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Abstract

Threshold schemes allow secret data to be protected amongst a set of participants
in such a way that only a pre-specified threshold of participants can reconstruct the se-
cret from private information (shares) distributed to them on system setup using secure
channels. We consider the general problem of designing unconditionally secure threshold
schemes whose defining parameters (the threshold and the number of participants) can
later be changed by using only public channel broadcast messages. In this paper we are
interested in the efficiency of such threshold schemes, and seek to minimise storage costs
(size of shares) as well as optimise performance in low bandwidth environments by min-
imising the size of necessary broadcast messages. We prove a number of lower bounds on
the smallest size of broadcast message necessary to make general changes to the parame-
ters of a threshold scheme in which each participant already holds shares of minimal size.
We establish the tightness of these bounds by demonstrating optimal schemes.

keywords Cryptology, secret sharing schemes, threshold schemes, bounds and con-
structions.

1 Introduction

Let k and n be integers satisfying 1 ≤ k ≤ n. A (k, n)-threshold scheme [3, 16] is a system for
sharing a piece of secret information, known as the secret, amongst a set P of n participants in
such a way that the secret can be reconstructed from any k shares, where a share is a private
piece of information distributed securely by a trusted dealer to each participant on initial setup
of the threshold scheme. The threshold structure Γ is the collection of subsets of P whose shares
can collectively be used to reconstruct the secret, in other words Γ = {A ⊆ P : |A| ≥ k}. All
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the threshold schemes discussed in this paper are perfect in the sense that knowledge of k − 1
shares contributes no information to knowledge of the secret, and unconditionally secure in the
sense that the security of the system does not depend on the difficulty of factorization etc.

Threshold schemes are useful cryptographic primitives with many different applications. Ex-
amples include access control, protection of a cryptographic key, group signature protocols and
controlled key recovery. All these applications have in common the need to distribute trust in a
secret parameter amongst a number of different entities. For more details of some applications,
see for example [18].

There is a significant communication cost involved in setting up a (k, n)-threshold scheme since
the dealer must use secure channels to distribute each participant’s share to them. There are
many applications where such a one-off cost can be tolerated, but where it is not practical
to assume the existence of such secure channels after the setup process has completed. For
example, root cryptographic keys are often protected by threshold schemes where shares of the
key are distributed manually to participants. This manual distribution process represents a
temporary secure channel between the dealer and each participant that may not be practical to
reactivate at a later date (the participants might be based in different countries, for example).

This raises the interesting question as to whether it is possible to make changes to the basic
parameters of a (k, n)-threshold scheme after the setup process has completed without having
to use secure channels. Such a change may be required for a number of reasons: a set of
participants might need to be removed from the scheme (disenrollment), involving a reduction
in n; a set of participants might need to be added to the scheme (enrollment), involving an
increase in n; the security policy relating to the threshold scheme might need to be strengthened
(threshold increase), involving an increase in k; or slackened (threshold decrease), involving a
decrease in k; or indeed any combination of the above.

An impractical solution to this problem would be for the dealer to distribute to each participant
at setup not only a share in the original (k, n)-threshold scheme, but also one share in every
possible (k′, n′) threshold scheme that might be required in the future. To change parameters
it would suffice that the dealer use a public channel to broadcast a message instructing partici-
pants to start using the appropriate new shares. However this solution generally requires each
participant to store an excessive number of unnecessary shares.

It is therefore desirable to investigate threshold schemes where participants do not hold exces-
sively large shares (we will be interested in them holding shares of minimal size), but where
the the dealer can still use a public channel to broadcast some information that enables the
threshold scheme parameters to change. Each participant in the “new” threshold scheme can
determine their share exclusively from the information that they received on system setup and
the broadcast message. We assume that the dealer anticipates that a future parameter change
may be necessary before issuing the initial shares. This allows the dealer to build the capability
for parameter change into the threshold scheme at setup. Without this assumption there are
only a few types of parameter change that can be enabled using only broadcast channels (see
Section 5).

The schemes that we look at will vary depending on the amount of knowledge that the dealer
has about what future parameter changes will be needed. For reasons that we make clear in
Section 3, the following three cases are of particular interest:
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• The dealer anticipates that the threshold may decrease (but not by how much) and that
some participants may need to be disenrolled (but does not know how many).

• The dealer anticipates that the threshold may increase (but not by how much) and that
some participants may need to be disenrolled (but does not know how many).

• The dealer anticipates that the threshold may change (but does not know whether it will
increase or decrease) and that some participants may need to be disenrolled (but does
not know how many).

Threshold schemes capable of changing their parameters within the same communications net-
work context as this paper have been studied by a number of authors. A lower bound on the
necessary share size to enable sequential disenrollment of participants in a threshold scheme
was given in [4]. Both [4] and [14] demonstrated the optimality of this bound by providing
different threshold schemes that met this lower share bound. In [5] a framework was provided
for studying this problem for secret sharing schemes (a generalisation of threshold schemes)
and the lower bound on share size proved in [4] was generalised for this environment.

We are interested in not just minimising the share size, but also the necessary broadcast in-
formation to enable a change in the parameters of a threshold scheme. In [2] a lower bound
was shown for the amount of broadcast information necessary in the sequential disenrollment
schemes of [4, 14]. In this paper we significantly extend this work by looking at general param-
eter changes for threshold schemes. In particular we will provide lower bounds on the size of
broadcast message necessary to enable any type of meaningful change to the parameters of a
threshold scheme that already has minimal share size. The following is a simplified version of
our main theorem (Theorem 11).

Theorem Consider a (k, n)–threshold scheme with k < n on a participant set P with a secret
s to be updated via a broadcast to Γ′, any (k′, n′)–threshold access structure with secret s′ on
a subset of P . Let bΓ′ be the associated broadcast. Suppose that each participant p holds a
share of minimal size (that is, H(p) = 2H(s) = 2H(s′)). Then the size H(bΓ′) of the broadcast
bΓ′ satisfies

H(bΓ′) ≥


(min(n− 1, n′)− k′ + 1)H(s) if k′ ≥ k and n′ ≤ n
(n′ − k′ + 1)H(s) if k′ ≤ k and n′ ≤ n and k − k < n− n′

(min(k, n′)− k′ + 1)H(s) if k′ ≤ k and n′ ≤ n and k − k ≥ n− n′.

We also show that these bounds are optimal by exhibiting schemes that meet these bounds.

Note that our communications environment differs from the one on which the redistribution
techniques of [7, 9, 15] can be used to change the parameters of a threshold scheme. In redis-
tribution environments there is no secure channel from the dealer to the participants to enable
parameter change, but there do exist secure channels between the participants themselves. We
make no such assumption here. The problem under discussion here is also related, but differ-
ent, to the concept of proactive threshold schemes [10], where broadcast messages are used to
refresh shares, but not to change the parameters of the threshold scheme.

The remainder of the paper is structured as follows. In Section 2 we introduce the necessary
preliminary concepts about threshold schemes. In Section 3 we present the model we use
and discuss the methodology of the paper. In Sections 4, 5 and 6 we consider three different
types of parameter change and establish lower bounds on the broadcast size for share-minimal
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threshold schemes enabling such changes to be made. We establish the optimality of these
bounds in Section 7 by demonstrating optimal constructions of dynamic threshold schemes.
In Section 8 we discuss two possible avenues for further work. Appendix A contains a brief
introduction to the standard entropy notation and results. Finally, for easier readability, all
the technical proofs of results stated in Sections 4, 5 and 6 have been placed in Appendix B.

2 Preliminaries

Since the threshold schemes that we discuss here are unconditionally secure (their security
is independent of cryptographic assumptions on the strength of an adversary) we follow the
popular convention (first proposed by [13]) of modeling them in information theoretic terms.
See Appendix A for a short introduction to the necessary information theory and the notation
used. We will formally define a threshold scheme within this context.

For ease of translation from sets to random variables, throughout this paper we adopt the
following conventions: if A and B are finite sets then we simplify A ∪ B to AB and the
singleton set {x} to x (hence sP represents the set {s} ∪ P etc.).

2.1 Threshold Schemes

Let P = {p1, . . . , pn} be a set of participants, let s be the secret, and let k be an integer with
1 ≤ k ≤ n.

Definition 1 A (k, n)-threshold scheme M = (sP , ρ) is a probability distribution ρ defined
on a collection of tuples 〈sP〉, each of which is indexed by the elements of sP , such that for
A ⊆ P,

H(s |A) =
{

0 if |A| ≥ k
H(s) if |A| ≤ k − 1.

We call the elements of [sP ] distribution rules. In order to implement a threshold scheme, the
collection [sP ] of distribution rules is made public. A dealer privately selects a distribution
rule π = (xs, x1, . . . , xn) with probability ρ(π), then securely distributes xi as a share to pi, for
i = 1, . . . , n. The element xs is the secret, and is kept private.

We call H(pi) the size of the share associated with participant pi, and H(s) the size of the secret.
It can be seen (for example [19]) that in any threshold scheme, H(pi) ≥ H(s). If H(pi) = H(s)
for all such pi then we say that the threshold scheme is ideal. Ideal (k, n)-threshold schemes
can be found for all integers 1 ≤ k ≤ n. We describe two examples that are used in Section 7.
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Example 2 (Shamir[16]) Let P = {p1, . . . , pn}, let p be a prime and let Zp be the field of
integers modulo p. Suppose k is an integer with 2 ≤ k ≤ n ≤ p. A dealer generates distinct,
non-zero elements x1, . . . , xn of Zp and publishes them. The dealer then secretly and randomly
chooses elements a0, a1, . . . , ak−1 ∈ Zp and forms the polynomial a(x) = a0 + a1x + a2x

2 +
. . . + ak−1x

k−1. For i = 1, . . . , n, the share a(xi) is issued to participant pi and the value of
the secret is a0. It is straightforward to verify that any k participants can determine a0 by
polynomial interpolation, but any k − 1 participants can obtain no information about the
value of a0, additional to the fact that it is in Zp. In this case there are pk distribution rules
(a(0), a(x1), . . . , a(xn)) in [sP ], corresponding to the pk values of the k-tuple (a0, a1, . . . , ak−1).
Since ρ is uniform we have that H(pi) = H(s) = log p and thus that the scheme is ideal.

Example 3 An equivalent way to construct an ideal (k, n)-threshold scheme uses a geometric
construction in Σ = PG(k − 1, q) (for a background in projective geometry see [11]). Let
σ: sP → Σ be a mapping that assigns to each participant pi as share a point pσ

i on a normal
rational curve in Σ and assigns the secret s to be a further point sσ on this curve. If k
participants pool their shares, these shares span Σ and so they can obtain the secret. If k − 1
participants pool their shares, these shares span a (k−2)-dimensional subspace which contains
no further point of the normal rational curve, so in particular does not contain sσ. They thus
have no information about the secret s = sσ. To see how to extract the distribution rules of an
ideal (k, n)-threshold scheme from this configuration of points see for example [19].

2.2 Restrictions and Contractions

In order to define our model rigorously, we will make use of two types of threshold schemes
that can be derived from an existing threshold scheme. The restriction of a (k, n)-threshold
scheme to a subset of n′ participants is the (k, n′)-threshold scheme that results from effectively
discarding the shares held by the other n−n′ participants. The contraction of a (k, n)-threshold
scheme at a set of r shares is the (k − r, n − r)-threshold scheme that results from effectively
broadcasting this set of r shares.

More generally, let ρ be a probability distribution on a finite collection 〈X〉 of tuples indexed
by the finite set X. For A ⊆ X, the restriction to A of the pair (ρ, X) is the pair (ρA, A).
For B ⊆ X and A = X \ B, the contraction at B = β ∈ [B] of the pair (ρ, X) is the pair
(ρA|B=β, A). Restrictions and contractions of threshold schemes are formalised by the following
two results from [12].

Theorem 4 (Restriction) [12] Let M = (sP , ρ) be a (k, n)-threshold scheme and let P ′ ⊆
P. Then M′ = (sP ′, ρsP ′) is a (k, |P ′|)-threshold scheme, known as the restriction of M to
sP ′.

Theorem 5 (Contraction) [12] Let M = (sP , ρ) be a (k, n)-threshold scheme. Let B ⊆ P,
let P ′ = P \B and let β ∈ [B]. Then M′ = (sP ′, ρsP ′|B=β) is a (k−|B|, |P ′|)-threshold scheme,
known as the contraction of M at B = β.
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3 Dynamic Threshold Schemes

In this paper we are interested in threshold schemes where the parameters can later be changed
by means of a public channel broadcast. In this section we first comment on the special case
of enrollment. We then propose a simple extension of the model of a threshold scheme within
which to analyse dynamic threshold schemes.

3.1 Enrollment

There is one type of parameter change that can not be easily accommodated in the commu-
nication network environment that we propose. Enrollment of new participants who were not
issued with any private information at system setup is impossible in a broadcast only network.
The reason for this is that each new participant needs to acquire some private information from
the dealer, which clearly needs the involvement at some stage of a secure distribution channel.
The only ways in which enrollment could be performed are:

• A secure channel is set up between the dealer and any new enrolling participants to issue
them with shares.

• All possible future participants are issued with a cryptographic key at system setup. These
participants are then effectively “sleeping participants” until the time of enrollment, when
the dealer broadcasts their share to them, encrypted under the key that they were issued
at setup. This is essentially the same technique used in [17] to remotely activate threshold
schemes.

• Existing participants transfer necessary information using secure channels to new en-
rolling participants (this is outside our communications model, but is appropriate in the
redistribution environments mentioned in Section 1).

For this reason we do not consider enrollment in the rest of this paper, and acknowledge
that if enrollment is required then secure channels must be established using one of the above
techniques.

3.2 A Model for Dynamic Threshold Schemes

Let P be a set of participants and s be a secret. Let U be a collection of threshold structures
defined on subsets of P (in other words, for each Γ′ ∈ U there exist k′, n′ and P ′ ⊆ P such
that Γ′ is a (k′, n′)-threshold structure defined on P ′).

We wish to establish a (k, n)-threshold scheme defined on P that has the capability of being
changed by means of a broadcast message into a scheme with threshold structure Γ′, where
Γ′ can be any of the threshold structures in U . We denote the secret after this change by
s′. There is no logistical reason for s and s′ to be different, but we will see that for many
parameter changes they are necessarily independent. We thus make the reasonable assumption
throughout that

H(s) = H(s′). (1)

Each Γ′ ∈ U is associated with a broadcast variable bΓ′ , which represents the broadcast message
that the dealer will send if he wishes to change to the threshold structure Γ′. We let B =
{bΓ′|Γ′ ∈ U}.
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Definition 6 A (k, n)-threshold scheme M = (ρ, ss′PB) that can be updated to U , is a proba-
bility distribution ρ defined on a collection of tuples 〈ss′PB〉 (each of which is indexed by the
elements of ss′PB) such that:

(A) M restricted to sP is a (k, n)-threshold scheme on P with secret s, that is,

H(s |A) =
{

0 if |A| ≥ k
H(s) if |A| ≤ k − 1

;

(B) For each threshold structure Γ′ ∈ U , if Γ′ is a (k′, n′)-threshold structure on P ′ then M
contracted at bΓ′ = β ∈ [bΓ′ ] is a (k′, n′)-threshold scheme on P ′ with secret s′, that is,

H(s′ |AbΓ′) =
{

0 if |A ∩ P ′| ≥ k′

H(s′) if |A ∩ P ′| ≤ k′ − 1
.

In other words, M is initially a (k, n)-threshold scheme. If the broadcast message bΓ′ is sent
on a public channel then knowledge of the original shares and this broadcast result in M also
becoming a (k′, n′)-threshold scheme defined on P ′.

Note that in Definition 6 we do not care whether a set of participants belonging to Γ′ can obtain
s′ prior to knowledge of the broadcast bΓ′ . It is foreseen that in most anticipated applications
that s′ will not have any relevant meaning until the point at which the dealer initiates a
parameter change (for example, s′ may be the backup master key that the dealer will only
activate in the event that a parameter change is necessary).

We are interested firstly in minimising the size of shares held by each participant, which is
measured by H(p). We are then interested in minimising the size of the broadcast bΓ′ , which
is measured by H(bΓ′). In this paper, for a number of different sets U , we will determine the
minimal size of broadcast necessary in a share minimal threshold scheme that can be updated
to U . Whereas lower bounds on share size are easily extracted from existing work and tend to
be “expected”, lower bounds on broadcast size are neither established nor particularly intuitive.
For example, it would seem intuitive that broadcast size should depend on the set U , and that
larger sets U will require larger broadcasts, but we prove the slightly surprising result that the
minimal broadcast size is “fairly independent” of U .

We proceed by identifying some “sensible” sets U to study. First observe that if a lower bound
holds for updating to U then it also holds for updating to any region U ′ ⊇ U . We thus
identify some meaningful “large” regions U to investigate, and in Section 6.2 will later show
that updating to “smaller” regions generally does not result in smaller broadcast sizes.

The three main regions U that we study are:

1. Threshold increases. The dealer wants it to be possible to change to any threshold struc-
ture with a greater threshold parameter. In other words, all (k′, n′)-threshold structures
with k′ ≥ k and n′ ≤ n. We denote this set by U+(k, n), or U+ when no ambiguity arises.

2. Threshold decreases. The dealer wants it to be possible to change to any threshold struc-
ture with a smaller threshold parameter. In other words, all (k′, n′)-threshold structures
with k′ ≤ k and n′ ≤ n. We denote this set by U−(k, n), or simply U−. For reasons that
will later be explained we partition U− into U−

1 (corresponding to k − k′ < n − n′) and
U−

2 (corresponding to k − k′ ≥ n− n′).
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Figure 1: Selected regions to which threshold schemes can be updated
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3. The general case. The dealer wants it to be possible to change to any (k′, n′)-threshold
structure with n′ ≤ n. We denote this set by UT (k, n), or simply UT . Clearly UT =
U+ ∪ U− = U+ ∪ U−

1 ∪ U−
2 .

An example of a smaller region of interest is where k′ = k and n′ ≤ n (this corresponds to
disenrollments). We return to this is Section 6.2. The listed regions are illustrated in Figure 1.

In the following sections we look at these different regions in turn and determine lower bounds
on the broadcast size for updating to them. In Section 4 we look at U+, in Section 5 we look
at U−, and in Section 6 we look at UT as well as discussing the possibility of improving these
results for smaller update regions.

4 Increasing the threshold

In this section we consider the case of increasing the threshold, that is, we look at updating to
threshold structures in U+. We first need to establish exactly what the minimal share size is
for this case.

Theorem 7 Let M = (ρ, ss′PB) be a (k, n)-threshold scheme with k < n that can be updated
to U+. Then

(a) s and s′ are independent

(b) for each participant p ∈ P, H(p) ≥ 2H(s).

The proof of this is not difficult, and appears in Appendix B. We thus refer to a (k, n)-threshold
scheme that can be updated to U+ and has H(p) = 2H(s) for all p ∈ P as share minimal.
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Theorem 8 Let M = (ρ, ss′PB) be a share minimal (k, n)-threshold scheme with k < n
that can be updated to U+(k, n). Then for any Γ′ ∈ U+(k, n), where Γ′ is a (k′, n′)-threshold
structure,

H(bΓ′) ≥
{

(n′ − k′ + 1)H(s) if n′ < n
(n′ − k′)H(s) if n′ = n.

The complete proof of this theorem is complex, see Appendix B for full details. We sketch the
proof here to provide an idea of how it works. Theorem 8 is proved by induction on k. We first
prove the result for k = 1, that is, Γ is a (1, n) threshold scheme and H(p) = 2H(s) = 2H(s′).
We derive two parts from M, one part relating to Γ and the other relating to Γ′ ∈ U+(1, n).
We then find entropy results concerning the participants, the broadcasts and s (see Lemmas 17
and 18 in Appendix B). Using these results we can prove the size of the broadcast for k = 1
(see Lemma 19 in Appendix B). To prove the result for general k, we assume that k > 1, we
contract on a k−1 subset of P to obtain a (1, n−(k−1)) threshold scheme that can be updated
to U+(1, n − (k − 1)) for an appropriate choice of broadcast. Now we apply the result for the
case k = 1 and Theorem 8 follows.

We will see in Section 7 that this bound is tight when we demonstrate a share minimal scheme
that also has minimal broadcast size.

Recall that, as discussed immediately after Definition 6, our model is not concerned with
whether participants belonging to Γ′ can obtain s′ prior to knowledge of the broadcast bΓ′ . It is
worth observing that if the model is restricted to make the extra requirement that they cannot
obtain s′, we get the simplified bound H(bΓ′) ≥ (n′ − k′ + 1)H(s).

5 Decreasing the threshold

In this section we consider decreasing the threshold. We wish to establish a lower bound on
the broadcast size necessary for a share minimal (k, n)-threshold scheme that can be updated
to U−.

This case is interesting because there are a number of parameter sets within this region that
any standard threshold scheme can be updated to, without the need for extra share information
on scheme initialisation. This partitions U− into two separate regions U−

1 and U−
2 , where U−

1

corresponding to all (k′, n′) pairs where k− k′ < n−n′, and U−
2 corresponds to all (k′, n′) pairs

where k − k′ ≥ n− n′.

We will first discuss a special case arising as a result of this issue and then deal with the two
separate regions.
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5.1 A special case: k = n

The region U−
2 is interesting because it is possible to update any standard (k, n)-threshold

scheme to a (k′, n′)-threshold scheme in U−
2 by broadcasting some selected share information

that allows remaining participants to continue using their original shares within a new scheme.
A simple example would be the fact that broadcasting the share held by any participant ef-
fectively converts the original scheme into a (k′, n′)-threshold scheme, with that participant
“removed”. In such schemes there is no need to distribute extra share information and so
H(p) ≥ H(s).

However, the region U−
2 is otherwise artificial and providing the general capability of decreasing

the threshold normally involves the inclusion of (k′, n′) pairs outside this region, except in one
significant case. When k = n, we have U−

1 = ∅ and U−
2 = U−. This special case was studied

in [1], where it was shown that for schemes with the minimal share size of H(p) = H(s), the
minimal broadcast size is H(bΓ′) = min(k − k′, n′ − k′ + 1)H(s). We refer the reader to [1] for
details, and for examples of schemes with this minimal broadcast size.

5.2 Decreasing the threshold when k < n

For the rest of this section we thus only consider the case k < n. We first establish that in
contrast to the special case k = n, when k < n the size of shares in a (k, n)-threshold scheme
that can be updated to U− is at least 2H(s).

Theorem 9 Let M = (ρ, ss′PB) be a (k, n)-threshold scheme with k < n that can be updated
to U−. Then H(p) ≥ 2H(s).

As in Section 4 we refer to a scheme with the minimal share size of H(p) = 2H(s) for all p ∈ P
as share minimal. The main result of this section is the following.

Theorem 10 Let M = (ρ, ss′PB) be a share minimal (k, n)-threshold scheme with k < n that
can be updated to U−. Then for any Γ′ ∈ U−, where Γ′ is a (k′, n′)-threshold structure,

H(bΓ′) ≥
{

(n′ − k′ + 1)H(s) if Γ′ ∈ U−
1

(min(k, n′)− k′ + 1)H(s) if Γ′ ∈ U−
2 .

The complete proofs are in Appendix B, but we comment on them here. We have already
seen that the two regions U−

1 and U−
2 are in some respects fundamentally different. In fact, to

prove a lower bound on the broadcast size for updating to U− we need two different approaches
for each of these two regions. The method of proof for the region U−

1 is similar to that of
Theorem 8. The proof for the region U−

2 involves the following series of steps. The first
step is to show that, for A ⊆ P with |A| ≤ k, H(A) = 2|A|H(s) and that for any A ⊆ P ,
H(A) = (min(k, |A|) + |A|)H(s). This is proved by induction on k. The next step is to prove
that H(bΓ′) ≥ min(k, n′)H(s) if Γ′ is a (1, n′) threshold structure in U−

2 (k, n). The final step is
to prove the result for Γ′ ∈ U−

2 (k, n) by using induction on k.
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6 Updating to other regions

We have demonstrated lower bounds on the broadcast size of share minimal threshold schemes
that can be updated to have lower, or higher threshold parameters. In this section we briefly
consider the general case, where the threshold can be either increased or decreased, and then
discuss updating to smaller regions.

6.1 Updating the threshold to UT

By Theorems 7 and 9 it follows that any (k, n)-threshold scheme with k < n that can be
updated to UT has H(p) ≥ 2H(s) for all p ∈ P. The following is immediate from Theorems 8
and 10.

Theorem 11 Let M = (ρ, ss′PB) be a share minimal (k, n)-threshold scheme with k < n that
can be updated to UT . Then for any Γ′ ∈ UT , where Γ′ is a (k′, n′)-threshold structure,

H(bΓ′) ≥


(min(n− 1, n′)− k′ + 1)H(s) if Γ′ ∈ U+

(n′ − k′ + 1)H(s) if Γ′ ∈ U−
1

(min(k, n′)− k′ + 1)H(s) if Γ′ ∈ U−
2 .

We show in Section 7 that this lower bound is tight by providing a scheme that meets it.

6.2 Updating to smaller regions

We have already established results for updating to the regions U+, U− and UT . Recall that,
as remarked in Section 3.2, it is possible that these bounds might be able to be reduced if we
only want to update to smaller regions.

The main problem with studying smaller regions is simply that it is not obvious which smaller
regions might be of interest in genuine applications. Table 1 gives some examples of “sensible”
smaller regions U . In general they show that so long as the update region is reasonably large
then it is not possible to have a share minimal (k, n)-threshold scheme that can be updated to
U using a smaller broadcast message than the bound of Theorem 11. The proofs of most of
these bounds are not provided here as they can either be derived from the proofs of results in
previous sections, or can be derived in a similar manner.

A few of these cases however do deserve special mention. Case 1 corresponds to the sequential
disenrollment schemes studied in [2, 4, 14]. In this case, considering only one disenrollment,
because only one participant will ever be removed from the scheme it is possible to have a
small broadcast size. Case 5 (U = U−

2 ) and Case 6 are of interest because the conditions for
Lemmas 14 and 15 of Appendix B do not apply. In these cases it is possible to design schemes
for updating to U where s = s′ and H(p) = H(s) for all p ∈ P ′. The broadcast bound indicated
in Table 1 is only one less than that of Theorem 11, and only when k < n′. These cases, and
proofs of their broadcast bounds, are given in [1] (see also Section 5.1).
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U defined by Minimum Broadcast lower bound:
Case k′ n′ share size H(bΓ′) ≥

1 k′ = k n′ = n− 1 2H(s) H(s)
2 k′ = k n′ < n 2H(s) (n′ − k′ + 1)H(s)
3 k′ ≥ k n′ < n 2H(s) (n′ − k′ + 1)H(s)
4 k′ ≤ k n′ ≤ n k − k′ < n− n′ 2H(s) (n′ − k′ + 1)H(s)
5 k′ ≤ k n′ ≤ n k − k′ ≥ n− n′ H(s) min(k − k′, n′ − k′ + 1)H(s)
6 k′ < k n′ = n H(s) min(k − k′, n′ − k′ + 1)H(s)

Table 1: Share and broadcast bounds for updating to some smaller regions U

7 A Construction

We now demonstrate that the bound on the broadcast size of Theorem 11 (and thus also
the bounds of Theorems 8 and 10) is tight by constructing a share-minimal (k, n)-threshold
scheme with k < n that can be updated to UT with the minimal broadcast size indicated by
Theorem 11.

We first indicate the idea behind the construction by demonstrating an extended version of the
Shamir threshold scheme (recall Example 2 of Section 2.1) that meets the broadcast bound in
some, but not all, cases. We then present a construction based on Example 3 of Section 2.1
that meets the bound of Theorem 11 in all cases.

Example 12 We divide the scheme into three phases:

Initialisation: The dealer issues each participant pi in P = {p1, . . . , pn} with a share in
each of two Shamir threshold schemes, both defined on P and n − 1 ‘imaginary’ sharehold-
ers f1, . . . , fn−1. Scheme I is a (k, 2n − 1)-threshold scheme with secret s and Scheme II is
an (n, 2n − 1)-threshold scheme with secret s′. Let a(x) and a′(x) be the polynomials cor-
responding to Scheme I and Scheme II respectively. The dealer generates distinct non-zero
values x1, . . . , xn, y1, . . . , yn−1 in Zp and publishes these. Each participant pi is given share
(a(xi), a

′(xi)).

Before update: Participants can use their shares of Scheme I to realise a (k, n)-threshold scheme.

Update: Suppose that we wish the scheme to be updated to Γ′ ∈ UT , a (k′, n′)-threshold
structure on P ′ = {p1, . . . , pn′}. That is, we want to disenroll participants pn′+1, . . . , pn and
change the threshold parameter to k′. In order to activate Γ′, the dealer has two options:

1. The dealer indicates that participants should switch to using their shares in Scheme II
and broadcasts a′(xn′+1), . . . , a

′(xn), a′(y1), . . . , a
′(yn′−k′). Any k′ participants in P ′ who

pool their shares with the n− k′ broadcast shares know n points on polynomial a′(x) of
degree n− 1, so can uniquely determine a′(x) and obtain s′ = a′(0). However, any k′ − 1
participants in P ′ knowing the broadcast shares only have n − 1 points on a′(x) and so
obtain no information about s′. The result of the broadcast is thus a (k′, n′)-threshold
scheme on P ′. The broadcast has size H(bΓ′) = (n−k′)H(s), which only meets the bound
of Theorem 11 in a few cases (for example when n′ ≥ n− 1 and k′ ≥ k).
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2. In the special case that Γ′ ∈ U−
2 , the dealer broadcasts the values a′(0) − a(0) and

a(xn′+1), . . . , a(xn), a(y1), . . . , a(y(k−k′)−(n−n′)). Any k′ participants in P ′ who pool their
shares with the k − k′ broadcast shares know k points on polynomial a(x) of degree
k − 1, so can determine s = a(0) and hence, also knowing a′(0) − a(0), can determine
a′(0). Similarly, any k′ − 1 participants obtain no information about s′. In this case the
broadcast has size (k−k′ +1)H(s), which meets the bound in Theorem 11 only if k ≤ n′.

Example 12 only meets the bound of Theorem 11 for some parameters. We now give a general
geometric construction based on Example 3 that meets the bound in all cases.

Example 13 The scheme is divided into three phases:

Initialisation: The dealer issues each participant pi in P = {p1, . . . , pn} with a share in each of
two geometric threshold schemes, defined as follows.

1. Let F = {f1, . . . , fk−1} be a set of “imaginary” participants. Denote Σ = PG(k − 1, q)
and let σ: sPF → Σ be a geometric (k, n + k − 1)-threshold scheme.

2. Let H = {h1, . . . , hn−1} be a set of “imaginary” participants. Denote Σ′ = PG(n− 1, q)
and let σ′: s′PH → Σ′ be a geometric (n, 2n− 1)-threshold scheme.

The two shares held by each participant can be represented as a single subspace by embedding
Σ and Σ′ as disjoint subspaces in Θ = PG(k +n−1, q) and considering the share of participant
p ∈ P to be the subspace 〈pσ, pσ′〉 of Θ.

Before update: Participants can use their shares of σ to realise a (k, n)-threshold scheme.

Update: Suppose that we wish the scheme to be updated to Γ′ ∈ UT , a (k′, n′)-threshold
structure on P ′ = {p1, . . . , pn′}. In order to activate Γ′, the dealer has two options:

1. Define subspaces C ′ = 〈(s′P ′)σ′〉 and D′ = 〈(P \P ′)σ′
, hσ′

1 , . . . , hσ′
n′−k′〉 of Σ′. In order to

activate Γ′, the dealer broadcasts the subspace B′ = C ′ ∩D′ by choosing a suitable set of
(dim B′ + 1) points of B′. As 〈C ′, D′〉 = Σ′, we have

dim B′ = dim C ′ + dim D′ − dim〈C ′, D′〉
= min(n′, n− 1) + (n− k′ − 1)− (n− 1)

= min(n′, n− 1)− k′.

If a set K of k′ participants in P ′ pool their shares, then Kσ′
is a subspace of dimension

k′ − 1 of C ′ which, by the properties of a normal rational curve, is disjoint from D′ and
hence B′. Thus B′ and Kσ′

together span C ′, which contains s′σ
′
, so the participants in

K can obtain the secret s′.

For a set L of k′ − 1 participants we consider the set X = 〈Lσ′
, D′〉. As B′ ⊆ D′, it

follows that B′ ⊆ X. The set X is generated by points of the normal rational curve,
hence dim X = (k′ − 1) + ((n− n′) + (n′ − k′)) − 1 = n − 2. By the properties of a
normal rational curve, X does not contain any further point of the normal rational curve,
so in particular does not contain s′. This implies that a maximal unauthorised (k′ − 1)-
set L ⊆ P ′ together with the participants P \P ′ and broadcast B′ cannot obtain s′.
The result of the broadcast is thus a (k′, n′)-threshold scheme on P ′. We refer to this
construction process as updating with σ′. If n′ = n then H(bΓ′) = (n− k′)H(s). If n′ < n
then H(bΓ′) = (n′− k′ + 1)H(s). So, updating with σ′ achieves the bound of Theorem 11
in the following cases: (a) Γ′ ∈ U+ ∪ U−

1 ; (b) Γ′ ∈ U−
2 and n′ < k.
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2. For the remaining case, that is Γ′ ∈ U−
2 and k ≤ n′, we describe a similar process referred

to as updating with σ. Although we show this for all Γ′ ∈ U−
2 , it is only optimal for k ≤ n′.

Define subspaces C = 〈(sP ′)σ〉 and D = 〈(P \P ′)σ, fσ
1 , . . . , fσ

(k−k′)−(n−n′)〉 of Σ. In order
to activate Γ′, the dealer broadcasts the subspace B = C ∩D, where

dim B = dim C + dim D − dim〈C, D〉
= min(n′, k − 1) + (k − k′ − 1)− (k − 1)

= min(n′, k − 1)− k′

and also a point W on the line 〈sσ, s′σ
′〉 in ΣT , where W /∈ {sσ, s′σ

′}. This gives a
(k′, n′)-threshold scheme on P ′ with secret s′ and with broadcast satisfying

H(bΓ′) = (dim B + 1) + 1 = min(n′, k − 1)− k′ + 2.

Thus for the case Γ′ ∈ U−
2 and k ≤ n′, updating with σ meets the bound of Theorem 11.

Hence we have shown that the bound in Theorem 11 can always be met by either updating with
σ′ or updating with σ. Note also that if we wanted to make the assumption that the participants
cannot determine s′ before the broadcast then we would need σ′ to be an (n + 1, 2n)-threshold
scheme, in which case we would have

H(bΓ′) =

{
(k − k′ + 1)H(s) if Γ′ ∈ U−

2 and k < n′

(n′ − k′ + 1)H(s) otherwise.

8 Concluding Remarks

We have established the minimal broadcast necessary to update the parameters of a share-
minimal threshold scheme, and demonstrated an optimal scheme for achieving these bounds.
We showed these results for achieving one parameter update. A natural question to consider
is the situation where we want more than one, say two updates. If Γ on P is updated to Γ′

on P ′ ⊆ P (using bΓ′), then updated to Γ′′ on P ′′ (using bΓ′′), we would need P ′′ ⊆ P ′. So we
would need to add the extra condition:

H(s′′ |AbΓ′bΓ′′) =
{

0 if |A ∩ P ′′| ≥ k′′,
H(s′′) if |A ∩ P ′′| ≤ k′′ − 1.

The next step would be to investigate the independence of the secrets s, s′ and s′′. Under what
circumstances would it hold that H(s′′ | ss′) = H(s′′)?

Thirdly, for which access structures Γ and update collections U (containing Γ′) and U ′′ (con-
taining Γ′′) do we need to have H(p) ≥ H(s) + H(s′) + H(s′′)?

Fourthly, we would expect the same bounds for bΓ′′ as for bΓ′ and so we could extend the
construction in Section 7, Example 13 by having an extra k − 1 imaginary participants in
schemes σ and σ′, and having a third scheme σ′′, a geometric (n, 2n− 1) threshold scheme.

Another interesting generalisation is to consider threshold schemes that are not share-minimal.
In such schemes it is possible to reduce the broadcast size at the expense of an increase in
the amount of information stored as shares. As mentioned in Section 1, the extreme case of
this concession is to give participants one share for every possible new threshold parameter set
and then simply broadcast a message indicating which new set of shares to move to in order
to enable the new parameter change. The pattern of the intermediate tradeoffs between this
extreme case and the share-minimal schemes discussed in this paper remains undetermined and
would be worthy of further investigation.
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A Appendix: Information Theory

We provide a short introduction to entropy here, but refer the reader to, for example, [8] for
details.
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Let X be a finite set and let 〈X〉 be a finite collection of tuples, such that the entries of a
tuple π ∈ 〈X〉 are indexed by the elements of X. Let ρ be a probability distribution on 〈X〉.
For π = (πx)x∈X ∈ 〈X〉 and A ⊆ X, let πA = (πx)x∈A and let 〈A〉 = {πA|π ∈ X}. Let ρA be
the marginal distribution on A, that is, ρA is the probability distribution on 〈A〉 such that for
α ∈ 〈A〉 we have ρA(α) =

∑
{π∈〈X〉|πA=α} ρ(π). Let [A]ρ = {α ∈ 〈A〉 | ρA(α) > 0}. We use the

notation (ρ, X) to denote the set of tuples [X]ρ indexed by X with the associated probability
distribution ρ.

The entropy Hρ(A) of ρA is defined to be Hρ(A) = −
∑

α∈[A]ρ

ρA(α) log ρA(α). We remark that

the base of the logarithm is not specified here, but can be chosen to be any convenient value.
Where there is no ambiguity, we will write [A] for [A]ρ and H for Hρ. Let B ⊆ X and let
β ∈ [B]. For α ∈ [A], we have the conditional probability

ρA|B(α, β) =

∑
{π∈〈X〉|πA=α,πB=β} ρ(π)

ρB(β)
.

We may write ρA|B=β for ρA|B(α, β), so we can regard ρA|B=β as a probability distribution on
[A]ρ. The conditional entropy H(A|B = β) of ρA|B=β is defined to be

H(A|B = β) = −
∑

α∈[A]

ρA|B(α, β) log ρA|B(α, β).

The conditional entropy H(A|B) of ρA given ρB is defined to be

H(A|B) =
∑

β∈[B]

H(A|B = β)ρB(β)

and it can be shown that H(A|B) = H(AB) − H(B). Note that if H(A|B) = H(A) then A
and B are independent variables and so ρA|B(α, β) = ρA(α). Hence H(A|B) = H(A) implies
that H(A|B = β) = H(A).

For C ⊆ X, the mutual information I(A; B |C) of ρA and ρB given ρC is defined to be

I(A; B |C) = H(A|C)−H(A|BC).

If C = ∅, we write I(A; B) for I(A; B | ∅). The following inequalities can be shown:

I(A; B |C) ≥ 0,

H(A) ≥ H(A|B) ≥ 0.

B Appendix: Proofs and Technical Results

B.1 Preliminary Results for Dynamic Threshold Schemes

We first prove three lemmas that we will need later. The first lemma notes that for a large
class of regions U the secrets s and s′ must be independent.

Lemma 14 If there exists Γ′ ∈ U with Γ 6⊆ Γ′, then H(s′ | s) = H(s′).
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Proof: Suppose Γ 6⊆ Γ′, so there exists a set A ⊆ P with A ∈ Γ but A /∈ Γ′. Suppose
H(s′|s) < H(s′). As H(s|A) = 0, we have H(s′|AbΓ′) = H(s′|AbΓ′s) ≤ H(s′|s) < H(s′),
contradicting (B) in Definition 6. Hence H(s′|s) = H(s′). 2

The next observation is an adaptation of a result in [6].

Lemma 15 If there exists Γ′ ∈ U , p ∈ P and sets X, X ′ ⊆ P with X 6∈ Γ, pX ∈ Γ, XX ′ ∈ Γ,
XX ′ 6∈ Γ′, pXX ′ ∈ Γ′, then H(p) ≥ H(s) + H(s′).

Proof: Using the relationships in Section A,

H(p) ≥ H(p |X)
= H(s |X)−H(s | pX) + H(p | sX)
= H(s) + H(p | sX) as X /∈ Γ and pX ∈ Γ
≥ H(s) + H(p | sXX ′bΓ′)
= H(s) + H(s′ | sXX ′bΓ′)−H(s′ | psXX ′bΓ′) + H(p | ss′XX ′bΓ′)
= H(s) + H(s′ | sXX ′bΓ′) + H(p | ss′XX ′bΓ′) as pXX ′ ∈ Γ′

= H(s) + H(s′) + H(p | ss′XX ′bΓ′) as XX ′ ∈ Γ and XX ′ /∈ Γ′

≥ H(s) + H(s′).
2

Lemma 16 Consider any probability distribution on a set 〈Z〉 with s′, p ∈ Z, X ⊆ Z. Suppose
s′, X and p satisfy s′ 6∈ X, p 6∈ Xs′, H(s′ |X) = H(s′) and H(s′ |Xp) = 0. Then H(p |X) ≥
H(s′).

Proof: H(p |X) = H(pX)−H(X) = H(s′pX)−H(s′X)+H(s′) = H(p | s′X)+H(s′) ≥ H(s′).
2

B.2 Proofs for Section 4

This sections contains the proofs for Theorems 7 and 8 of Section 4.

B.2.1 Proof of Theorem 7

Proof: Let Γ′ be the (n, n)-threshold structure on P , so Γ′ ∈ U+.

(a) Let A ⊆ P be such that |A| = k. Since k < n, A ∈ Γ \Γ′. By Lemma 14, H(s′ | s) = H(s′).

(b) For p ∈ P , let X ⊆ P \ p be a set of size k − 1 and X ′ = P \ (pX). Applying Lemma 15
and (1) we get H(p) ≥ H(s) + H(s′) = 2H(s). 2
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B.2.2 Proof of Theorem 8

We proceed to prove this result by induction, commencing with the case k = 1 and then the
general case.

Increasing the threshold: the case k = 1

We aim to prove the lower bound on the broadcast size for the case k = 1. We first prove two
technical lemmas and then establish the bound for this case.

Let n > 1 and M = (ρ, ss′PB) be a share minimal (1, n)-threshold scheme that can be updated
to U+(1, n). Let Γ′ ∈ U+(1, n) be a (k′, n′)-threshold structure on P ′ ⊆ P. By share minimality
we have H(p) = 2H(s) for each p ∈ P . Essentially, one part of each share can be thought of
as relating to the original (1, n)-threshold structure Γ and the other part can be thought of as
relating to the new threshold structure Γ′ ∈ U+(1, n). To see this, we factor out the first part
by letting σ ∈ [s] and defining a new probability distribution τ on 〈s′PB〉ρ by τ = ρs′PB|s=σ.
The following lemma shows that (τ, s′PB) is “almost” a (k′, n′)-threshold scheme.

Lemma 17 Let σ ∈ [s] and A ⊆ P ′ be a k′-set. Then

(a) Hτ (s
′) = H(s′);

(b) Hτ (p) = Hτ (s
′);

(c) Hτ (s
′ |AbΓ′) = 0;

(d) Hτ (s
′ | (A \ p)(P \P ′)bΓ′) = Hτ (s

′) for any p ∈ A.

Proof: By definition we have

H(s′ |AbΓ′) = 0 (2)

H(s′ | (A \ p)bΓ′(P \P ′)) = H(s′) for all p ∈ A. (3)

Part (a) follows immediately by noting that Theorem 7 (a) implies that ρs′ = τs′ . Now choose
X ⊆ P, X 6= ∅. It follows from the definition of conditional entropy that∑

σ∈[s]

ρs(σ)Hτ (s
′ | bΓ′X) = H(s′ | bΓ′Xs) = H(s′ | bΓ′X) (4)

as |X| ≥ 1 implies H(s|X) = 0.

To prove part (c), let X = A. By (2) and (4) it follows that Hτ (s
′ | bΓ′A) = 0, as required. For

part (d), let p ∈ A and choose X = (A \ p)(P \P ′). Since Hτ (s
′ | bΓ′X) ≤ Hτ (s

′) for all σ ∈ [s],
by (3) and (4) it follows that Hτ (s

′ | bΓ′X) = Hτ (s
′), as required.

Finally for part (b), apply Lemma 16 to (c) and (d) to obtain Hτ (p) ≥ Hτ (s) = H(s′), the
equality by (a). As

∑
σ∈[s] ρs(σ)Hτ (p) = H(p | s) = H(s | p) + H(p) − H(s) = H(p) − H(s) =

H(s), it follows that Hτ (p) = H(s) for all σ ∈ [s]. 2

We now prove some further properties of τ before establishing the bound.

Lemma 18 With respect to τ :
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(a) The variables {p | p ∈ P} are independent.

(b) For p ∈ P, we have Hτ (s
′ | (P \ p)) = Hτ (s

′).

(c) If Y ⊆ P ′ is a (k′ − 1)-set then Hτ (p | bΓ′Y s′) = 0.

Proof: (a) To show independence, we show that Hτ (p | (P \ p)) = Hτ (p). Let Γ′ ∈ U+(1, n) be
the (1, 1)-threshold structure on P ′ = {p}. From Lemma 17(c) and (d) we have Hτ (s

′ | PbΓ′) = 0
and Hτ (s

′ | (P \ p)bΓ′) = Hτ (s
′). Applying Lemma 16 we get Hτ (s

′) ≤ Hτ (p | (P \ p)bΓ′) ≤
Hτ (p). The result follows by Lemma 17(b).

(b) Let Γ′ ∈ U+(1, n) be the (n, n)-threshold structure. Then, for p ∈ P, P \ p 6∈ Γ′. Thus by
Lemma 17 (d), Hτ (s

′ | (P \ p)bΓ′) = Hτ (s
′) and so Hτ (s

′ | (P \ p)) = Hτ (s
′).

(c) Using the results of Section A,

0 ≤ Hτ (p | bΓ′Y s′)

= Hτ (bΓ′pY s′)−Hτ (bΓ′Y s′)

= Hτ (bΓ′pY )−Hτ (bΓ′Y s′) by Lemma 17(c)

= Hτ (bΓ′pY )−Hτ (bΓ′Y )−Hτ (s
′) by Lemma 17(d)

= Hτ (p | bΓ′Y )−Hτ (s
′)

≤ Hτ (p)−Hτ (s
′)

= 0 by Lemma 17(b).

Hence equality holds throughout. 2

We can now prove the lower bound on the size of broadcast for the case k = 1.

Lemma 19 Let M = (ρ, ss′PB) be a share minimal (1, n)-threshold scheme with 1 < n that
can be updated to U+(1, n). Then for any Γ′ ∈ U+(1, n) where Γ′ is a (k′, n′)-threshold structure,

H(bΓ′) ≥
{

(n′ − k′ + 1)H(s) if n′ < n
(n′ − k′)H(s) if n′ = n.

Proof: Let Γ′ ∈ U+(1, n) be a (k′, n′)-threshold structure defined on P ′ = {p1, . . . , pn′}.

Hτ (bΓ′) = Hτ (bΓ′ | s′) + Iτ (bΓ′ ; s′)

= Hτ (bΓ′ | s′) as Iτ (bΓ′ ; s′) = 0 by (3)

= Hτ (bΓ′ | p1, . . . , pn′s′) + Iτ (bΓ′ ; p1, . . . , pn′ | s′)
≥ Iτ (bΓ′ ; p1, . . . , pn′ | s′)
= Hτ (p1, . . . , pn′ | s′)−Hτ (p1, . . . , pn′ | bΓ′s′)

= Hτ (p1, . . . , pn′ | s′)−
n′∑

i=1

Hτ (pi | bΓ′p1, . . . , p(i−1)s
′)

For 1 ≤ i ≤ k′ − 1 we have Hτ (pi | bΓ′p1, . . . , p(i−1)s
′) ≤ Hτ (pi) = Hτ (s

′) by Lemma 17(b). For
k′ ≤ i ≤ n′ we have Hτ (pi | bΓ′p1, . . . , p(i−1)s

′) = 0 by Lemma 18(c). So

Hτ (bΓ′) ≥ Hτ (p1, . . . , pn′ | s′)− (k′ − 1)Hτ (s
′) (5)
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If n′ = n, then by Lemma 18(a) the pi are independent, and so

Hτ (p1, . . . , pn′ | s′) ≥ (n′ − 1)Hτ (s
′).

If n′ < n, then by Lemma 18 we have

Hτ (p1, . . . , pn′ | s′) ≥ n′Hτ (s
′)

Combining the cases and using Lemma 17(a) and (1) we get

Hτ (bΓ′) ≥
{

(n′ − k′ + 1)H(s) if n′ < n
(n′ − k′)H(s) if n′ = n.

As H(bΓ′) =
∑

σ∈[s] Hτ (bΓ′), the theorem follows, as required. 2

Increasing the threshold: the general case

We are now ready to prove Theorem 8 by induction on k.

If k = 1 then the result is proved by Lemma 19. Suppose k > 1. Let K ⊆ P be a (k − 1)-set
and let Q = P \K. Let κ ∈ [K]ρ and let the probability distribution µ on 〈ss′QB〉ρ be defined
by µ = ρss′QB|K=κ. As ρK(κ) > 0, it follows that [ss′QB]µ 6= ∅.
Let N = (µ, ss′QB) be the scheme corresponding to µ. In order to apply Lemma 19, we now
show that N is a (1, n− (k − 1))-threshold scheme that can be updated to U+(1, n− (k − 1)),
for an appropriate choice of broadcast.

Let p ∈ Q. Now H(s | pK) = 0 so 0 = H(s | p(K = κ)) = Hµ(s | p), as required. Since |K| < k,
H(s |K = κ) = H(s) and so Hµ(s) = H(s). Part (A) of Definition 6 is thus satisfied.

Let Π ∈ U+(1, n − (k − 1)) be an (l,m)-threshold access structure on Q′ ⊆ Q. Let Γ′ be the
(k′, n′)-threshold structure on P ′ = KQ′ with k′ = l + (k − 1) and n′ = m + (k − 1). We show
that bΓ′ is the broadcast variable for Π in µ. Let A ⊆ Q′ be a l-set, so |AK| = k′. Since M
can be updated to Γ′, H(s′ |AKbΓ′) = 0. This implies that H(s′ |A(K = κ)bΓ′) = 0 and so
Hµ(s′ |AbΓ′) = 0. Now let p ∈ A. Since H(s′ | (A \ p)K(P \P ′)bΓ′) = H(s′) it follows from
Section A that Hµ(s′ | (A \ p)(P \P ′)bΓ′) = H(s′). Since |K| < k′, H(s′ |K) = H(s′) and so
Hµ(s′) = H(s′). Part (B) of Definition 6 is thus also satisfied.

So we have N a (1, n−(k−1))-threshold scheme which can be updated to Π ∈ U+(1, n−(k−1))
a (l,m)-threshold access structure using broadcast variable bΓ′ . We apply Lemma 19 to obtain

Hµ(bΓ′) ≥
{

(m− l + 1)Hµ(s) if m < n− (k − 1)
(m− l)Hµ(s) if m = n− (k − 1)

=

{
(n′ − k′ + 1)Hµ(s) if n′ < n
(n′ − k′)Hµ(s) if n′ = n

Since we have already shown that H(s) = Hµ(s), and since∑
κ∈[K]

ρK(κ)Hµ(bΓ′) =
∑

κ∈[K]

ρK(κ)H(bΓ′ |K = κ)

= H(bΓ′ |K)

≤ H(bΓ′),

and Theorem 8 is proved. 2

Finally, we note that if the model is restricted to include the extra requirement that the partic-
ipants belonging to Γ′ cannot obtain s′ prior to knowledge of the broadcast bΓ′ , (in other words
Hτ (s

′ | P) = Hτ (s
′)) then it follows that H(p1, . . . , pn′ | s′) = n′H(s) and from (5) we get the

simplified bound of H(bΓ′) ≥ (n′ − k′ + 1)H(s), instead of the bound in Theorem 8.
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B.3 Proofs for section 5

This section contains the proofs of Theorems 9 and 10 from Section 5.

B.3.1 Proof of Theorem 9

Proof: Let Γ′ ∈ U−
1 be a (1, n − k)-threshold structure on P ′ (Γ′ exists as k < n). Noting

that |P \P ′| = k, choose X ⊆ P \P ′ to be a set of size k − 1 and X ′ ⊆ P \ P ′ to be a set of
size 1 disjoint from X. Now let p ∈ P ′. The sets p, X, X ′ satisfy the conditions of Lemma 15,
so we have H(p) ≥ H(s) + H(s′) = 2H(s) by (1). 2

B.3.2 Proof of Theorem 10

We have already seen that the two regions U−
1 and U−

2 are in some respects fundamentally
different. In fact, to prove a lower bound on the broadcast size for updating to U− we need
two different approaches for each of these two regions. We prove these results separately in
Theorems 21 and 22. The bound in Theorem 10 then follows immediately.

Decreasing the threshold: updating to U−
1

Recall that our aim is to establish a bound for updating to U−. In this section we consider
schemes for updating to U− but will only be concerned with how big the broadcast size is in
the case that the new threshold parameters belong to U−

1 . We proceed by induction on the new
threshold parameter, first proving the bound for updating to k′ = 1 and then for updating to
general k′.

Lemma 20 Let M = (ρ, ss′PB) be a share minimal (k, n)-threshold scheme with k < n that
can be updated to U−. Then for any (1, n′)-threshold structure Γ′ ∈ U−

1 defined on P ′ ⊆ P,
H(bΓ′) ≥ n′H(s′).

Proof: Let Γ′ ∈ U−
1 be a (1, n′)-threshold structure on P ′. Since Γ′ ∈ U−

1 we have n−n′ > k−1.
Let X ⊆ P \ P ′ be a set of size k − 1, let X ′ ⊆ P \ P ′ be a set of size 1 disjoint from X and
let p ∈ P ′.

As in the proof of Theorem 9, p, X and X ′ satisfy the conditions of Lemma 15. As H(s) = H(s′)
and H(p) = 2H(s), equality holds throughout the proof of Lemma 15. In particular,

H(p | sX) = H(s′) (6)

H(p | sXX ′bΓ′) = H(s′) (7)

H(s′ | sXX ′bΓ′) = H(s′). (8)

It follows from (8) that s and s′ are independent.

For each ω ∈ [sX], define a new probability distribution τ on 〈s′P ′B〉ρ by τ = ρs′P ′B|sX=ω.
From (8) it follows that H(s′ | sX) = H(s′) and so

Hτ (s
′) = H(s′). (9)

21



Also by (8), H(s′ | sXbΓ′) = H(s′ | sX) and so Hτ (s
′ | bΓ′) = Hτ (s

′) (see Section A). Since
p ∈ Γ′ we have H(s′ | psXbΓ′) = 0 and thus Hτ (s

′ | pbΓ′) = 0. By Lemma 16 it follows that
Hτ (p | bΓ′) ≥ Hτ (s

′) and hence Hτ (p) ≥ Hτ (s
′). By (6) and (9) it follows that

Hτ (p) = H(s′). (10)

Let t ∈ P . Now consider updating to ∆, a (1, 1)-threshold structure on P ′ = {t}. So P \ t 6∈ ∆,
that is H(s′ | (P \ t)b∆) = H(s′) and H(s′ | P b∆) = 0. So by Lemma 16, H(t | (P \ t)b∆) ≥
H(s′). It follows that

H(t | P \ t) ≥ H(s′) and H(s′ | P \ t) = H(s′). (11)

Returning to Γ′, let P ′ = {p1, . . . , pn′}. Then Hτ (pi | p1, . . . , pi−1) ≤ Hτ (pi) = H(s′) by (10).
Further, for i ≥ 2,

H(pi | p1, . . . , pi−1sX) = H(pi | p1, . . . , pi−1X) as p1X ∈ Γ

≥ H(s′) by (11).

Hence Hτ (pi | p1, . . . , pi−1) = H(s′) for i ≥ 2. For i = 1, Hτ (p1) = H(s′) by (10). So

Hτ (P ′) =
n′∑

i=1

Hτ (pi | p1, . . . , pi−1) = n′H(s′). (12)

Since (k − 1) + n′ < n and s, s′ are independent, it follows from (11) that

H(s′ | p1, . . . , pn′sX) = H(s′ | p1, . . . , pn′X) = H(s′). (13)

By (7), H(p | sXbΓ′) = H(s′) and by (8), H(s′ | sXbΓ′) = H(s′). Now H(p | s′sXbΓ′) =
H(s′ | psXbΓ′) + H(p | sXbΓ′)−H(s′ | sXbΓ′) = 0 + H(s′)−H(s′) = 0. Thus

Hτ (p | bΓ′s′) = 0. (14)

Thus,

Hτ (bΓ′) ≥ I(bΓ′ ; p1 . . . pn′ | s′)
= Hτ (p1 . . . pn′ | s′)−Hτ (p1 . . . pn′ | bΓ′s′)

= Hτ (s
′ | p1 . . . pn′) + Hτ (p1 . . . pn′)−Hτ (s

′)−Hτ (p1 . . . pn′ | bΓ′s′)

= Hτ (p1 . . . pn′)−
n′∑

i=1

Hτ (pi | p1 . . . pi−1bΓ′s′) by (9) and (13)

= n′H(s′) by (12) and (14).

Thus we have H(bΓ′) =
∑

ω∈[sX]ρ ρsX(ω)Hτ (bΓ′) ≥ n′H(s′), as required. 2

Theorem 21 Let M = (ρ, ss′PB) be a share minimal (k, n)-threshold scheme with k < n
that can be updated to U−. Then for any Γ′ ∈ U−

1 , where Γ′ is a (k′, n′)-threshold structure,
H(bΓ′) ≥ (n′ − k′ + 1)H(s′).
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Proof: The proof is similar to Theorem 8. If k′ = 1 then the result is proved by Lemma 20.
Suppose k′ > 1 and Γ′ is defined on P ′. Let K ⊆ P ′ be a (k′ − 1)–set and Q′ = P ′ \K. Let
κ ∈ [K]ρ and let the probability distribution µ on 〈ss′Q′B〉ρ be defined by µ = ρss′Q′B|K=κ.

Let N = (µ, ss′Q′B) be the scheme corresponding to µ. In a similar way to the proof of
Theorem 8 it can be shown that N is a (k− (k′− 1), n− (k′− 1))-threshold scheme which can
be updated to Σ′ ∈ U−

1 (1, n− (k′ − 1)), with Hµ(s) = Hµ(s′) = H(s′). It can be further shown
that the broadcast for Σ′ a (1, m)-threshold structure onR′ is bΣ, where Σ is the (k′, m+(k′−1))-
threshold structure on R = R′K. The broadcast corresponding to the (1, n′−(k′−1))-threshold
structure on Q′ is thus bΓ′ . By Lemma 20 we have

Hµ(bΓ′) ≥ (n′ − (k′ − 1))Hµ(s).

However, by definition H(bΓ′) =
∑

κ∈[K] ρK(κ)Hµ(bΓ′). Thus H(bΓ′) ≥ (n′ − k′ + 1)H(s), as
required. 2

Decreasing the threshold: updating to U−
2

We now prove the complementary result to Theorem 21. Thus we consider schemes for updating
to U− but will only be concerned with how big the broadcast size is in the case that the new
threshold parameters belong to U−

2 .

Theorem 22 Let M = (ρ, ss′PB) be a share minimal (k, n)-threshold scheme with k < n that
can be updated to U−. Then, for any Γ′ ∈ U−

2 , where Γ′ is a (k′, n′)-threshold structure, we have

H(bΓ′) ≥ (min(k, n′)− k′ + 1)H(s).

Proof: We divide the proof into three steps. In Step 1, we prove that for A ⊆ P,

H(A) = (min(k, |A|) + |A|)H(s). (15)

In Step 2, for M as in the theorem and Γ′ ∈ U−
2 (k, n) with Γ′ a (1, n′)-threshold structure (so

k − 1 ≥ n− n′), we will prove that

H(bΓ′) ≥ min(k, n′)H(s). (16)

In Step 3 we complete the proof of the theorem.

We begin our proof. We note that since M can be updated to U−, equation (11) from the
proof of Lemma 20 is valid. That is,

H(t | P \ t) ≥ H(s′) and H(s′ | P \ t) = H(s′). (17)

Step 1. We first show that for any a–set A of P , with a ≤ k,

H(A) = 2aH(s). (18)

We will do this by induction on k on the class of share minimal (k, n)-threshold schemes with
k < n which can be updated to U−(k, n). If k = 1 then H(p) = 2H(s) for p ∈ P as the scheme is
share minimal. Our inductive hypothesis will be that (18) holds for all (`, n)-threshold schemes
with 1 ≤ ` ≤ k.
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For a (k, n)-threshold scheme (ρ, ss′PB) with 1 < k < n, let p ∈ P and let π ∈ [p]ρ. Define ω
on 〈ss′(P \ p)B〉 by ω = ρss′(P \ p)B|p=π.

It can be shown that (ω, ss′(P \ p)B) is a share minimal (k − 1, n − 1)-threshold scheme with
1 ≤ k−1 ≤ n−1, which can be updated to U−(k−1, n−1). By inductive hypothesis, Hω(A′) =
2(a− 1)Hω(s) for any set A′ of P \ p of size a− 1 (1 ≤ a ≤ k). But Hω(A′) = H(A′|p = π), so
H(A′|p) = Hω(A′) = 2(a−1)H(s). Hence H(A′p) = H(A′|p)+H(p) = 2(a−1)H(s)+2H(s) =
2aH(s), proving (18).

Now let X be a (k − 1)–set, and let p, q ∈ P \X with p 6= q. Thus H(s|pX) = H(s|qX) = 0
and H(s|X) = H(s). However, we have 0 ≤ I(p; q|sX) = H(p|sX) −H(p|qsX) = H(psX) −
H(sX)−H(p|qX) (as H(s|qX) = 0), which is equal to H(s|pX)+H(pX)−H(s|X)−H(X)−
H(p|qX) = 0 + 2kH(s)−H(s)− 2(k − 1)H(s)−H(p|qX) by (18). Hence

H(p|qX) ≤ H(s). (19)

We now prove (15). Let A ⊆ P. If |A| ≤ k then (15) holds by (18). So suppose |A| = a > k.
Write A = K ∪ (A \K) for a k–subset K of A. Let A \K = {p1, . . . , pa−k}. By (17) and (19)

H(s) ≤ H(pi|p1 · · · pi−1K) ≤ H(s)

for 1 ≤ i ≤ a− k, and so

H(A) = H(K) +
a−k∑
i=1

H(pi|p1 · · · pi−1K)

= (2k + (a− k))H(s)

= (k + a)H(s)

proving (15) for the case |A| = a > k.

Step 2. Let M be as in the theorem and let Γ′ ∈ U−
2 (k, n) be a (1, n′)-threshold structure on

P ′ ⊆ P, so k − 1 ≥ n− n′. Further,

H(s′|pbΓ′) = 0 for all p ∈ P ′ (20)

H(s′|bΓ′) = H(s′). (21)

Now

H(p|bΓ′s′) = H(s′|pbΓ′) + H(pbΓ′)−H(bΓ′s′)

≤ 0 + (H(p) + H(bΓ′))− (H(bΓ′) + H(s)) by (20) and (21)

= H(p)−H(s′) = H(s′). (22)

If n′ = n let Q = P ′ \ p for some p ∈ P ′, otherwise n′ < n and let Q = P ′. Now

H(bΓ′) ≥ H(bΓ′|s′) = H(bΓ′|s′Q) + I(bΓ′ ; Q|s′)
≥ I(bΓ′ ; Q|s′)
= H(Q|s′)−H(Q|bΓ′s′). (23)

Now H(Q|s′) = H(Q) by (17), and by (15) we have H(Q) = (min(k, |Q|) + |Q|)H(s). Further,
if Q = {p1, . . . , pa}, then

H(Q|bΓ′s′) =
a∑

i=1

H(pi|p1 · · · pi−1bΓ′s′) ≤
a∑

i=1

H(pi|bΓ′s′) ≤ aH(s′) by (22). (24)
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Combining (23) and (24), H(bΓ′) ≥ (min(k, a) + a− a)H(s′) = min(k, a)H(s′). Now if n′ < n
then a = n′. Otherwise n′ = n and, as k ≤ n, min(k, a) = k. Thus H(bΓ′) ≥ min(k, n′)H(s′),
proving (16).

Step 3. We now let Γ′ ∈ U−
2 (k, n) be a (k′, n′)-threshold structure. If k′ = 1 the result follows

by (16). Suppose k′ > 1. We proceed in a similar manner to the proof of Theorem 21. Let
K ⊆ P ′ be a (k′− 1)–set and let κ ∈ [K]ρ. Let probability distribution µ on 〈ss′(P \K)B〉ρ be
defined by µ = ρss′(P \K)B|K=κ. It can be shown that N = (µ, ss′(P \K)B) is a share minimal
(k−(k′−1), n−(k′−1))-threshold scheme which can be updated to U−

2 (k−(k′−1), n−(k′−1))
with Hµ(s) = Hµ(s′) = H(s). For Σ′ ∈ U−

2 (k−(k′−1), n−(k′−1)), where Σ′ is (l,m)-threshold
on Q′, the broadcast is bΣ′ where Σ′ is the (l + (k′ − 1), m + (k′ − 1)) access structure on Q′K.
Hence bΓ′ is the broadcast in N for Π, where Π is the (1, n′ − (k′ − 1))-threshold structure on
P ′ \K. By (16) we have

Hµ(bΓ′) ≥ min(k − (k′ − 1), n′ − (k′ − 1))Hµ(s′) ≥ (min(k, n′)− k′ + 1)Hµ(s′).

Now H(bΓ′) =
∑

κ∈[K] ρK(κ)Hµ(bΓ′), so H(bΓ′) ≥ (min(k, n′)−k′+1)H(s′), proving the theorem.
2

The bound in Theorem 10 now follows immediately from Theorems 21 and 22.
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