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Abstract. The most common method for computing exponentiation of
random elements in Abelian groups are sliding window schemes, which
enhance the efficiency of the binary method at the expense of some
precomputation. In groups where inversion is easy (e.g. elliptic curves),
signed representations of the exponent are meaningful because they de-
crease the amount of required precomputation. The asymptotic best
signed method is wNAF, because it minimizes the precomputation effort
whilst the non-zero density is nearly optimal. Unfortunately, wNAF can
be computed only from the least significant bit, i.e. right-to-left. How-
ever, in connection with memory constraint devices left-to-right recoding
schemes are by far more valuable.

In this paper we define the MOF (Mutual Opposite Form), a new canon-
ical representation of signed binary strings, which can be computed in
any order. Therefore we obtain the first left-to-right signed exponent-
recoding scheme for general width w by applying the width w sliding
window conversion on MOF left-to-right. Moreover, the analogue right-
to-left conversion on MOF yields wNAF, which indicates that the new
class is the natural left-to-right analogue to the useful wNAF. Indeed,
the new class inherits the outstanding properties of wNAF, namely the
required precomputation and the achieved non-zero density are exactly
the same.
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1 Introduction

In modern cryptosystems one of the most important basic operations is expo-
nentiation g%, where g is an element of an Abelian group G and d is an integer.
A non-zero positive integer d is uniquely represented by a binary string:

d= dy_i|dp_s]|...|d1|do,

where a|b denotes the concatenation of bits a, b, and d; € {0,1} fori =0,1,...,n—
1.



The most common method for performing an exponentiation is the square-
and-multiply algorithm, which computes g% according to the bits d; (therefore it
is often called binary method). The efficiency of this procedure may be enhanced
if precomputation is allowed. In this case, we consider more general represen-
tations of the exponent, where each non-zero bit d; is not restricted to be 1,
but is an element of a suitable digit set 7 of integers. We call d = ., d;2" a
T-representation, if d; € 7 U {0} holds for each i. In general, 7-representations
loose the property of uniqueness. The left-to-right square-and-multiply algorithm
is easily adjusted to work with a 7 -representation of the exponent, namely multi-
plication by the base g is replaced with multiplication by precomputed elements
g%, where d; € T is the appropriate digit of d. Therefore, the important fea-
tures of a 7-representation are the number of non-zero digits and the cardinality
of 7T, because they determine the required time and memory consumption for
computing ¢%, respectively. The research problem here is to find optimized rep-
resentation classes in the sense of trade-off between high non-zero density and
low memory consumption.

1.1 New Motivation for Exponentiation Algorithms

As the ubiquitous computing devices are penetrating our daily life, the impor-
tance of memory constraint devices (e.g. smart cards) in cryptography is increas-
ing. Smart cards are equipped with several Kbytes RAM only and most of them
are reserved for OS and stack. Thus, cryptographic algorithms should be opti-
mized in terms of memory. For this reason we are reluctant to consume memory
except the necessary precomputation related to 7 for computing exponentia-
tion. Note that in connection with memory constraint devices, the most popular
cryptosystems are based on elliptic curves [Kob87,Mil86], because elliptic curve
cryptosystems (ECC) provide high security with moderate key-lengths. As ellip-
tic curve groups are written additively, exponentiation has to be understood as
scalar multiplication in this context.

Exponent recoding, i.e. the rewriting of the binary exponent to a 7-
representation, may be performed from the least significant bit (we say “right-
to-left”) and from the most significant bit (“left-to-right”), respectively. For the
purpose of ECC on memory constraint devices we prefer left-to-right to right-
to-left recoding methods. The reason is as follows: In the case of elliptic curve
scalar multiplication, the left-to-right evaluation stage is the natural choice (see
Section 5 for details). If the exponent recoding is done right-to-left, it is neces-
sary to finish the recoding and to store the recoded string before starting the
left-to-right evaluation stage. In other words, we require additional n-bit (i.e.
exponential size O(n)) RAM for the right-to-left exponent recoding, where n is
the bit size of the scalar.

On the contrary, if a left-to-right recoding technique is available, the recoding
and evaluation stage may be merged to obtain an efficient exponentiation on the
fly, without storing the recoded exponent at all. Therefore it is an important
task to construct a left-to-right recoding scheme, even if the size of 7 and the
non-zero density are not improved.



1.2 Known Solutions

The most established techniques for generating 7 representations are window
methods (see, e.g., the textbooks [Knu81,MOV96] and the survey paper [Gor98]).
Loosely speaking, in the window method with width w successively w consecutive
bits of the binary exponent are scanned and, if necessary, replaced by a table-
entry according to 7. We distinguish fixed window methods like the 2%-ary
method, where the window segmentation of the binary string is predetermined
and the more advanced sliding window methods, where zero runs are skipped.
As an example, let us consider the sliding window method with width w = 3. In
this case, T equals {1,3,5,7}. During the recoding stage, the binary exponent
is rewritten by performing the following replacements: 1|1 — 0|3, 1|0|1 — 0|0]5,
and 1/1|1 — 0]0|7. Note that the sliding window conversion can be performed
left-to-right and right-to-left as well. The results may differ syntactically, but
the asymptotic non-zero density of both representations is the same, namely
1/(w+1). In the unsigned case (i.e. 7 consists only of positive integers), sliding
window techniques are the method of choice.

However, a nice property of elliptic curves is that inversion is computed vir-
tually for free. In this case, it is meaningful to consider digit sets containing
negative integers, too. This reduces precomputation effort, because g~% may be
computed from ¢¢ on the fly, such that only the elements gl?l for i € 7 have
to be precomputed. However, the question arises how to construct a signed 7
representation. In general, there are two strategies. The first one is to construct a
{—=1,+1} representation of d (also called a signed binary representation) and to
apply window methods afterwards. Here, the most common signed binary rep-
resentation is NAF (non-adjacent-form) [Rei60,JEEE], which can be obtained
from the binary representation by applying the conversion *|1|1 — * + 1]|0|1
repeatedly, where 1 denotes —1 and * stands for any binary digit. However, the
carry-over +1 occurring in the first digit forces the recoding to be performed
from the least significant bit, i.e. right-to-left. The second strategy is to gen-
eralize the NAF recoding for w > 2 in order to obtain wNAF [S0l00,BSS99]
(here, the non-adjacent property states that among any w adjacent bits, at
most one is non-zero). According to [BSS99], this strategy is the optimal one
for w > 3. But unfortunately, this strategy suffers from the same drawback as
the first one, namely as carry-overs are required, the recoding is restricted to be
done right-to-left. Consequently, all exponentiation strategies based on signed
T-representations require O(n) bits of RAM additional memory to store the
recoded exponent. Solely in the case of w = 2, Joye and Yen proposed a left-
to-right binary recoding algorithm [JY00]. But it has been an unsolved problem
to generate a left-to-right recoding algorithm for a general width w > 2. Note
that the asymptotic non-zero density of wNAF is the same as for the unsigned
sliding window method on binary, namely 1/(w + 1). Therefore, wNAF can be
seen as its natural signed analogue, and we guess that there could be a carry-
free generation method for wNAF. In this paper, the term carry-free refers to
an algorithm that transforms the input string in situ, i.e. in each step only the
knowledge of a fixed number of consecutive input bits is necessary.



1.3 Owur Contributions

The aim of this paper is to solve both problems as follows: (1) we define a new
canonical representation class of signed binary. We call it MOF (Mutual Opposite
Form) and prove that each integer can be uniquely represented as a MOF. But
the outstanding property of MOF is that it can be efficiently developed from a
binary string right-to-left or left-to-right, likewise. Consequently, analogue to the
unsigned case, sliding window methods may be applied to receive left-to-right
and right-to-left recoding schemes for general width w. Surprisingly, applying the
right-to-left width w sliding window method on MOF yields wNAF. However,
the observation that in the unsigned case right-to-left sliding window yields
an unsigned string with non-adjacent property stresses the analogy between
unsigned Binary and signed MOF. Therefore we achieve a carry-free wNAF
generation, a benefit of its own.

(2) Our major aim is to develop a left-to-right recoding algorithm, and this
is achieved straightforwardly by applying the width w sliding window method
left-to-right on MOF. We call the so-defined class wMOF and prove that each
integer can be uniquely represented as a wMOF and that the asymptotic non-
zero density of wMOF equals 1/(w+1), which is the same as for wNAF. Therefore
the classes wNAF and wMOF may be seen as dual to each other. In general our
proposed algorithm asymptotically requires additional O(w) bits of RAM, which
is independent from the bit size n and dramatically reduces the required space
comparing with previous methods. Consequently, due to its left-to-right nature,
the new scheme is by far more convenient with respect to memory consumption
than previous schemes. Interestingly, a straight-forward proof shows that for
w = 2 the proposed method produces the same output as the Joye-Yen recoding,
but 2MOF is more efficient in terms of counting the number of basic operations.

We finish this work with some explicit algorithms, proving that the proposed
schemes are indeed useful for practical purposes. For example, we develop gener-
ating algorithms for wMOF based on efficient table-lookups, and we show how to
exploit wMOPF for implementing on-the-fly elliptic curve scalar multiplication.

2 Signed Representations

In this section we review some signed representations, which are important in
connection with elliptic curve scalar multiplication. For the sake of simplicity,
we only deal with non-negative integers d in the following. We call d =), d;2°
a T-representation, if 7 is a set of integers and d; € 7 U {0} holds for each
1. If T contains negative integers, we speak of signed representations, and if 7
equals {£1}, of signed binary representations. In general, signed binary repre-
sentations are redundant. The most established one is NAF (non-adjacent form),
introduced by Reitwiesner 1960 [Rei60]. A generalization of Reitwiesner’s NAF
recoding idea can be found in [Pro00,Avi61]. NAF can be easily defined by the
property that at most one out of two consecutive digits is non-zero. Reitwiesner
was able to show that ignoring leading zeros each integer has a unique NAF



representation. For this reason, some authors call NAF a canonical signed bi-
nary representation [EK94]. In addition, as shown among others by Jedwab and
Mitchell [JM89], NAF representation provides the minimal Hamming weight.
Consequently, the NAF representation of the exponent is the optimal choice if
signed methods are meaningful and no precomputation is considered. It was first
pointed out by Morain and Olivos that NAF can be used to speed up elliptic
curve scalar multiplication [MO90].

However, the situation is less clear if extra memory is available and precom-
putation is admitted. In this case, signed representations using larger digit sets
T should be taken into account. One strategy to construct a signed representa-
tion is to apply sliding window methods on signed binary representations. But as
signed binary representation is redundant, the question arises which representa-
tion is the best for this purpose. Indeed, this is assumed to be an open problem
by De Win et al. [WMPWO98]. There are several methods to construct signed
binary representations as a base for sliding window schemes [KT92,WMPW9g],
but none of these can be performed left-to-right. In this paper, we will develop a
left-to-right recoding scheme, which is of high value in connection with memory
constraint devices.

A different approach is wNAF. Instead of applying window techniques to
signed binary representations, wNAF is computed directly from binary strings
using a generalization of NAF recoding. First we review the definition of wNAF
as stated in [Sol00].

Definition 1 (wNAF). A sequence of signed digits is called wNAF iff the fol-
lowing three properties hold:

1. The most significant non-zero bit is positive.
2. Among any w consecutive digits, at most one is non-zero.
3. Each non-zero digit is odd and less than 21 in absolute value.

Note that 2NAF and NAF are the same. Algorithm 1 describes the generation
of wNAF as proposed by Solinas [Sol00].

Algorithm 1 Generation of wNAF [Sol00]
Input: width w, an n-bit integer d
Output: wNAF §,|0n—1]...|do of d
30
while d > 1 do
if d is even then
51‘ —0
else
6i <+ d mods 2¥; d«—d—;
d—d/2; i—i+1
return (6,,0,-1,-..,00)-




Here “mods” means the signed modulo, namely a mods b is defined as @ mod b
and —b/2 < a < b/2. The algorithm generates wNAF from the least signif-
icant bit, that is right-to-left generation again. The average density of non-
zero bits is asymptotically 1/(w + 1) for n — oo, and the digit set equals
T = {41,43,...,+(2*"1 — 1)} which seems to be minimal. Thus wNAF and
its variants like modified window NAF [Mo6l02] are optimal in the sense of the
trade-off between speed and memory for w > 3 [BSS99,BHLMO1]. There are
several other algorithms for generating wNAF, for example see [BSS99,MOC97]
but each method needs carry-overs. Note that in the worst case all remaining
bits are affected by the carry, therefore the previously known wNAF algorithms
can not be considered as local methods. By inspecting Algorithm 1 closely, we
observe that this generation can be seen as the natural signed analogue to the
right-to-left sliding window method on (unsigned) Binary (here, mod instead of
mods is computed). Indeed, the latter method produces a representation that
fulfills the nonadjacent requirement (see Definition 1, property 3). Consequently,
we conjecture that there might be a signed binary representation that produces
wNAF when handled with sliding window conversions. The signed binary rep-
resentation introduced in the next section will also serve for this purpose.

3 MOF: New Canonical Representation for Signed
Binary Strings

In this section we present a new signed representation of integers. The proofs
of the propositions in this section are Appendix A. In order to achieve a unique
representation, we introduce the following special class of signed binary strings,
called the mutual opposite form (MOF).

Definition 2 (MOF). The n-bit mutual opposite form (MOF) is an n-bit
signed binary string that satisfies the following properties:

1. The signs of adjacent non-zero bits (without considering zero bits) are oppo-
site.

2. The most non-zero bit and the least non-zero bit are 1 and 1, respectively,
unless all bits are zero.

Some zero bits are inserted between non-zero bits that have a mutual opposite
sign. An example of MOF is 0100101000100110. An important observation is that
each positive integer can be uniquely represented by MOF. Indeed, we have the
following theorem.

Theorem 1. Let n be a positive integer. (n + 1)-bit MOF has 2" pair-wise
different representations. There is the bijective map between elements of (n+1)-
bit MOF and n-bit binary strings.

From this theorem, any n-bit binary string can be uniquely represented by
(n 4+ 1)-bit MOF. We obviously have the following corollary about the non-zero
density of MOF.

Corollary 1. The average non-zero density of n-bit MOF is 1/2 for n — oc.



3.1 Converting Binary String to MOF

We show a simple and flexible conversion from n-bit binary string to (n + 1)-bit
MOF.

The crucial point is the following observation. The n-bit binary string d can
be converted to a signed binary string by computing p = 2d & d, where ‘&’
stands for a bitwise subtraction. Indeed, we convert d as follows:

2d = dp_1 | dn—2 [...] dici || di | do |
S d= | dn_1 | ‘ d; | | ds | dy | do
n = dn—l | dn_Q 7dn_1 | ‘ di—l *di | | dl *dz | d() — d1 | 7d().
Here the i-th signed bit of u is denoted by p;, namely u; = d;—1 — d; for i =
1,...,n—1and p, = dn_1, o = —dy. We can prove that the signed representation

u is MOF.

Proposition 1. The operation = 2d © d converts binary string d to its MOF
i

Algorithm 2 provides an explicit conversion from Binary to MOF.

Algorithm 2 Left-to-Right Generation from Binary to MOF
Input: a non-zero n-bit binary string d = dp—1|dn—2| ... |d1|do
Output: MOF | ... |p1|po of d

Hn = dn—1

for i =n —1 down to 1 do
Mg di—1 —d;

po « —do,

return (:U/YH Hn—1, .5 K1, MO)

In order to generate the i-th bit u;, Algorithm 2 stores just two consecutive
bits d;—; and d;. This algorithm converts a binary string to MOF from the most
significant bit in an efficient way. Note that it is also possible to convert a binary
string to MOF right-to-left. Thus MOF representation is highly flexible.

Remark 1. Interestingly, the MOF representation of an integer d equals the re-
coding performed by the classical Booth algorithm for binary multiplication
[Boo51]. The classical Booth algorithm successively scans two consecutive bits
of the multiplier A (right-to-left). Depending on these bits, one of the following
operations is performed:

No operation, if (ai,ai—1) € {(0,0),(1,1)},
Subtract multiplicand B from the partial product, if (a:,a:—1) = (1,0),
Add multiplicand B to the partial product, if (as,ai—1) = (0,1),

where a_; is defined as 0. Of course, the design goal of this algorithm was to
speed up multiplication when there are consecutive ones in the multiplier A, and
to provide a multiplication method that works for signed and unsigned numbers
as well. To our knowledge, this representation never served as a fundament of
theoretical treatment of signed binary strings.



4 Window Methods on MOF

In this section we show how to decrease the non-zero density of MOF by ap-
plying window methods on it. First we consider the right-to-left width w sliding
window method which surprisingly yields the familiar wNAF. In contrast to pre-
viously known generation methods, the new one is carry-free, i.e. in each step
the knowledge of at most w + 1 consecutive input bits is sufficient.

Then we define the dual new class wMOF as the result of the analogue left-
to-right width w sliding window method on MOF. This conversion leads to the
first left-to-right signed recoding scheme for general width w.

4.1 Right-to-Left Case: wNAF

In order to describe the proposed scheme, we need the conversion table for width
w. First, we define the conversions for MOF windows of length [, such that the
first and the last bit is non-zero:

1/1[0] ... |o[o]1 1[T[0] ... {0[1]0[T
0]...[0]12" 72 + 1 = { 1[1]0]...[0[1|T 0]...J0[2""2 + 3 = { 1[T[0[...[0[L[T[1 ...

l ! l l

1/0]... Jo[T[1[T 1/0] ... [0[o[T
.. 0|02 =3 ¢ 1]0]... |o[T|o[1 0l..J0j2' " = 1 { 1[0]...|o[T]1
————

l l 1 l

In addition, we have analogue conversions with all signs changed. To generate
the complete table for width w, we have to consider all conversions of length
1=2,3,...,w. If | <w holds, the window is filled with leading zeros.

Example: In the case of w = 3, we use the following table for the right-to-left
sliding window method:

. 001 - 001 101 . 101
Table, 57y : 001 {011 001 «— {011 003 { 11 003 {Iﬁ

In an analogue way Table, gy is defined for general w. Based on this table,
Algorithm 3 provides a simple carry-free wNAF generation.

Algorithm 3 Right-to-left Generation from Binary to wNAF
Input: width w, a non-zero n-bit binary string d = d,—1|dn—2| ... |d1]do
Output: wNAF v,|...|vi|v of d
dptw—2 «—0; dpgw—3 «—0;...5 dp «—0; dog «—0; i<0
while i < n do
if di_l = di then
v «—0; 1 —=1+1
else {The MOF window begins with a non-zero digit righthand}

(Vitw—1,...,v:) < Table,sw(ditw—2 —ditw—1,ditw-3—ditw_2,...,di—1 —d;)
114w
return (vp,...,v1,10)




Obviously, the output of Algorithm 3 meets the notations of Definition 1,
therefore it is wNAF. If we knew that Definition 1 provides a unique represen-
tation, we could deduce that Algorithm 3 outputs the same as Algorithm 1.
This is true, although we could not find a proof in literature. For the sake of
completeness, we prove the following theorem in Appendix A via exploiting the
uniqueness of MOF representation.

Theorem 2. Every non-negative integer d has a representation as wNAF,
which is unique except for the number of leading zeros.

4.2 Left-to-Right Case: wMOF

In this section we introduce our new proposed scheme. The crucial observation
is that as the generation Binary — MOF can be performed left-to-right, the
combination of this generation and left-to-right sliding window method leads to
a complete signed left-to-right recoding scheme dual to wNAF.

In order to describe the proposed scheme, we need the conversion table for
width w. The conversions for MOF windows of length [, such that the first and
the last bit is non-zero, are defined in exactly the same way as in the right-to-
left case (see the table in section (4.1) and reflect the assignments). To generate
the complete table for width w, we have to consider all conversions of length
1=2,3,...,w as before. The only difference is that if [ < w holds, the window
is filled with closing zeros instead of leading ones. As an example, we construct
the conversion table Table, gy for width 4:

- 1110 1101 1001
1000} +— 1000 1100}|—>0100 1010 } — 0030 ﬁlT}HOOOE) 1011 } — 0007
- - - - 1110 —. 1101 — 1001 -
1000} 1000 1100}»—>0100 TOlO}HOOi’:O 1171 } — 0005 TOlT}HOOO?

The table is complete due to the properties of MOF. Note that because of the
equalities *11 = %01, *11 = %01 usually two different MOF-strings are converted
to the same pattern. In an analogue way, Table,, gy is defined for general width
w. In this case the digit set equals 7 = {#1,43,...,4£2¥~! — 1}, which is
the same as for wNAF. Therefore, the scheme requires only 2%~2 precomputed
elements. Algorithm 4 makes use of this table to generate wMOF left-to-right.

In order to deepen the duality between wNAF and wMOF, we give a formal
definition of wMOF and prove that it leads to a unique representation of non-
negative integers.

Definition 3. A sequence of signed digits is called wMOF iff the following three
properties hold:

1. The most significant non-zero bit is positive.
2. All but the least significant non-zero digit x© are adjoint by w-1 zeros as
follows:
— in case of 271 < |z| < 2% for an integer 2 < k < w — 1 the pattern
equals 0...0x0...0,
N~

k w—k—1



— in case of |x| = 1 either the pattern equals ©0...0 and the next lower
——
w—1
- digit h ite st th tt Is 020...0
non-zero digit has opposite sign from x or the pattern equals Ox
w—2
and the next lower non-zero digit has the same sign as x.
If x is the least significant non-zero digit, it is possible that the number of

right-hand adjacent zeros is smaller than stated above. In addition it is not
possible that the last non-zero digit is a 1 following any non-zero digit.
3. Each non-zero digit is odd and less than 2~ in absolute value.

This definition is directly related to the generation of wMOF. Note that the
exceptional case corresponding to the least significant bit takes in account that
the last window may be shorter than w.

Algorithm 4 Left-to-Right Generation from Binary to wMOF
Input: width w, a non-zero n-bit binary string d = dp—1|dn—2|...|d1|do
Output: wMOF 6 = 6,|0n—1]...|61|00 of d
d_1«—0; dp«—0; 1n
while i > w —1 do
if dz = difl then
6 —0;i—i—1
else {The MOF window begins with a non-zero digit lefthand}
((5»;, (Sifl ey 6i7w+1) Al Tablewﬁv (difl - di7 difz — difl, ey dz‘fw - di7w+1)
i1 —w
if ¢ > 0 then
((51‘, 51'71 ey (50) <~ Tablei+1g’v(di,1 — di7 difz — difl, ey do — d17 —do)
return (6,,0,-1,...,01,00)-

Regarding the uniqueness and the non-zero density of wMOF, we have the
following two theorems, proven in Appendix A.

Theorem 3. FEvery non-negative integer d has a representation as wMOF,
which is unique except for the number of leading zeros.

Theorem 4. The average non-zero density of wMOF is asymptotically 1/(w+1)
forn— oo.

We finish this section with a detailed example of the conversion from Binary
to MOF and the effects of several sliding window methods.

Bin 11101001100100010101110101010111
MOF 100111010101100111110011111111001

2MOF 100011010100100010110001010101001
3MOF 100003000300100003010000300301001
4MOF 000700050000700000500070005003001
NAF 100101010100100101010001010101001
3NAF 100003000300100010030001003003001
ANAF 000700050003000700050000300050007

10



4.3 Left-to-Right Generation of (w)NAF

Although in the preceding section we have presented left-to-right generated
signed representations that are at least as useful as (w)NAFs, from a theoretical
point of view it is still an interesting question how to generate the (w)NAF from
the most significant bit. The reason for the difficulty is a carry caused by the
statement d «— d — §; of Algorithm 1. To illustrate the problem, note that the bi-
nary strings 101010 and 101011 that only differ in the last digit are converted to
the NAFs 101010 and 1010101, respectively, which differ completely. Intuitively,
it is not possible to generate NAF left-to-right without scanning any higher bits.
In this section we exploit the MOF representation to discuss how many bits have
to be scanned and how many additional storage is required.

Note that we obtain NAF if we apply the conversions 11 — 01 and 11 — 01
right-to-left on MOF. However, performing the same conversions left-to-right
may yield a different result. The critical sequence is of the shape

011...10, or 011...10.
N—— N——

odd odd

Note that this sequence corresponds to the binary string 1010...011. If the
length of the sequence of alternating bits is even, then both of left-to-right and
right-to-left conversions uniquely generate the same string, namely bb...bb —
0b...0b for b € {£1}. But if the length is odd, left-to-right we obtain bb...bb —
0b...0bb, whereas right-to-left generates bb...bb — b0b0b...0b. Consequently,
if this sequence appears, we have to scan it completely in order to compute the
corresponding NAF. However, the first bit and the length of the critical sequence
can uniquely determine the corresponding NAF, hence it is not necessary to store
the sequence. Thus, the additional required storage in RAM is at most a few bits,
namely the bit length of the critical sequence. Therefore, we obtain Algorithm
5.

Algorithm 5 Left-to-Right Generation Binary to NAF
Input: a non-zero n bit binary string d = dp—1|dn—2|...|d1|do
Output: NAF v,|vp—1|...|v1|vo of d
iin; dp <« 0; dog 1 0; d_g 10
while ¢ > —1 do
b—di—1—d;
if b = 0 then
v; «—0; 4 —1—1
else {b # 0}
find the largest 7 s.t. di_j_l = di_j
if j is odd then

Vi by vi_1 2 0; vi—g = =b;...5 Vimjio 05 vi_jy1 = =b; vi—; =0
else {j is even}
Vi «—0; Vi1 b5 Vimjpo =05 vimjyr by vi—; =0
ie—i—j5—1
return (vn, Vn—1,...., V1, 0)

11



It is also possible to construct a left-to-right generation algorithm of wNAF,
w > 2. In this case, the critical sequence is of the following shape

0...Oaiai_1...a1a00...0, (1)

w—1 w—1

where the most and least (w — 1) bits are zero and no zero run of length w — 1
appears in a;a;—1 ...ajap. If it is possible to convert the critical sequence (1)
left-to-right to wNAF, then we can generate wNAF from any MOF. In order
to find the corresponding wNAF of (1), we scan the whole sequence right-to-
left and obtain the segmentations that are produced by the right-to-left sliding
window conversion MOF +— wNAF. Note that there is no need to store the width
w windows, but we must detect and store the length of the zero runs between
any two windows. In addition, the content of the left-most window, which may
be smaller than w, has to be transfered. Afterwards, the sequence (1) can be
rewritten as follows:

0...0|’I‘|bi|ti|...‘bg‘tg‘bl‘tllo...o, (2)

w—1 w—1

where 7 consists of at most w — 1 consecutive bits of MOF (and may be the
empty word ¢), b; € {¢,0,00,...,0...0}, and each ¢; is a length w pattern of
——
w—2

MOF, corresponding to an entry of Table,, gy, . Here we have to store r and the b;.
Based on these informations, the corresponding wNAF is completely determined
left-to-right. Thus we need to store at most (w — 1 + logy(w — 2)) ) bits.

4.4 Comparison with Previous Methods

In this section we clarify the difference to previous schemes for generating signed
representations.

In 1992, Koyama and Tsuruoka developed a new recoding technique to con-
vert a binary string to a signed binary string [KT92]. Following this step, a
left-to-right sliding window method is applied. The new signed binary represen-
tation has the benefit that it reduces the asymptotic non-zero density, but it
requires the sub-optimal digit set 7 = {£1,+3,...,+(2% — 3)}. If the sliding
window method is directly applied to NAF, due to the NAF property fewer pos-
sible window contents have to be taken into account, resulting in a smaller digit
set 7. An easy calculation shows that the largest odd NAF consisting of at most
w digits equals §(2*! — 1) for odd w (cf. 1010...01) and £(2¥*! 4+ 1) — 2 for
even w (cf. 1010...1001). For this reason, De Win et al. prefer the latter method
for elliptic curve scalar multiplication [WMPW98]. Although there are slightly
more point operations needed to evaluate the scalar multiplication if the expo-
nent is represented as wNAF compared to the [WMPW98]| representation, the
required precomputation is less in the wINAF case because of the smaller digit
set. Indeed, Blake et al. proved that wNAF is asymptotically better than sliding
window on NAF schemes if w > 3 [BSS99]. In the context of memory constraint
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devices, a small digit set 7 is even more valuable, because fewer precomputed el-
ements have to be stored. But as none of the preceding methods is a left-to-right
scheme, each one requires additional memory O(n) to store the recoded string
before starting the left-to-right evaluation of the scalar product. Note that in
the context of sliding window on signed binary schemes like [KT92, WMPW9S]
the sliding window conversion may be performed left-to-right, but to obtain the
signed binary representation we have to proceed right-to-left in either case.

In contrast, wMOF turns out as a complete left-to-right scheme. Conse-
quently, there is no additional memory required for performing the scalar mul-
tiplication. In addition, due to the properties of MOF, the digit set of wMOF is
the same as for wNAF and therefore minimal.

In order to compare the proposed algorithms with previous ones, we summa-
rize the memory requirements of the new left-to-right schemes in the following
theorem.

Theorem 5. Algorithm 4 requires only O(w) bits memory for generating
wMOF.

Algorithm 5 requires at most (logan) bits memory for generating NAF' left-to-
right. For general width w, there is a left-to-right algorithm that generates wNAF
with at most (w — 1 4 logy(w — 2))2) bit memory.

Next, we compare the characterizing properties for the proposed schemes and
some previous ones. In the second column, the value #7 /2 equals the number
of elements, that have to be precomputed and stored. In the last column, we
describe the amount of memory (in bits) that is required additionally to this
storage, e.g. to construct the signed representation or to store the converted
string in right-to-left schemes. As usual, n equals the bit-length of the scalar,
and SW is an abbreviation for sliding window.

| Scheme [ #T/2 [1/N.-z. Density[Additional Memory]
wNAF [S0l00,BSS99,MOC97] w2 w+1 O(n)
[KT92] w1l _ 1 w+ 3 O(n)
NAF+SW as [WMPW98] |1(2% + (~1)“*!)|w + & — 515 O(n)
wMOF, Sec. 4.2 w2 w+1 O(w)
l-t-r wNAF, Sec. 4.3 gu=2 w1 gg@(}){)’ww:j )

Table 1. Comparison of Memory Requirement and Non-zero Density

5 Applications to Elliptic Curve Scalar Multiplication

Let K = GF(p) be a finite field, where p > 3 is a prime. Let E be an elliptic
curve over K. The elliptic curve E has an Abelian group structure with identity
element O called the point of infinity. A point P € F is represented as P = (z,y).
The inverse of point P = (z,y) is equal to —P = (z,—y), hence it can be
computed virtually for free. The elliptic curve additions P; + P, and 2P are
denoted by ECADD and ECDBL, respectively, where Py, P>, P € E.

13



As elliptic curves are written additively, exponentiation has to be under-
stood as scalar multiplication. The familiar binary algorithms are adopted by
computing ECADD instead of multiplying and ECDBL instead of squaring.

In general, we distinguish two main concepts of performing scalar multiplica-
tion: left-to-right and right-to-left. Here, d is represented as d = Y ;- d;2¢, d; €
{0,1}, dp—1 = 1.

Algorithm Binary Method, 1-t-r Algorithm Binary Method, r-t-1
Input: P; d = dn_1| e |d1|d0 Input: P; d = dn—l‘ . |d1|d0
Output: scalar multiplication dP Output: scalar multiplication dP
Q<P QL P; Q2 =0
for i =n — 2 down to 0 fori=0ton—1

Q — ECDBL(Q) ifd;, =1

ifd;, =1 Q2 — ECADD(Q2, Q1)

Q — ECADD(Q, P) Q1 — ECDBL(Q1)

return Q. return Q-.

Though in general both methods provide the same efficiency, the left-to-right
method is preferable due to the following reasons:

1. The left-to-right method can be adjusted for general 7 -representations of d
like wNAF or wMOF in a more efficient way than the right-to-left method.

2. The ECADD step in the left-to-right method has the fixed input tP, t € 7.
Therefore it is possible to speed up these steps if tP is expressed in affine
coordinates for each ¢ € 7, since some operations are negligible in this case.
The improvement for a 160-bit scalar multiplication is about 15% with NAF
over right-to-left scheme in the Jacobian coordinates [CMO98].

3. The right-to-left method needs an auxiliary register for storing 2¢P.

5.1 Explicit Implementation for w = 2

In the following we show how the ideas of Section 4.2 lead to an efficient left-to-
right scalar multiplication algorithm. For the sake of simplicity, we begin with
the special case w = 2. The treatment for general width w can be found in
Appendix B.

Let d be a binary string. The MOF and 2MOF representation of d are
denoted by p and J, respectively. The proposed scheme scans the two bits
of p from the most significant bit, and if the sequences 11 or 11 appear, we
perform the following conversions: 11 +— 01 and 11 ~ 01. Two consecutive
bits of d determine the corresponding bit of MOF pu. Thus, three consecutive
bits of d can generate the corresponding bit of the 2MOF §. In order to find
an efficient implementation, we discuss the relationship of bit representation
among p, 0, and d. The i-th bits of u,d,d are denoted by pu;,d;,d;, respec-
tively. Because of the relation p; = d;—1 — d;, we know pu; = 0 if and only
if d;_1 = d;. The other 3-bit binary strings (d;,d;—1,d;—2) where d;_1 # d;
are only (d;,d;—1,d;—2) = (0,1,1),(1,0,0),(0,1,0),(1,0,1), corresponding to
(0;,0;—1) = (1,0),(=1,0),(0,1),(0,—1). Thus, there is a one-to-one map be-
tween (0;,0;,—1) and (d;, d;_1,d;—2) leading to the explicit Algorithm 6.
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Algorithm 6 Explicit Left-to-Right Generation of 2MOF
Input: a non-zero n-bit binary string d = dp—1|dn—2]...|d1|do
Output: 2MOF (5 = 6n‘6n—1|‘61‘50 of d
d71 —0
i <= c+ 1 for the largest ¢ with d. # 0
On <1 0; Op—1 <1 0;...; §ix1— 0
while 7 > 1 do
if di,1 = d»b then
0 —0;i—i—1
else {difl 7& dz}
0 = —di+di—2; 6i—1 — —di—2 +di—1; T =i —2
if © =0 then
b0 «— —do
return 6,,0n_1, ..., 01, 0.

Finally, Algorithm 7 merges the recoding stage and evaluation stage of scalar
multiplication.

Algorithm 7 Left-to-Right Scalar Multiplication Algorithm (On the Fly), w = 2
Input: a point P, a non-zero n-bit binary string d = dn—1|dn—2/|...|d1|do
Output: product dP
d—1«—0; dp <0
i < c+ 1 for the largest ¢ with d. # 0
if di72 =0 then
Qi P; i i—2
else {d;—2 =1}
Q —ECDBL(P); i «+i—2
while 7 > 1 do
if difl = di then
Q —ECDBL(Q); i —i—1
else {di—l 76 dz}
Q —ECDBL(Q)
if (di,difg) = (1, 1) then
Q —ECDBL(Q); Q —ECADD(Q,—P)
else if (d;,d;—2) = (1,0) then
Q —ECADD(Q,—P): Q —ECDBL(Q)

(
else if (d;,d;—2) = (0,1 )then
Q —ECADD(Q, P); Q —ECDBL(Q)
else if (d;,di—2) = (0,0) then

Q —ECDBL(Q); Q —ECADD(Q, P)
11— 2
if i =0 then
Q —ECDBL(Q); Q —ECADD(Q, —doP)
return Q.

The advantage of the previous algorithm is that it reduces the memory re-
quirement since it does not store the converted representation of d.
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6 Conclusion

It was an unsolved problem to generate a signed representation left-to-right for
a general width w. In this paper we presented a solution of this problem. The
proposed scheme inherits the outstanding properties of wNAF, namely the set
of pre-computed elements and the non-zero density are same as those of wNAF.
In order to achieve a left-to-right exponent recoding, we defined a new canonical
representation of signed binary strings, called the mutual opposite form (MOF).
An n-bit integer can be uniquely represented by (n+1)-bit MOF, and this repre-
sentation can be constructed efficiently left-to-right. Then the proposed exponent
recoding is obtained by applying the width w (left-to-right) sliding window con-
version to MOF. The proposed scheme is conceptually easy to understand and
it is quite simple to implement. Moreover, if we apply the width w (right-to-left)
sliding window conversion to MOF, we surprisingly obtain the classical wNAF.
This is the first carry-free algorithm for generating wNAF. Therefore the pro-
posed scheme has a lot of advantages and it promises to be a good alternative to
wNAF. We believe that there will be many new applications of this algorithms
for cryptography.
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A Several Proofs

In this section we prove several propositions and theorems described in this
paper.

Theorem 1. Let n be a positive integer. (n + 1)-bit MOF has 2" pair-wise
different representations. There is a bijective map between elements of (n + 1)-
bit MOF and n-bit binary string.

Proof. We prove the theorem by induction of n. At first we prove the case of
n = 1. The 2-bit MOF is either 00 or 11. The 1-bit binary strings 0 and 1 are
converted to MOFs 00 and 11, respectively. Next, we assume that the theorem
is correct for n = 1,2, ...,k and prove the case of n = k 4+ 1. We classify it into
two classes, namely (k+ 1)-th bit of binary string is 0 and 1. If the (k4 1)-th bit
of binary string is 0, we can assign the (k+ 2)-th bit of MOF as 0 and apply the
one-to-one conversion of lower k bits. This case contains 2* pair-wisely different
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elements. If the (k4 1)-th bit of binary string is 1, we have two additional cases,
namely k-th bit of binary string is 0 or 1. We convert the (k+1)-bit binary string
10% and 11x to (k + 2)-bit MOF 11x and 10%, respectively. Then these elements
are pair-wisely different (2% elements) that are different from any elements of
the previous cases, and thus there are 2#*! pair-wise different representations.
There is the one-to-one conversion for the lower (k — 1) bits. Thus we are able to
construct a bijective map for n = k + 1. Consequently, we proved the assertion
of the theorem. ad

Proposition 1. The operation p = 2d & d converts binary string d to MOF .

Proof. Wlog we assume d # 0 because otherwise the assertion is trivial. We
prove the statement from the most significant bit. At first we show that the
left-most non-zero bit of p is 1. We know u,, = 1 if d,,—1 = 1. The relationship
Wi = d;—1 — d; yields p; = 0 or 1 for d; = 0. Thus the left-most non-zero bit of
1 will be 1. Next, we prove that p;—; = 0 or —1 holds for p; = 1. From u; =
di—1 —d; =1 we know d;_; = 1, and thus p;_1 = d;—2 — d;—1 = 0 or —1 based
on d;_s = 1 or 0, respectively. This relationship yields p;|zi—1|...|thi—p+1|ptick =
10,..,01 for some k. Similarly, if u; = —1, then there is some integer k¥’ such
——
k—1
that p;|pi—1|--|pi—rr+1|pi—rr = 1]0]...]|0|1. It remains to show that the least
k-1
non-zero bit of u is negative. Let b be the last non-zero bit of the binary string
d, namely d, = 1 and dy_1 = dp_2 = ... = d1 = dg = 0. In this case, we know
wy = —1 and pp—1 = pp—o = ... = pu1 = po = 0. Consequently the converted
signed string p satisfies the conditions characterizing MOF. a

Theorem 2. Every non-negative integer d has a representation as wNAF, which
18 unique except for the number of leading zeros.

Proof. We show (ignoring leading zeros in the following) that Definition 1 leads
to a unique representation of positive integers as follows:

1. We define a conversion MOF — wNAF.
2. We define a conversion wNAF — MOF.
3. We show, that these two conversion are inverse to each other.

Consequently, there is a bijection between wNAF and MOF. As there is also a
bijection between MOF and Binary, this proves the uniqueness of wNAF.

ad (1): MOF — wNAF is defined by performing the sliding window method
with width w from the least significant bit (i.e. right-to-left) on MOF as described
in Section 4.1.

ad (2): wNAF — MOF scans the bits right-to-left using a window with

width w, until the LSB in the window is non-zero. All scanned zeros are taken

to the converted string as usual. If the LSB in the window is non-zero, due

to the properties of wNAF the window content is of the shape 0...0d,d €
w—1

{£1,43,...,£2*"1}. To find the correct replacement, we distinguish two cases:
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Case 1 The most significant non-zero bit of the already converted string equals
-1:
We build the length-w-MOF corresponding to |d| (padded with leading zeros,
if necessary). In the case of d < 0, we change all signs of this length-w-MOF
and take this string. Otherwise, we force the last bit of the length-w-MOF
to be 1 by replacing its last 2 bits as follows: 11 + 01, 01 ~ 11.

Case 2 The most significant non-zero bit of the already converted string equals
1 or no non-zero bit has been converted at all:
We build the length-w-MOF corresponding to |d| (padded with leading zeros,
if necessary). In the case of d > 0, we take this string. Otherwise, we change
all signs of this length-w-MOF and we force the last bit of this string to be
1 by replacing its last 2 bits as follows: 01 +— 11, 11 s O1.

This case-differentiation ensures that the converted string possesses the MOF
properties (particularly the alternating signs of the non-zero bits).

Example: In the case of w = 3, we use the following table for the right-to-left
conversion

1 1 11 1
001 — 00_ Case 001 — 0 1 Case
011 Case2 001 Case2

003 11} Casel 003 }O} Casel
101 Case2 111 Case2

ad (3): The two conversions are inverse to each other, because if we perform
e.g. MOF — wNAF and wNAF — MOF afterwards, the fragmentations of the
strings are exactly the same and the tables are inverse to each other. a

Theorem 3. Every non-negative integer d has a representation as wMOF, which
18 unique except for the number of leading zeros.

Proof. We proceed as follows:

1. We define a conversion MOF +— wMOF.
2. We define a conversion wMOF +— MOF.
3. We show, that these two conversion are inverse to each other.

Consequently, there is a bijection between wMOF and MOF. As there is also a
bijection between MOF and Binary, this proves the uniqueness of wMOF. This
proof is similar to the preceding one (MOF « wNAF).

ad (1): MOF — wMOF is defined by performing the sliding window method
with width w from the most significant bit (i.e. left-to-right) on MOF.

ad (2): wMOF — MOF scans the bits right-to-left using a window with width
w, until the window content equals one of the patterns described in Definition
3, property 2. All scanned zeros are taken to the converted string as usual.
The replacements are performed as in the preceding proof with the following
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exceptions: If the window content equals 10...0 and case 1 applies, then we
w—1
adopt the content as it stands. But if case 2 applies, it follows from Definition
3, property 2, that the left-hand neighbor of the window must be a zero. In this
case we shift the window one step leftwards and replace 010...0 by 110...0.
~—— ~——
w—2 w—2
The dual case (1 instead of 1) is treated in the analogue way.
As before the case differentiation ensures the MOF properties.
ad (3): We can argue exactly in the same way as in the preceding proof. O

Theorem 4.The average non-zero density of wMOF is asymptotically 1/(w+1)
for n +— o0.

Proof. Fig. A shows Markov chain version of the proposed scheme with width
w. First, we define a conversion d,,(-), and then we explain the Markov chain.
After that, we prove the theorem.

The conversion §,,(+) converts a non-zero integer u in the range [—2¥~1 +
1,2v=1 — 1] to a width w converted MOF & = §,,_2|0,_3]...|60 as follows:

Sur(t) = 0[0]...[0 [1/2%[ 0]0]...0,
N—— N——

w—2—a a

where « is the largest integer j such that u is divisible by 27.

Next, we describe the Markov chain. The states of the Markov chain are
(di—1,u) (di—1 € {0,1},u € [-2¥~1+1,2v=1 —1]), where u is a buffer of scanned
bits. Thus, there are 2(2%¥ — 1) states. The trigger of transition is d;_5, and the
flow outputs width w converted MOF §; according to a current state. Generally
speaking, if the current state is (d;—1,u), the next state is (d;—2,2u + (d;—2 —
d;—1)). If the transition exceeds the horizontal dotted line in Fig. A, the flow
outputs &, (u) as the width w converted MOF ¢;, and the buffer v is cleared.
Note that the states (0,0),(1,0),(1,1),(0,—1) under and over the horizontal
dotted line are the same states, respectively.

Next, we describe the transitions in detail. We have three cases; (0,0) and
(1,0), (1,2v71) and (0, —2°~1), and a general (d;_1,u). First, if the current state
is (0,0) or (1,0), the flow outputs §; = 0 and goes to the state (d;—2,d;—2—d;—1).
In the case of the general state (d;_1,u), the next state (d’,u’) is (d;_2,2u +
(d;_o —d;_1)) if the updated u’ is in the range [-2%~! 4 1,2*~1 —1]. If not, the
flow outputs J,,(u) as the width w converted MOF §;_,41]...|d;, and goes to the
state (d;_2,d;—2—d;_1). In the case of (1,2~1) (resp. (0, —2""1)), the transition
is the same as the general state, exclusive of the following: If d;_o = 0 (resp.
d;—9 = 1), the flow outputs d;_,+1 = 0. The initial state is (dn—1,dn—1), and i
is initialized as i = n. The terminal condition is i = 0, and d_; = 0 is appended
such as the case of w = 2. If i = 0, the flow outputs d,(u) and terminates.

We prove the theorem using this Markov chain. Since the Markov chain is
aperiodic and irreducible, there exists the stationary distribution. The non-zero
density is the probability of outputting d,,(u), because non-zero d; corresponds
to 0y (u). Easy calculation induces the non-zero density is 1/(w + 1). O
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In order to confirm the non-zero density of Theorem 4 for 160-bit binary
strings, we show the result of converting 160-bit binary strings where each bit
is randomly chosen. The non-zero density is computed by dividing the number
of non-zero digits through 160. The following table shows the inverse density
(1/density) for easier comparison with expected values.

width w|1/observed density|1/expected density
2 2.988 3
3 3.970 4
4 4.946 5
5 5.914 6
6 6.878 7

Table 2. Average inverse non-zero density.

The observed non-zero density approximates the expected density. It is con-
spicuous that the observed density is higher than the expected one. The reason
for this is that the length of the last converted window may be smaller than w,
and thus not optimal. The above values are connected with bit-length of 160
bits. For longer bit-strings the observed density comes closer to the expected
density. This experimental result confirms Theorem 4.

B Implementation Details for the Proposed Scheme,
w > 2

In this section we discuss an explicit implementation for the proposed left-to-
right window chain with general width w. This implementation is divided into
two parts. The first one describes an algorithm for table-computation. This table
is used by the main algorithm described in the second section and by the on-
the-fly multiplication.

Table Computation

The conversion method performs many table look-ups, so this must be done in
an efficient way. The memory usage is also important because devices like smart
cards have rare resources. The following algorithm tries to consider these facts.

We use a table representation in Section 5.1. All columns from the original
table appear in this one: the original bits d, the MOF p and the converted one
6. The table is sorted by column d. Column dge. is the decimal representation of
the binary string d. This would be a good table index but unfortunately it does
not start from 0. We have to subtract 2¥~! from dge. to get the table index. All
rows, which start with 0,0 or 1,1, are ignored because they are not converted.
Column fige. is the decimal representation of u, below named as c¢. The table
computation algorithm has to compute v and ¢ which fit the equation ¢ = %25,
Column v can be recreated from v and &: 6 = (0,...,0,7,0,...,0) but it is not

w—E&—1 I3
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necessary for the algorithm. For the implementation only columns v and £ are
essential.

d ddec ddec - 2w71 1% Hdec = C Y f 6
(1,1%) or (0,0,%)
(0,1,0,0) 4 0 (1,-1,0)| 2=1%2" |1|1](0,1,0)
(0,1,0,1) 5 1 (1-1,1)| 3=3%2° |3]0](0,0,3)
(0,1,1,0) 6 2 (1,0-1)| 3=3%2° |310[(0,0,3)
(0,1,1,1) 7 3 (1,0,0) | 4=1x%2* |12|(1,0,0)
(1,0,0,0) 8 4 (-1,0,0) | —4 = —1 * 22|-1|2|(-1,0,0)
(1,0,0,1) 9 5 (-1,0,1) [-3 = —3 % 2°|-3]0{(0,0,-3)
(1,0,1,0) 10 6 (-1,1,-1)| -3 = =3 2°|-3|0/(0,0,-3)
(1,0,1,1) 11 7 (-1,1,0) | =2 = —1 % 2*{-1{1{(0,-1,0)

Table 3. Conversion table for w = 3

Next we present the table creation algorithm for any w. The algorithms use
some bit-string operators. & is “bitwise and”, XOR is “exclusive or” operation.
The operator >> performs right-shift that is equivalent to a division by a power
of two.

Table Computation with Width w
INPUT: width w.
OUTPUT: arrays 7g...tw and &y, ¢ where tw = 2% — 1.
1. For d «+2¥~! to 3% 2*~1 — 1 do the following
1l.e—=(d&(2¥=1)) = (d>>1)
1.2. gd,Qw—l «—0
1.3. While (¢ & 1) = 0 do the following
1.3.1. €4 gu1 4 &g gu1 + 1
1.32. c—ec>>1
1.4. Yd—ow—1 <4 C
2. return 7g...t and &o.. 1w

The loop in step 1 passes all values for dg.. like in the table. To use it as table
index 2¥~! has to be subtracted. Step 1.1 computes c. The first expression of the
difference is d without the first bit. The second expression is d right-shifted by
a distance of 1. The illustration shows a conversion for d = (1,0,1,0) = 104¢c-

1{010 | 2=10&7
- ]101]0 -5=10>>1
11-1 -3

Step 1.2 initializes £ with zero. The loop 1.3 divides ¢ until it is an odd number.
If ¢ is even ¢ is increased by one in step 1.3.1 and c is divided by two in step
1.3.2. This is correct because of the following equation: v/2% 25+ = v %25, When
the loop terminates c is assigned to «y. Step 2 returns arrays - and &.

We will estimate the table size. In general table width w the resulting table
has 2% rows. £ is in {0,1,...,w — 1} which are w different values. [log, w] bits
are required to store . Each element of v is in {£1,43,...,+(2*~ — 1)} which
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has the cardinality of 22 and requires w — 2 bits. The whole table has a size
of 2%([log, w| + w — 2) bits. For example, the bit sizes for small w = 3,4,5,6
are 24, 64, 192, 448, respectively.

In applications w is often fixed or has only a few different values. Thus the
table can be pre-computed and stored in a read only memory because it is
independent from runtime parameters.

Main Algorithm using table-lookup
The explicit algorithm below differs in the table-lookup part from the original.

Explicit Algorithm with Width w
INPUT: width w, a non-zero n-bit integer d = d,,—1|d,—2]...|d1|do,
the pre-computed table g+, and &g, tow-
OUTPUT: width w converted MOF § = §,,|0,,—1]...|1|0¢ of d.
1. ¢ n, 6071 «—0
2. While ¢ > 1 do the following
2.1. if (d; XOR d;—1) = 0, then set i <= i — 1, else do the following
2.1.1. index < ((d >> (i —w)) & (2¥F! —1)) —2w~!
2.1.2. 6i—w+1+£mdem  Yindex
2.13. i —i—w
3. if ¢ =0 and dy = 0, then set §y «— —1
4. return 6,,6,_1,...,01,00.

The first step initializes the loop-variable i to the highest bit of d. Step
2 assigns zero to all result variables sd;, because later we proceed only result
variables disparate zero.

At Step 1 we initialize the parameters. While i is greater than or equal to
one, the loop is executed. The bit equality condition of the proposed algorithm
is implemented by a xor-operation in Step 2.1. The main difference is in Step
2.1.1 where the table index is created. Instead of searching bits in the table, the
algorithm masks out the relevant bits to use it as table index. d is right-shifted
to get the bits beginning at position i. The and-mask 2*+! — 1 will return the
rightmost w + 1 bits. Finally 2¥~! has to be subtracted because of the shifted
table-index. After that we can access to the corresponding table row. The result
variable §; is initialized with zero, thus only one assignment has to be done in
Step 2.1.2. All masked bits from Step 2.1.1 are equal to ~ shifted by a distance
of €. The index ¢ — w + 1 of § is the rightmost position of the part we want to
replace. The shift distance £ added to assign v at the correct position. Then ¢ is
decreased by w. Step 3 is necessary because the loop condition is ¢ > 1 instead
of 4 > 0. This avoids negative indices. In Step 4 the result is returned.

B.1 On the Fly Multiplication for w > 2

The following algorithm merges the exponent recoding and a scalar multipli-
cation for any w. It is based on the table created by the table computation
algorithm in this section.
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Scalar Multiplication Algorithm with Width w
INPUT a non-zero n-bit binary string d, a point P and the multiple of the
point P, 7yo...tw and &p.. +w, the precomputed table.
OUTPUT scalar multiplication dP.
1. i —n
2. Q=0
3. While ¢ > 1 do the following
3.1. if (d; XOR d;—1) = 0, then do the following
3.1.1. @ —ECDBL(Q)
312, 1—i—1
3.2. else do the following
3.2.1. index « ((d >> (i —w)) & (2¥ ! - 1)) —2w~1
3.2.2. For j =1 to w — &;pder do the following
1. Q@ <~ ECDBL(Q)
2. 1«1 —1
3.2.3. Q@ —ECADD(Q,YindexP)
3.2.4. For j =1 t0 &nger do the following
1. If i > 0 then @ «+ ECDBL(Q)
2. 1«1 —1
4. If i = 0 do the following
4.1. Q «+— ECDBL(Q)
4.2. If dy = 0 then Q —ECADD(Q,—P)
5. return @

Step 1 initializes the loop variable ¢ to the bit-length n. The second step
initializes the result variable @ to O. This is done to avoid a special case for the
first digit. While ¢ is greater or equal to 1 the loop is executed. The condition
in Step 3.1 checks whether the two adjacent bits equals or not. If they have
the same value, ) is doubled and ¢ is decreased. This correspondent to a zero
in the recoding algorithm, where the result is not changed. If the else-part in
Step 3.2 is executed, the following step creates a table index. This is the same
index like in the algorithm above. After that we can receive v and £ from the
table. In this whole else-part w ECDBL and one ECADD operations have to be
done. £ constitutes how many doubling-operations are done before the addition.
Step 3.2.2 doubles @ w — £ times. The next step adds a multiple of P to Q.
These multiples of P are precomputed values and an input of this algorithm.
The loop in Step 3.2.4 does the remaining doubling-operations. The condition in
Step 3.2.4.1 avoids supernumerary doublings. Altogether 7 is decreased w times.
Step 4 checks if i is zero to avoid negative indices, like in the algorithm above.
It doubles the result-value @ and subtracts P from @ if the last bit is zero. The
last step returns the result Q.
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