermore we have compared our new, masked S-box with an implementation of an
S-box that is based on composite field arithmetic as described in [WOL02] (SubBytes
Wolkerstorfer).

3.1 Secure Implementation

An unskilled implementation of the S-box on a lower level (like gate-level for example), can
render our effort useless. It is mandatory to sum up the intermediate values which occur in
the new S-box in a way such that masks cannot cancel each other out. In addition, timely
glitches need to be considered as well.

Figures 3 and 4 show how the algorithmic description of the masked S-box has been
mapped to a gate-level description. The critical XOR operations, which add the interme-
diate values, are depicted in red color in these figures.

3.2 Comparison of the Implementations

The implementation of SubBytes Akkar and SubBytes Trichina make use of multi-
plications in finite fields. We decided to base the multipliers for that operation on the

11

same, optimized multipliers which we used for the implementation of SubBytes Wolk-
erstorfer. Because SubBytes Wolkerstorfer uses composite field arithmetic, three
GF(16) multipliers and one GF(16) constant coefficient multiplier had to be combined
according to [Paa94] to build a GF(2)[z]/(«® + 2* + 23 + x + 1) multiplier. The implemen-
tations compare with respect to their area-time (AT) product as shown in Figure 5.

Comparison of AT products for different SBOX implementations (8bit)
55k

4\ ‘ éubByms Akkar —
50k SubBytes Trichina ---%--
SubBytes Wolkerstorfer ---f---
LUT based SubBytes --- -
45k
40k I
35k " \
u
3 30k 3 .
3 K B
< |
< a5k i S
n X
20k u %x
15k n
Gl
10k s
BB‘D
5k

0.0 2.0 4.0 6.0 8.0 10.0 120 14.0 16.0
Critical Path [ns]

Figure 5: Comparison of different S-box implementations

As shown in Figure 5, our new S-box is better than SubBytes Akkar but less efficient
than SubBytes Trichina. However, our S-box has the the advantage of being secure,
while SubBytes Trichina is susceptible to zero-value attacks as well as standard DSCA
attacks [ABGO4].

3.3 Practical Realization

As mentioned in Section 3, we have made an implementation in dedicated hardware. This
implementation was made in co-operation with the ETH Zurich, during the master thesis
research (winter term 2003/2004) of Norbert Pramstaller, who was an exchange student
at the ETH at that time. The resulting chip, named ARES, has been manufactured. It
is beeing functionally verified at the moment, and will be ready for side channel analysis
in the next month. An article describing the design of ARES has been accepted at the
ESSCIRC 2004 conference [PGH™04].

4 Conclusions

We have presented a new masking scheme to secure AES. This masking scheme uses a
combination of additive and multiplicative masks and computes the inversion in GF'(4).

12

Additive masks provide security. In combination with multiplicative masks we achieve
security and efficiency. Very important is that we shift the inversion operation down to
GF(4) where it is a linear operation. It is therefore easy to mask.

We have also compared the area-time product of implementations of two other masking
schemes ([AGO1] and [TSGO03]) with an implementation of our new design. It has turned
out that our algorithm is better than [AG01] and slightly worse than [TSG03| with respect
to the area-time product. In contrast to both schemes, our algorithm does not succumb to
zero-value attacks.

References

[ABG04] M.-L. Akkar, R. Bevan, and L. Goubin. Two Power Analysis Attacks against
One-Mask Methods. In FSE 2004 — Pre-proceedings, pages 308-325, 2004.

[AGO1] M.-L. Akkar and C. Giraud. An Implementation of DES and AES, Secure
against Some Attacks. In Cetin Kaya Kog, David Naccache, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems — CHES 2001, Third
International Workshop, Paris, France, May 14-16, 2001, Proceedings, volume
2162 of Lecture Notes in Computer Science, pages 309-318. Springer, 2001.

[GT03] J.D. Goli¢ and Ch. Tymen. Multiplicative Masking and Power Analysis of AES.
In Burton S. Kaliski Jr., Cetin Kaya Kog¢, and Christof Paar, editors, Cryp-
tographic Hardware and Embedded Systems — CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers,
volume 2535 of Lecture Notes in Computer Science (LNCS), pages 198-212.
Springer, 2003.

[KKGO02] Franz Klug, Oliver Kniffler, and Berndt Gammel. Rechenwerk, Verfahren zum
Ausfiihren einer Operation mit einem verschliisselten Operanden, Carry-Select-
Addierer und Kryptographieprozessor. German Patent DE 10201449 C1, Jan-
uary 2002.

[IMDO1] T. S. Messerges and E. A. Dabbish. Method of Preventing Power Analysis
Attacks on Microelectronic Assemblies. United States Patent, Patent No.: US
6,298,135 B1, October 2001.

[IMP03] R. Menicocci and J. Pascal. Elaborazione crittografica di dati digitali
mascherati. Italian Patent Application MI2003A001375, July 2003.

[Nat01] National Institute of Standards and Technology. FIPS-197: Advanced Encryp-
tion Standard, November 2001.

[Paa94] Ch. Paar. Efficient VLSI Architectures for Bit-Parallel Computation in Ga-
lois Fields. PhD thesis, Institute for Experimental Mathematics, University of
Essen, 1994.

13

[PGH*04] N. Pramstaller, F.K. Giirkaynak, S. Haene, H. Kaeslin, N. Felber, and W. Ficht-
ner. Towards an AES Crypto-chip Resistant to Differential Power Analysis. In
ESSCIRC 2004 Conference Proceedings, 2004. to be published.

[Tri03] E. Trichina. Combinational Logic Design for AES SubByte Transformation
on Masked Data. Cryptology ePrint Archive, Report 2003/236, 2003. http:
//eprint.iacr.org/.

[TSGO03] E. Trichina, D. De Seta, and L. Germani. Simplified Adaptive Multiplicative
Masking for AES. In Burton S. Kaliski Jr., Cetin Kaya Kog¢, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems — CHES 2002,
4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers, volume 2535 of Lecture Notes in Computer Science (LNCS),
pages 187-197. Springer, 2003.

[WOL02] J. Wolkerstorfer, E. Oswald, and M. Lamberger. An ASIC implementation of
the AES SBoxes. In Cryptographer’s Track at the RSA Conference 2002, volume
2271 of Lecture Notes in Computer Science, pages 67-78. Springer, 2002.

A Composite Fields — Mappings and Arithmetic

A binary finite field GF(2¥) with k = n*m can also be represented as a so-called composite
field GF(2™)™). There are several representations for both fields. Hence, there are several
mappings from one representation to the other. In the following sections, we explain how
to compute this mappings [Paa94]. Furthermore, we point out the choices one has, and
finally, we select the mapping that we consider best in the sense that it minimizes the
number of (subsequent) Xor gates.

A.1 The finite field GF((2%)?)

The finite field with 256 elements, GF(256) or GF(2®), can be seen as a quadratic extension
of the finite field with 16 elements, GF(2*) = GF(16). Hence, each element of GF(256) can
be represented as a 2-dimensional vector, or a linear polynomial over GF(16): a = (ap X x4+
a),a € GF((2%)?), a5, € GF(2*) and a; € GF(2*). We can define an isomorphic mapping
of the field elements which are represented with respect to GF(2%) to element which are
represented with respect to GF(2%). Before we explain how to compute the mapping in
Mathematica, we define some notation first. The field polynomial of GF(256) is denoted
by R(z). The field polynomial of GF(16)is denoted by Q(y) and the field polynomial
of GF((2*)?) is denoted by P(z). Because only the field polynomial of GF(256) was
defined, we could choose Q(y) (which we set to y* +y + 1 as indicated before) and P(x).
The polynomial P(x) has coefficients in GF(21), hence, the more coefficients have a value
0, 1, the more complicated the arithmetic will be. Logically, we searched for a polynomial
of the form x? 4+ x + ¢, where ¢ is a suitable constant such that the polynomial itself is

14

primitive. Several of such polynomials have been found. The best, with respect to the
mapping and the arithmetic is the one with ¢ = w!', and w is a primitive root of GF(2).

In order to construct the mapping, we are looking for the 8 base elements of GF'((2%)?)
to which the 8 base elements of GF(2%) are to be mapped. The one element must be
mapped to the one element. The base element 3 of GF(2®) is mapped to some base
element o of GF((2*)?), the base element 3* to o', and so on. The mapping must be
homomorphic with respect to both field operations. Hence, we need to map 3 to an of
such that

R(a') =0 (mod Q(y), P(x)) (11)

holds.
The mapping that we chose, and the resulting finite field arithmetic is described
in [WOL02].

A.2 The finite field GF((2%)?)

In the same way, as described in Section A.1, we can represent GF(2%) as GF((2?)?). Again,
The field polynomial of GF(16) is denoted by Q(y). The field polynomial of GF(4) is
denoted by F(u) and the field polynomial of GF(4) x GF'(4) is denoted by Fy,4(v). Because
only the field polynomial of GF(16) is already defined in [WOLO02], we may choose Fy(u)
and Fy,4(v). The polynomial Fy,4(v) has coefficients in GF'(4), hence, the more coefficients
have a value # 0, 1, the more complicated the arithmetic will be. Logically, we searched for
a polynomial of the form v? + v + ¢, where c is a suitable constant such that the polynomial
itself is primitive.
The field polynomials which we selected are:

Fi(u) = v*4u+1,Fy)=0 (12)
Fia(v) = v’ +v+7% Fiu(0) = 0. (13)

In order to construct the mapping, we are looking for the 4 base elements of GF'(4) x
GF(4) to which the 4 base elements of GF(16) are to be mapped. The one element,i.e., the
neutral element with respect to the multiplication, must be mapped to the one element.
The base element ¢ of GF(16) is mapped to some base element 7' of GF(4) x GF(4), the
base element 6% to v?, and so on. The mapping must be homomorphic with respect to
both field operations. Hence, we need to map ¢ to an 4* such that

Q6" =0 (mod Fy(u), Fiza(v)) (14)

holds true.
The four powers ¢ that satisfy Equation 14 are 2,4, 8,16. We chose t = 2, and computed
the mapping and the inverse mapping

15

10 10
10 10
11 11

o O =
— = =

_ 1
Tyxa = Tyxa =

o O O =
—_— O = O

0 0 000

Arithmetic in GF(2?) can be done very efficiently. The bit-level definition of the mul-
tiplication of two values a = (ag, a;) and b = (by, b1), ¢ = (cp,c1) = a X b, is given by:

—_

h = a1b1 (15)
Coh = (Zobo + h (16)
c1T = G,lbo + CLobl + h. (17)

Squaring an element a = (ag,a1), ¢ = a X a , which is equivalent to computing the inverse
of a, a', is given by

Co = a1+ ag (18)
= a. (19)

The multiplication with the constant 72, ¢ = 7?2 x a is given by

o = a (20)
1 = agp+ap (21)

B Zero Value Attacks — A Statistical Analysis

Zero-value attacks are based on the fact that the value 0 can not be masked in a multi-
plicative way. Multiplying the value 0 with a random mask always leads to 0, which is the
unmasked value.

In this section, we analyze the effectiveness of a zero-value attack. For this purpose, we
assume that the attacker performs a classical first-order DPA attack on an implementation
that uses multiplicative masking.

Like in a any classical DPA attack, hypotheses are formulated about the key. Based
on these hypotheses, the attacker splits the power traces into two groups. We call these
groups high and low, respectively. The attacker calculates the mean traces of the two
groups. These mean traces are of course a function of the time. However, in order to make
the following equations more readable, we only consider the moment of time of the mean
traces, where the biggest difference between them occurs.

We model the power consumption at this moment of time in the following way: Power =
S+ N (p,0). S is the power consumption that is caused by the processing of the attacked
intermediate result. This signal S is buried in gaussian noise with the mean p and the
variance o. Taking the mean of n power traces leads to a reduction of the variance to <.

Therefore, we can write the means M), and M; as shown in the equations 22 and 23.

16

My, — SN (uh, %) (22)

_ g
M, = 51+N<Ml,\/n_l> (23)

(24)

We assume that the distributions N (up, o) and N (p, 0;) are independent. Therefore,
the difference of the means M, = M, — M, can be calculated as shown in equation 25.

O’h2 0‘[2
Mg= My — M, =Sy —Si+N | pn—pu, ([— + — (25)

np 0
In a classical attack, the size and the variance of the two groups high and low is
approximately equal. Therefore, we can make the following simplifications: n, = n; = 2

2
and o = g, = ;. This leads to equation 26. n corresponds to the total number of samples.

4 2
Md—Mh—Ml—Sh—Sl—i-N(,uh_Mh\/%) (26)

In a zero-value attack, the two groups high and low do not have the same size. Assuming
that the input of the encryption is uniformly distributed, the following relation holds true:
np = 555t = %. Like in the previous case, we additionally assume that ¢ = o5, = 0.
This leads to equation 27.

6553602
Md:Mh—Ml:Sh—Sl—f-N(,uh_,U/la\/W) (27)
n

Obviously, the variance of My is much bigger in a zero-value attack than in a classical
DPA attack. In the following subsection, we analyze how the number of needed samples
depends on the variance of M.

B.1 The Relationship of the Variance to the Number of Samples

In this subsection, we show how the number of samples needed in a DPA attack depends
on the variance of the difference distribution.

The goal of the attacker performing a DPA attack is to detect a significant peak in the
difference trace. This means that the probability p(My > 0) should be high. The higher
this probability is, the more significant is the peak that the attacker sees. If the probability
is 0.5, there will be no significant peak.

In the following equations, pg is the mean of the difference distribution and o, is the
variance of the difference distribution. The probability that My is below a certain threshold
b can be calculated as shown in equation 28.

17

p(My < b) = (b_“d> (28)

o)

The probability that M, is bigger than 0 can be calculated as shown in equation 29.

p(Md>0)=1—<1>(0_“d> (29)

0d

Based on the equation ®(—M,;) = 1 — ®(M,), equation 29 can be transformed to
equation 30.

p(My>0)=a=0a (ﬁ) (30)

o)

Using the property a = ¢ (Z,), we can formulate an equation that shows the relation
between the quantile Z, and g as well as oy.

Hd
Zy = — 31
. (31)
Two attacks require the same amount of samples, if p(M; > 0) = « is equal in both

attacks. In order to determine how many samples more are needed in an attack A than in
an attack B, we determine f in equation 32.

- Ha, Hb

Za - Oq = Jp (32)
N Vfxn
This leads to equation 33:
2 2
Hq Oy
— PaZb 33
e (%)

Filling in the values for a classical first-order DPA attack and those for a zero-value
attack, we get f = 64.25.

f_uﬁai_%_lﬁim
,uiag 402 955

n

A copy-and-paste example for Matlab:

— 64.25 (34)

mu_a = 1; sigma_a = 8; samples_a = 100;
mu_b= 2; sigma_b = 17;
samples_b = samples_a * mu_a”2/mu_b"2*sigma_b~2/sigma_a"2;

sum(mean (normrnd (mu_a,sigma_a,samples_a,10000)) > 0)
sum (mean (normrnd (mu_b,sigma_b,round(samples_b),10000)) > 0)

This example shows that in both cases the probability that a value bigger than 0 is
drawn is the same.

18

