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Abstract. Although identity based cryptography o�ers a number of
functional advantages over conventional public key methods, the compu-
tational costs are signi�cantly greater. The dominant part of this cost is
the Tate pairing which, in characteristic three, is best computed using the
algorithm of Duursma and Lee. However, in hardware and constrained
environments this algorithm is unattractive since it requires online com-
putation of cube roots or enough storage space to pre-compute required
results. We examine the use of normal basis arithmetic in characteristic
three in an attempt to get the best of both worlds: an e�cient method
for computing the Tate pairing that requires no pre-computation and
that may also be implemented in hardware to accelerate devices such
as smart-cards. Since normal basis arithmetic in characteristic three has
not received much attention before, we also discuss the construction of
suitable bases and associated curve parameterisations.

1 Introduction

Since it was �rst suggested in 1984 by Shamir [29], the concept of identity based
cryptography has been an attractive target for researchers because of the poten-
tial for simplifying conventional approaches to public key based systems. The
central idea is that the public key for a user is simply their identity and is hence
implicitly known to all other users. Identity is a 
exible concept but an often used
concrete example is that of an email address. Within this context, an identity
for Alice might be the string

alice@gmail.com
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If Bob wants to send Alice secure email, he implicitly knows her email address
and hence her identity and public key. Therefore he can encrypt the email to
her without the same level of involvement from, for example, certi�cate and
trust authorities. Recent advances have produced many workable instances of
identity based cryptography which were driven mainly by the seminal work of
Sakai, Ohgishi and Kasahara [27] and then by Boneh and Franklin [4] who both
proposed concrete cryptographic schemes based on pairings on elliptic curves.

For such schemes to be feasible, one needs an e�ciently computable pairing,
or bilinear map. Generally the Tate pairing is selected for this task and is com-
puted using one of several algorithms, such as that of Barreto, Kim, Lynn and
Scott [2] or Duursma and Lee [6]. In characteristic three, which is often selected
due to the bandwidth advantages of the parameterisation, the Duursma-Lee al-
gorithm is certainly faster and recent work shows that it is probably the current
best choice [10,28]. However, unlike the BKLS algorithm, it requires the compu-
tation of cube root operations which are relatively slow when using a polynomial
basis representation. Although these cube roots can be pre-computed online us-
ing cubings, the space requirement is so signi�cant, in constrained or hardware
environments the method is unattractive as a result. As such, this feature means
identity based cryptography is currently too expensive to run on naturally iden-
tity aware devices.

Normal bases [9] o�er a convenient solution to this problem since cube and
cube root operations are simply cyclic shifts of the coe�cients of an element.
Indeed, this seems to be the method Duursma and Lee envisaged using in their
original paper, yet without investigating how [6]. Therein lies the catch: normal
bases have a drawback in that multiplication is a more complex, and to a cer-
tain extent less studied operation compared to polynomial bases. To construct a
high performance implementation of Duursma-Lee that takes advantage of the
properties of normal bases, e�cient multiplication methods are required. In char-
acteristic three, we are not aware of any work that addresses this problem and
we attempt to �ll the gap in the literature with this paper. We present methods
for constructing an appropriate basis, as well as software and hardware algo-
rithms for arithmetic in it. Our performance and cost results indicate that using
normal bases in software is unattractive due to the cost of multiplication, but
that this cost can be avoided by parallel architectures in hardware. The use of
hardware acceleration for normal bases thus makes identity based cryptography
on constrained devices such as smart-cards a far more feasible proposition. Note
that it is important to look at the cost of software and hardware methods: in a
standard implementation it is unattractive to convert between representations
where, for example, a smart-card might use hardware acceleration and a desktop
computer, which might utilise software components only.

The paper is organised as follows. Firstly, we use Section 2 to overview the
mathematics that underpin pairing based cryptography, paying particular at-
tention to the Duursma-Lee algorithm that motivates the use of normal basis
arithmetic. We then discuss how to construct such normal bases for characteristic
three �elds in Section 3 and suitable curve parameterisations in Section 4. Arith-



metic with and representation of �elds elements is presented in Section 5 before
software and hardware implementation results are introduced in Sections 6 and 7
respectively. Finally we present some concluding remarks in Section 8.

2 Pairing Based Cryptography

The existence of e�ciently computable, non-degenerate bilinear maps, or pair-
ings, has allowed cryptographers to explore avenues of research which had previ-
ously been uninstantiable [29]. Originally used as a method of attack on elliptic
curve cryptosystems [7,21], the constructive potential of pairings based on ellip-
tic curves is now well-studied, with many protocols and applications [4,5,13,16].

To support these applications much research activity has focused on devel-
oping e�cient and easily implementable algorithms for their deployment [2,6,8].
Currently the most e�cient method for pairing computation is the Duursma-Lee
algorithm [6, 10], which applies to supersingular elliptic curves in characteristic
three with MOV embedding degree six [21]. As well as pairing evaluation being
approximately two and a half times faster than with the BKLS algorithm [2],
the embedding degree of six, while not optimal in terms of the relative security
requirements for discrete logarithm algorithms in characteristic three �nite �elds
and elliptic curves, still o�ers a good security/e�ciency trade-o� for contempo-
rary key-size recommendations.

In this section we give a brief summary of the mathematics underlying the
reduced Tate pairing, as developed in [2,8], and give details of its Duursma-Lee
variant, which we refer to as the modi�ed Tate pairing.

2.1 The reduced Tate pairing

We �rst introduce some notation. Let E be an elliptic curve over a �nite �eld Fq ,
and let OE denote the identity element of the associated group of rational points
on E(Fq ). For a positive integer l coprime to q, let Fqk be the smallest extension

�eld of Fq which contains the l-th roots of unity in Fq . Also, let E(Fq )[l] denote
the subgroup of E(Fq ) of all points of order dividing l, and similarly for the
degree k extension of Fq . From an e�ciency perspective, k is usually chosen to
be even [2]. For a thorough treatment of the following, we refer the reader to [2]
and also [8], and to [30] for an introduction to divisors. The reduced Tate pairing
of order l is the map

el : E(Fq )[l]�E(Fqk )[l]! F
�
qk =(F

�
qk )

l;

given by el(P;Q) = fP;l(D). Here fP;l is a function on E whose divisor is equiva-
lent to l(P )�l(OE), D is a divisor equivalent to (Q)�(OE), whose support is dis-
joint from the support of fP;l, and fP;l(D) =

Q
i fP;l(Pi)

ai , where D =
P

i aiPi.
It satis�es the following properties:

{ For each P 6= OE there exists Q 2 E(Fqk )[l] such that el(P;Q) 6= 1 2
F
�
qk =(F

�
qk )

l (non-degeneracy).



Field Field Polynomial Curve Order MOV security

F379 t79 + t26 + 2 Y 2 = X3 �X � 1 379 + 340 + 1 750
F397 t97 + t12 + 2 Y 2 = X3 �X + 1 (397 + 349 + 1)=7 906
F3163 t163 + t80 + 2 Y 2 = X3 �X � 1 3163 + 382 + 1 1548
F3193 t193 + t12 + 2 Y 2 = X3 �X � 1 3193 � 397 + 1 1830
F3239 t239 + t24 + 2 Y 2 = X3 �X � 1 3239 � 3120 + 1 2268
F3353 t353 + t142 + 2 Y 2 = X3 �X � 1 3353 + 3177 + 1 3354

Table 1. A table of �eld de�nitions and curve equations.

{ For any integer n, el([n]P;Q) = el(P; [n]Q) = el(P;Q)
n for all P 2 E(Fq )[l]

and Q 2 E(Fqk )[l] (bilinearity).

{ Let L = hl. Then el(P;Q)
(qk�1)=l = eL(P;Q)

(qk�1)=L.
{ It is e�ciently computable.

The non-degeneracy condition requires that Q is not a multiple of P , i.e. that Q
is in some order l subgroup of E(Fqk ) disjoint from E(Fq )[l]. When one computes
fP;l(D), the value obtained belongs to the quotient group F

�
qk =(F

�
qk )

l, and not
F
�
qk . In this quotient, for a and b in F

�
qk , a � b if and only if there exists c 2 F�qk

such that a = bcl. Clearly, this is equivalent to

a � b if and only if a(q
k�1)=l = b(q

k�1)=l;

and hence one ordinarily uses this value as the canonical representative of each
coset. The isomorphism between F

�
qk =(F

�
qk )

l and the elements of order l in F
�
qk

given by this exponentiation makes it possible to compute fP;l(Q) rather than
fP;l(D) [2]. It also removes the need to compute the costly denominators in
Miller's algorithm. We note that there are other more e�cient methods to obtain
a unique representative of the output coset [10]. However in this article we are
concerned primarily with the computation of the modi�ed Tate pairing.

2.2 The modi�ed Tate pairing

Duursma and Lee introduced their algorithm in the context of pairings on a
family of hyperelliptic curves. Restricting to the elliptic curve case, it applies
to a family of supersingular curves in characteristic three, including those in
Table 1.

The �rst column gives the �eld over which each curve is de�ned, and the sec-
ond lists the corresponding irreducible polynomials de�ning the �eld extensions.
The third lists the curve equations and the fourth gives the order of the subgroup
used. The �nal column gives the bit-length of the smallest �nite �eld into which
the pairing value embeds, which is always a degree six extension in these cases.
These parameter values were generated simply by testing which prime extension
degrees suitable for e�cient normal bases yielded orders for supersingular curves
that are prime, or almost prime, i.e. those possessing a small cofactor.



Algorithm 2: The Duursma-Lee algorithms for calculating the Tate pairing
in characteristic three.

Input : point P = (x1; y1), point Q = (x2; y2)

Output : fP (�(Q)) 2 F�q6 =F�q3
f  1
for i = 1 to m do

x1  x31; y1  y31
� x1 + x2 + b; � �y1y2� � �2

g  �� ��� �2; f  f � g
x2  x

1=3
2 ; y2  y

1=3
2

return f

The modi�ed Tate pairing improves on the reduced variant in three ways.
Firstly, using the third property listed above, instead of computing the Tate
pairing of order l, one uses the pairing of order q3+1, which eliminates the need
for any point additions in Miller's algorithm. Secondly, while this apparently
increases the trit-length of the exponent by a factor of three, Duursma and Lee
show that the divisor computed when processing three trits at a time has a very
simple form, and hence no losses are incurred. Lastly, they provide a closed form
expression for the pairing, thus simplifying implementations.

Let q = 3m and E(Fq ) : Y
2 = X3�X + b, with b = �1, and let P = (x1; y1)

and Q = (x2; y2) be points of order l. Let Fq3 = Fq [�]=(�
3 � � � b), with b =

�1 depending on the curve equation, and let Fq6 = Fq3 [�]=(�
2 + 1). Then the

modi�ed Tate pairing on E is the mapping fP (�(Q)) where � : E(Fq )! E(Fq6 )
is the distortion map �(x2; y2) = (� � x2; �y2). The method for computing this
is shown in Figure 2. Note that in each loop, one must compute two cubings and
two cube roots, in contrast to the BKLS algorithm where one must compute
four cubings.

Alternatively, if memory size is not an issue, one can pre-compute the cube
roots in reverse order as successive cubings [10]. With this strategy, Algorithm
2 is considerably more e�cient than BKLS in characteristic three, and indeed
than the BKLS algorithm for even and large characteristic curves of comparable
order. To maintain this e�ciency when the pre-computation of cube roots is not
viable, such as in constrained or hardware environments, it is vital that one can
perform both cubings and cube roots e�ciently. This is precisely why normal
bases are well suited to pairing based applications, since both a cubing and a
cube root are simply cyclic shifts of the vector of F3 elements representing an
element in the extension �eld.

3 Notation and Construction of Bases

The �nite �eld F3m is isomorphic to F3 [X ]=(f) and F3 (�) where f is an irre-
ducible polynomial of degree m in F3 [X ] and � is a root of f . We will identify



these three �elds, but our notation will be tailored towards F3 (�). In a polyno-
mial basis F3 (�) is regarded as an m-dimensional vector space over F3 with basis
(�0; �1; : : : ; �m�1). For an element a 2 F3 (�) we will simply write the elements
in a polynomial, or standard basis as

a =

m�1X
i=0

âi � �i :

Arithmetic in a polynomial basis is fairly straightforward when based on con-
ventional polynomial arithmetic. When discussing implementation of such arith-
metic, it is often useful to denote elements as a vector of coe�cients such as

â = (â0; â1; â2; : : : ; âm�1) ;

so that physical operations such as shifting and rotation of coe�cients is more
naturally expressed. We use the notation â(i) to denote the (left) rotation of the
coe�cients in such a vector by distance i. That is, we write

â(i) = (âi+0; âi+1; âi+2; : : : ; âi+m�1):

where in all cases, coe�cient indices are reduced modulo m. Using this notation,

â
(i)
j represents the j-th coe�cient of the rotated element â(i).

In a normal basis, things are slightly more involved. Given an irreducible
polynomial f of degree m and with root �, the full set of roots of f in F3 (�) is

B = (�; �3; �3
2

; : : : ; �3
m�1

):

If the elements of B are linearly independent then the set of roots form a basis
of F3 (�) over F3 and this basis, f and � are all called normal. For an element
a 2 F3 (�) we write

a =

m�1X
i=0

�ai � �3
i

but again, for brevity, we often denote a normal basis �eld element a using the
coe�cient vector �a and rotated coe�cient vectors as described above.

The main advantage of a normal basis is that it allows fast application of
the Frobenius map and its inverse, i.e. cubing and taking cube roots. Indeed, let
a 2 F3m be represented by �a, then for any i 2 Z the element a3

i

is represented
by �a(i), i.e., applying Frobenius only takes a rotation.

Normal basis multiplication is more complicated, but a common technique is
based on a so-called multiplication matrix. Let a; b 2 F3m and let c = a � b. Let



�1+3
l

=
Pm�1

k=0 dlk�
3k , then

m�1X
k=0

�ck�
3k = (

m�1X
i=0

�ai�
3i)(

m�1X
j=0

�bj�
3j )

=
m�1X
i=0

m�1X
j=0

�ai�bj(�
1+3i�j )3

j

=

m�1X
i=0

m�1X
j=0

�ai�bj(

m�1X
k=0

di�j;k�
3k )3

j

=

m�1X
i=0

m�1X
j=0

m�1X
k=0

�ai�bjdi�j;k�
3k+j

=

m�1X
k=0

(

m�1X
i=0

m�1X
j=0

�ai+k�bj+kdi�j;�j)�
3k

=

m�1X
k=0

(�a(k)M(�b(k))T )�3
k

;

where for the penultimate equality the transformation i = i0+k0; j = j0+k0; k =
�j0 has been used and the matrix M is de�ned by Mij = dj�i;�i. Note that the
transformation in the penultimate step has been chosen such that the matrix is
the same for all coe�cients of �c; all that is required are rotations of �a and �b.

The computation of the matrix M given a normal polynomial f is relatively
straightforward. Below, we follow the description of IEEE P1353 [14, Annex A].
The matrix M follows easily once the matrix (dij) is known. The latter matrix
gives the linear transformation that takes �a and outputs the normal representa-
tion for �a for an arbitrary element a. In a polynomial basis multiplication by
� boils down to multiplication of â by the companion matrix of f . To determine
the matrix (dij), the standard solution is to �rst linearly transform from a nor-
mal basis representation �a to a polynomial basis representation â, multiply with
the companion matrix and transform back (again linearly) to the normal basis.

The number of non-zero entries in the multiplication matrix M associated
with the basis is in some sense a measure of complexity: this number is often
denoted as CN in the literature. For a random normal polynomial f the matrix
M will be fairly dense. Using specially constructed normal bases it is possible to
ensure that the matrix will be sparse.

The best known normal basis are based on Gau� periods. References to the
development of the theory of normal bases based on Gau� periods can be found
in the theses by Gao [9] and N�ocker [23]. In short, Gau� periods are certain sums
of roots of unity. Intuitively, if �r is an r-th root of unity in �F3 , then F3 (�r) will
have extension degree dividing �(r). Under certain conditions speci�c sums of �r
and its conjugates will provide normal bases for F3�(r) and its sub�elds. For the
general theory we refer to the theses by Gao and N�ocker, we limit ourselves to



ground �eld F3 with prime extension degree and r a prime. For ease of reference
we use N�ocker's notation as much as possible.

Let q = 3, let m be the desired extension degree. Let r be a prime such that
�(r) = r�1 = mk for some integer k, called the type of the normal basis. Let K
be a subgroup of Z�

r of order k. Note that for a prime r this subgroup is unique.
A Gau� period of type (m;K) (or of type-k for short) is then de�ned as

� =
X
a2K

�ar :

In order for � to be normal, it is required that q and K together span the
multiplicative group Z�

r. It is possible to determine the minimal polynomial of �
by factoring �r(X) over F3 , resulting in a minimal polynomial of an r-th root of
unity �r and hence in a polynomial basis for Fr (�r). In this extension �eld the

minimal polynomial of � can be computed by
Qm�1
i=0 (X��3ki). Once the minimal

polynomial f has been computed it is easy to compute the multiplication matrix
M . There is an alternative, more direct approach, constructing the matrix M
based on the structure of Gau� periods.

Since in pairing based cryptography one selects m to be prime, as demon-
strated by Table 1, a type-one normal basis or, equivalently for odd characteristic
an optimal normal basis, is never available. This is unfortunate since type-one
normal bases o�er the highest level of performance due to the sparsity of their
multiplication matrices.

However, we can construct a type-two normal basis for our prime values of
m if r = 2m + 1 is also prime. In this case (q;K) will always span Z

�
r, since m

must divide the order of q modulo r by virtue of m being prime and 3k < mk
for m > 3. Hence the Gau� period � will be normal in this case.

As an historical note, such values of m are termed Sophie Germain primes
after the mathematician who, in 1825, proved that Fermat's Last Theorem is
true for prime values of m when (2 �m) + 1 is also prime. The number of these
primes less than some value N is conjectured to be

2CTP

Z N

2

dx

logx log (2x+ 1)
� 2CTPN

(logN)2

where CTP is the twin prime constant. The number of these speci�c forms of
m is clearly less than in the unrestricted case, but Table 2 shows that there are
su�ciently many of a cryptographically interesting size that this should not be a
problem. However, of the currently recommended parameterisations for pairing
based cryptography only one �eld size, that where m = 239, yields a type-two
normal basis.

To conclude, consider a small example where m = 3 that produces a usable
type-two normal basis since r = (2 � 3) + 1 = 7 is prime. We �nd a normal
polynomial to de�ne our basis in F33 to be

x3 + x2 + x+ 2;



m r m r m r

83 167 281 563 653 1307
89 179 293 587 659 1319
113 227 359 719 683 1367
131 263 419 839 719 1439
173 347 431 863 743 1487
179 359 443 887 761 1523
191 383 491 983 809 1619
233 467 509 1019 911 1823
239 479 593 1187 953 1907
251 503 641 1283

Table 2. A table showing values of 80 < m < 1000 where m and r = (2 �m) +1
are both prime, allowing a type-two normal basis to be constructed.

Field Curve Order MOV security

F389 Y 2 = X3 �X + 1 (389 � 345 + 1)=C1 846
F3131 Y 2 = X3 �X + 1 (3131 + 366 + 1)=C2 1245
F3173 Y 2 = X3 �X + 1 (3173 � 387 + 1)=C3 1645
F3179 Y 2 = X3 �X � 1 (3179 � 390 + 1)=C4 1702
F3251 Y 2 = X3 �X + 1 (3251 + 3126 + 1)=C5 2386

C1 = 15991171
C2 = 5684423650544561353112126431
C3 = 16420688749
C4 = 2592169385514147730111519261
C5 = 92356696508682118747422403460844172574501278477

Table 3. A table of normal basis friendly �eld and curve parameterisations.

and hence calculate the multiplication matrix as

M =

0
@1 0 1
0 2 1
1 1 1

1
A :

Notice that the �rst and second rows, the second being notable since M2;2 = 2,
both have two non-zero entries while the third row has three. This is also a
feature of larger �elds constructed in this way although this, and the sparsity of
the matrix are not apparent due to the small size of the example.

4 Suitable Curve Parameterisations

The list of valid selections of m in Table 2 is only part of the story as regards
building a working parameterisation. Having speci�ed the �eld Fq , we must select



a curve E over this �eld that is both suitable in terms of structure and security
against attack. The list of potential m values in Table 2 was sparse compared
to the general case since we put constraints on the acceptable values: suitable
curve parameters are even sparser due to these constraints.

In a rough sense, the parameters in Table 1 were found by searching curves
of the form Y 2 = X3 �X � 1 for ones with large prime order, accommodating
small cofactors, and with appropriate MOV security properties. Due to the extra
constraints on m, normal basis friendly parameterisations are di�cult to �nd.
However, Table 3 shows the result of a limited search for such parameters.

Most notable are the curves for m = 173 and m = 179 which appear to o�er
a good balance between performance and security for the types of constrained
environments we are interested in. The clear downside to these curves are the
unattractively large cofactors which present some security issues relating to the
possibility for small subgroup attacks, in addition to the performance impact of
using large �elds that only yield relatively small elliptic curve groups. Analysis
of this sort of issue in the context of pairings and the search for further normal
basis friendly parameters is an ongoing task, but currently seems a problem with
respect to practical application.

In this paper we deal only with �elds which allow a type-two normal basis,
partly for brevity and partly because higher types yield lower performance. One
way to alleviate this di�culty of curve parameterisation is to utilise the current
recommendations from Table 1 and deal with higher complexity types. For ex-
ample, one might wish to use m = 163 where r = (4 � 163) + 1 = 653 is prime
and hence a type-four normal basis can be constructed. We defer consideration
of this approach for further work.

5 Arithmetic in Characteristic Three

In a physical sense, we follow other work [11] and represent a polynomial a as two
bit-vectors aH and aL. If we let aHi and aLi denote bit i of aH and aL respectively,
the vectors aH and aL are constructed from a such that for all i aHi = ai div 2
and aLi = ai mod 2. That is, aH and aL are a bit-sliced representation of the
coe�cients of a where aH and aL hold the high and low bits of a given coe�cient.
Note that aside from where it matters, we abstract this representation away and
simply assume that operations are applied to suitable pairs of bit vectors.

5.1 Addition, Subtraction and Multiplication of Coe�cients

Component-wise operations on �eld elements in polynomial and normal bases
are the same since they simply operate on pairs of coe�cients, reducing the
result so it lies in F3 . Given our bit-sliced representation of polynomials, we can
construct component-wise addition, subtraction and multiplication using simple
logical operations. For example, component-wise addition ri = ai + bi of two



polynomials a and b can be speci�ed using the following logical operations

rHi = (aLi _ bLi )� t

rLi = (aHi _ bHi )� t

where

t = (aLi _ bHi )� (aHi _ bLi ):

Subtraction, and hence multiplication by two, are equally e�cient since the
negation of an element a simply swaps the vectors aH and aL over and can
therefore be implemented by the same function as addition. For normal basis
arithmetic, we also require a component-wise multiplication ri = ai �bi. This can
be performed using similarly inexpensive logical operations

rHi = (aLi ^ bHi ) _ (aHi ^ bLi )
rLi = (aLi ^ bLi ) _ (aHi ^ bHi ):

On a given computer with word-size w, we hold the bit-vectors aH and aL

that represent a as two word-vectors of length dm=we and hence apply logical
operations in parallel to w coe�cients at a time. This is convenient since not
only are logical operations cheap to process, the use of large SIMD registers to
accelerate execution is also very easy.

5.2 Cubing and Cube Roots

In characteristic three, cubing is a linear operation in the same way squaring
is linear in characteristic two. Therefore, when working in characteristic three
cubing is an important operation since curve and pairing arithmetic is speci�cally
manipulated to utilise cubing over more costly multiplication. In addition, the
cube root operation is important in the Duursma-Lee pairing arithmetic if pre-
computation is avoided.

Our reason for considering normal bases in the �rst place was the e�ciency
of cube and cube root operations in characteristic three: both can be achieved
by cyclic shifting the coe�cients in an elements so that for an element �a

�a3 = (�am�1; �a0; : : : ; �am�3; �am�2)
3
p
�a = (�a1; �a2; : : : ; �am�1; �a0):

Clearly these rotations can be easily implemented in software and even more so
in a hardware circuit, where they reduce to wired permutation of bits with no
actual computational overhead.

Since the �eld representation is both compact and bit-oriented, when using
a polynomial basis the cube operation can be implemented using table look-
up in an analogous way to the coe�cient thinning method in characteristic
two. Although this requires a subsequent reduction operation, it is an order
of magnitude less expensive than multiplication. Taking cube roots is a little



more awkward but can be accelerated using a trick involving a small amount of
pre-computation. Recall that one can write an element â in a polynomial basis
as

â =
m�1X
i=0

âi � �i:

By expanding this summation and extracting cube roots from appropriate sum-
mands, we �nd that

3
p
â = 3

qPm�1
i=0 âi � �i

=
3

qPdm3 e�1
i=0 (â3i � �3i) + (â3i+1 � �3i+1) + (â3i+2 � �3i+2)

=
Pdm3 e�1

i=0 (â3i � �i) + �1=3 � (â3i+1 � �i) + �2=3 � (â3i+2 � �i):

That is, if we pre-compute the values of �1=3 and �2=3 the cube root opera-
tion is reduced to two multiplications, which can be further optimised since the
operands will always be a third of the length of a full element, and two additions.

5.3 Multiplication

E�cient multiplication in �nite �elds of characteristic two is a well studied topic.
Methods in characteristic three are less mature but since our representation
of �eld elements is bit-oriented, we open the possibility of converting several
methods from characteristic two.

Using a polynomial basis in software, one can easily construct a character-
istic three version of the comb method [20]. After extensive experimentation
however, a Karatsuba-Ofman style approach seems the fastest choice. We utilise
the two-way splitting of conventional Karatsuba-Ofman [18], as well as three-
way splitting proposed by Bailey and Paar [1], to reduce the operands to word
sized objects where we then use standard polynomial multiplication. Hardware
polynomial basis multipliers have also been developed [24], the most e�cient
being that of Bertoni et al. [3].

As mentioned previously, multiplication of normal basis �eld elements is dic-
tated by a matrix which essential encodes how reduction takes place. Given
such a matrix M , constructed from the normal polynomial f , we can generate
coe�cients of the result �c = �a � �b using

�ck =

m�1X
i=0

�ak+i �
m�1X
j=0

Mi;j � �bk+j

where in all cases, coe�cient indices are reduced modulo m.



In characteristic two, hardware normal basis multipliers have seen increas-
ingly high performance starting with the implementation of Wang et al. [31]
who present results for a Massey-Omura based design. Since then, speci�c opti-
misations have yielded fast circuits [12, 19, 26] for speci�c classes of �eld.

Algorithms for e�cient software implementation of this operation in charac-
teristic two have been presented by Reyhani-Masoleh and Hasan [25] and also
Ning and Yin [22]. For working in characteristic three, we adopt the later method
since the operations map naturally onto our bit-sliced representation of �eld el-
ements. Speci�cally, we adapt the Algorithm 3 of Ning and Yin [22] to suit our
purposes and to some extent adopt their terminology by presenting the algo-
rithm in C style pseudo-code. Note that in this pseudo-code, both addition and
multiplication operations are assumed to be component-wise modulo three.

The basic method, shown in Algorithm 3, revolves around the pre-computed
arrays A and B where each entry in the 2m sized arrays is a w-bit sized word.
Although this method of pre-computation is perhaps more costly than that of
Reyhani-Masoleh and Hasan [25], it o�ers a major performance bene�t when
considering the memory characteristics of accesses to A and B. For example,
since the rotated words are held sequentially, using this method provides good
cache locality. Furthermore, since the method deals only with word sized objects,
rather than full rotated �eld elements, the pre-computation itself is faster.

The algorithm also relies on the multiplication matrix M , described in the
construction of the normal basis. However, since the matrix is sparse, we only
hold the non-zero values in arrays t0, t1 and t3 where ti[j] holds the i-th non-zero
value of row j for 0 < i � 2 and 0 < j < m. Note that since t3[0] is never a valid
non-zero row index, we treat this as a special case before entry to the main loop.
Also note that we neglect to check for the case when Mi;j = 2 which will occur
once in the matrix. Since this event occurs only once, at a position where t3[j]
is again invalid, we introduce an extra addition and treat 2 ��bk+j as �bk+j +�bk+j
so as to remove the test otherwise required on each iteration of the loop.

5.4 Inversion

Inversion is generally the most expensive operation when dealing with �nite �eld
arithmetic, so much so that in systems like ECC every e�ort is made to construct
higher level operations so that inversion is not required. With characteristic three
�elds in polynomial basis, we can use a simple translation of the standard binary
Euclidean algorithm to invert elements. Although still slow in comparison to
other operations, this translation is made somewhat more natural thanks to the
bit-oriented form of the �eld representation.

Inversion of elements held in a normal basis is far more costly. Since one can
not use Itoh-Tsujii type methods [15] to reduce the cost thanks to the form of
m, the best way to invert an elements seems to be simply powering it

�a�1 = �a3
m�2:

This should be implemented using a ternary expansion of the exponent since
cubing operations are so inexpensive.



Algorithm 3: A software algorithm for type-two normal basis multiplication
in characteristic three.

Input : Field elements �a and �b

Output : The element �c = �a � �b (mod f)

Pre-computation

A[i] = A[i+m] = (�ai; �ai+1; :::; �ai+w�1)
B[i] = B[i+m] = (�bi;�bi+1; :::;�bi+w�1)

Multiplication

for( k = 0; k < m; k += w )

{

t = A[ 0 ] * ( B[ t1[0] ] +

B[ t2[0] ] );

for( i = 1; i < m; i++ )

{

t += A[ i ] * ( B[ t1[i] ] +

B[ t2[i] ] +

B[ t3[i] ] );

}

C[ k ] = t;

A += w;

B += w;

}

6 Software Implementation

In order to provide some concrete idea of the practical cost of the presented soft-
ware based methods, we implemented the proposed �eld arithmetic and pairing
algorithms. This is clearly of interest since a comparison between polynomial
and normal basis implementations will e�ectively determine the best method
for realising high performance software only pairings on memory constrained
devices. We used a GCC 3:3 compiler suite to build our implementation and
ran timing experiments on a Linux based PC incorporating a 2:80 GHz Intel
Pentium 4 processor. The entire system was constructed in C++. We accept
that further performance improvements could be made through aggressive pro-
�ling and optimisation but are con�dent our results are representative of the
underlying algorithms and allow a comparison between them.

Table 4 shows timings from our implementation. Note that both normal
and polynomial bases timings are included and that +PC and �PC represent



Polynomial Normal

Arithmetic in F3239

Add 0:59�s 0:56�s
Multiply 19:72�s 52:16�s
Square 19:24�s 50:04�s
Cube 1:36�s 0:53�s
Cube Root 16:50�s 0:51�s
Invert 136:34�s 12156:00�s
Arithmetic in F3239�6

Add 1:20�s 1:15�s
Multiply 367:70�s 987:45�s
Square 344:90�s 984:14�s
Cube 5:50�s 1:32�s
Invert 819:01�s 14920:10�s
Pairings
BKLS 93:76ms 449:30ms
Duursma-Lee -PC 78:16ms 171:60ms
Duursma-Lee +PC 66:46ms 170:10ms

Table 4. Timings for �eld arithmetic in F3239 , F3239�6 and Duursma-Lee based
pairings using polynomial and normal bases.

results with and without pre-computation as described in Section 2. Working in
a polynomial basis is clearly the faster of the two methods, even though cube
and cube root operations are far quicker in the normal basis arithmetic: using
pre-computation has the e�ect of accelerating the pairing using the polynomial
basis as a result. Over all, the polynomial basis pairing is between two and three
times as fast as the normal basis alternative, even when no pre-computation is
used. This is basically a product of the di�erences in multiplication speed since
this, rather than the cube and cube root operations, is the dominant cost in
computation.

A secondary performance problem is the exceptionally high cost of inversion
in normal bases. Even considering the conversion [17] before and after inver-
sion in a polynomial basis, this seems a very expensive operation. However, in
practice it is possible to avoid inversions in many protocols since one ordinarily
needs only verify equality of pairing outputs belonging to the group F

�
q6 =F

�
q3 .

Using the methods of [10] one can perform an equality check with just two Fq3
multiplications.

With regard to other aspects of protocols, particularly post-pairing exponen-
tiation in Fq6 , it is desirable to be able to perform inversions [10]. In this case
it makes sense to map an element in a normal basis representation to a polyno-
mial representation, perform the inversion and then map back again. In general
this isomorphism will cost approximatelym2=3 multiplications in F3 , and is thus
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Fig. 1. Circuit diagrams for component-wise addition and multiplication in F3 .
Note that at a higher level, we abstract the internal bit-sliced operations to make
things clearer.

quite expensive, but based on the performance comparison as detailed in Table 4,
this is clearly a reasonable option.

7 Hardware Implementation

Consider the same example from Section 3 where m = 3. Using the matrix M ,
and the multiplication equation from Section 5.3, we take the basic ADD and
MUL circuits in Figure 1 and construct a fully parallel multiplier as shown
in Figure 2. Note that we are able to reduce the number of required addition
circuits by reuse of previously computed results.

Multiplication circuits for larger �elds can be constructed by considering the
speci�c example in Figure 2 as parallel instances of a circuit that generates a
single result coe�cient. This circuit can be split into three phases as demon-
strated by Figure 3: a generation phase that produces m sums of coe�cients in
b; a multiplication phase that multiplies these sums with coe�cients of a; and a
accumulation phase that adds all the multiplication results together to get the
�nal result coe�cient. Although very basic, this design is very regular and fairly

exible in the sense that one can build a fully or partially parallel device from
the same basic building blocks.

7.1 Cost Analysis

In calculating the cost of multipliers of this type, we use AA, AO and AX to
denote area required for logical and, or and exclusive-or gates and TA, TO and
TX to denote the time delay introduced by those gates. Using this notation,
we �nd that our ADD and SUB circuits both require an area of 4AO + 3AX
gates to build and have a delay of TO +2TX . The MUL gate on the other hand
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Fig. 2. A normal basis multiplier for the �eld F33 .

requires an area of 4AA+2AO gates to build and has a delay of TA+ TO. From
the abstract multiplier in Figure 3, we use the costs associated with these basis
circuits to derive a loose upper bound for both the total number of gates required
and the overall delay.

The generate phase is required to produce m sums of the input coe�cients.
As a result of the way the matrix M is constructed for our basis, each of these
sums contains a maximum of three summands. Exceptions to this rule are the
�rst sum and the sum containing the term Mi;j = 2, both of which contain two
summands and that in the latter case is calculated using a SUB circuit rather
than an ADD. Therefore, an upper bound for the area of gates in the generate
phase is (3m � 2) � (4AO + 3AX). The gate delay is �xed by the longest path,
i.e. that with three summands, and is hence 3 � (TO +2TX). Note that in reality,
less gates are required for this phase since partial sums can often be read from
previous ones. This is demonstrated in Figure 2 where, for example, the result

b
(k)
0 + b

(k)
1 + b

(k)
2 is constructed by adding b

(k)
1 to the previously computed value

b
(k)
0 + b

(k)
2 .

The multiply phase requires m parallel MUL circuits and hence an area of
m � (4AA + 2AO) gates with a delay of TA + TO. The accumulate phase sums
the m outputs from the multiply phase. Using a binary tree for this task, the
accumulate phase results in a structure of height h = dlog2(m)e. Such a structure
can be built using (m � 1) interior nodes, each composed of an ADD circuit,
meaning a total area of (m � 1) � (4AO + 3AX) gates that impose a delay of
h � (TO + 2TX).

To construct a fully parallel multiplier, we need to place m of these phases
in order to generate m coe�cients of the result. Using the previous cost analysis
as a platform, we �nd that an upper bound for the number of gates required for
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each result coe�cient generator can be stated as

(4m� 3) � (4AO + 3AX) +m � (4AA + 2AO);

while the maximum delay imposed by those gates is

(3 + dlog2(m)e) � (TO + 2TX) + (TA + TO):

Since we intend to place many of these units in parallel, we will see an m-fold
increase in gates but note that as long as the multiplier is fully parallel, the
delay to produce the result remains the same. Of course, one can make a trade-
o� between size and speed by placing only n < m parallel result coe�cient
generators and using them iteratively to produce the �nal result n coe�cients
at a time.

Putting all of this into context, a fully parallel multiplier for the case where
m = 239 would require

228484AA + 1025310AO + 683301AX

gates, i.e. almost two million gates, and the delay between results being produced
would be

TA + 12TO + 22TX :

Clearly this is far too large a device to deploy on a smart-card so one might
consider only placing a single result coe�cient generator, reducing the gate count
to a manageable

956AA + 4290AO + 2859AX ;

that is around eight thousand gates, although delaying the result by a factor
of m. Given the cost of, for example, Montgomery multipliers currently housed



on smart-cards eight thousand gates seems like a fairly modest total. However
this estimate is clearly very rough, focusing on the multiplier only and ignoring
issues such as control logic.

7.2 Performance Analysis

In order to minimise the amount of logic required, we assume a worst case in
terms of environmental constraints: there is only room on the device for a single
result coe�cient generation circuit. Given this architecture and a modest clock
speed, it seems possible to generate a single coe�cient of the result every clock
cycle for reasonable sizes of m, meaning we expect to complete a multiplication
everym cycles. Although this neglects the cost of, for example, loading and stor-
ing values to and from memory before and after completion of the multiplication,
it seems pessimistic enough to allow reasonable ball-park analysis.

If we assume that e�cient methods for �eld arithmetic and removal of the
�nal exponentiation are used [10], the Duursma-Lee method described in Sec-
tion 2 can be computed using 14m multiplications in F3m and a handful of
auxiliary operations such as addition. Since the auxiliary operations, including
the cube and cube root stages, are inexpensive in comparison the multiplication
the total time required to process the algorithm is dominated by the said 14m
multiplications. Given a modest smart-card clock speed of 8MHz and our mul-
tiplier for m = 239, we expect to process a single multiplication in 239 cycles.
Ignoring the cost of any auxiliary operations, the whole pairing algorithm could
complete in well under a second. Even including these auxiliary operations, it
seems reasonable that the operation should complete close to this mark.

Clearly this whole argument depends on the operation of the multiplier in
context: it is meaningless to quote clock speeds and cycle times for the multiplier
without a overarching design. However, the fact that a low cost multiplier circuit
can accommodate the dominant computational load of the pairing in a useful
time period is a strong step towards this goal. This is especially true since in
constrained environments, m = 239 is probably overkill in terms of security and
time constraints are more elastic than in interactive applications: a one or two
second wait at a smart-card enabled ATM machine is unlikely to be apparent to
the user.

8 Conclusions

In this paper we presented methods for constructing and using normal basis
arithmetic in characteristic three and then applied it to the context of pairing
based cryptography. We showed that although fast methods for normal basis
multiplication in software can be constructed, they are still too slow when com-
pared to a polynomial basis in the context of computing the pairing. However,
this drawback is eliminated when considering hardware implementation where
acceleration devices can be high performance while maintaining a low cost in



terms of area and time. In this context, normal bases o�er a fast way to per-
form pairing computation while removing the need for any pre-computation that
would hinder implementation using a polynomial basis. The applications for such
as design are clear: constrained devices such a smart-cards which were previously
thought to possess too little computational power can feasible implement identity
based cryptography.

However, in both hardware and software, we noted that depending on the
protocol that uses the pairing value, the use of normal bases could be made
unattractive due to the high cost of inversion in the base �eld and hence the dif-
�culty of e�ciently performing further arithmetic on said value. We presented a
method to reduce this cost but stress that this problem, and the more important
issues that surround construction of curves that allow type-two normal bases,
could preclude their use as envisaged by Duursma and Lee all together. Hence,
even though we improve signi�cantly on previous work, there are still several
areas that require further investigation.

Use a polynomial basis In this paper we focused on the use of normal basis
arithmetic with the goal of constructing a hardware accelerator for the Duursma-
Lee algorithm. With this as the emphasis, we ignored the possibility of using a
polynomial basis and computing cube roots on the 
y with the method from
Section 5.2. Given the cost of this method is less than a general multiply, it
seems feasible that an adequate accelerator could be constructed by ignoring
normal basis arithmetic altogether. We hope to investigate this possibility in
further work.

N�ocker style multiplication In his thesis [23], N�ocker introduces a method
for performing normal basis multiplication by doing a fast translation to a poly-
nomial basis, doing the multiplication and then translating back again. If this
can be achieved quicker than our current methods, it could be attractive. In
hardware, it could be an especially good idea since it could allow accelerated
support for both polynomial and normal basis arithmetic using only a single,
conventional polynomial multiplier.

Normal bases with t > 2 As outlined in Section 4, we deal only with type-two
normal bases even though higher complexity types can be useful when consid-
ering the problem of curve parameterisation. This trade-o� remains an open
problem that is in some sense application speci�c, i.e. the system designer must
match the cost of an architecture against the security constraints. However, it
seems an interesting problem to investigate if there are better methods than us-
ing Gau�ian normal bases for more complex types, both in terms of construction
and arithmetic.

Architectural optimisations In the same way that architectures for normal
and optimal normal basis multipliers in characteristic two have matured, archi-
tectural optimisation of our rather basic design seems inevitable. For example,



some form of pipelining could clearly be useful and area minimisations are pre-
sumably possible. Although we prototyped our design in Verilog, we hope to
address this area by constructing a complete accelerator design and implement-
ing it on an FPGA. This work is sure to encompass a dual goal to the one
considered here: as well as constrained devices, it is attractive to design very
high performance accelerator devices for server side applications. By taking ad-
vantage of lifting constraints of area and clock speed, the performance of such
applications can be improved in the same way that SSL servers are accelerated
using dedicated RSA hardware.
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