Plaintext-Simulatability

Eiichiro Fujisaki
fujisaki@isl.ntt.co.jp

NTT Laboratories, Japan

Abstract. We propose a new security class, called plaintext-simulatability, defined over the
public-key encryption schemes. The notion of plaintext simulatability (denoted PS) is similar to
the notion of plaintext awareness (denoted PA) [2], but it is, “properly”, a weaker security class
for public-key encryption. It is known that PA implies the class of CCA2-secure encryption
(denoted IND-CCA2) but not vice versa. In most cases, PA is “unnecessarily” strong — In such
cases, PA is only used to prove that a public-key encryption scheme is CCA2-secure, because
it looks much easier than to prove “directly” that the scheme meets IND-CCA2. We show
that PS also implies IND-CCAZ2, while preserving a good view of the security proofs as well as
PA. Recently, a couple of schemes [9, 15, 1] have been proposed, that have been proven to be
CCA2 secure in the random oracle model but they lie outside PA. However, they have been
“heuristically” proven and so there is no general observation that looks over those schemes and
extracts the essence of those security proofs.

Not only does PS provide a good perspective of the security proof for an actual encryption
scheme, but it is also more desirable from a theoretical viewpoint, because PA is obviously
associated with non-interactive zero-knowledge proofs of knowledge [20] that is achieved under
the existence of dense secure public-key cryptosystems [19] which seem to be stronger than
the general assumptions, whereas PS is associated with non-interactive zero-knowledge proofs
for membership of a language that can be achieved just under the general assumption that
trap-door functions exist.

Finally, we suggest a few interesting encryption schemes. One is a random-oracle version of
Dolev-Dwork-Naor’s encryption scheme [6,7]. Unlike the original scheme, this construction
is efficient. The other is a public-key encryption scheme based on a strong pseudo-random
permutation family [12] which provides the optimal ciphertext lengths for verifying the validity
of ciphertexts, i.e., (ciphertext size) = (message size) + (randomness size). According to [15],
such a construction remains open. Both schemes meet PS but not PA.

Plaintext-simulatability, Plaintext-awareness, Chosen-ciphertext security (CCA2-security),
Dolev-Dwork-Naor’s encryption scheme, CCA2-secure encryption scheme without
overhead.

1 Introduction

Plaintext-awareness (denoted PA) is a security class for public-key encryption (mostly de-
fined in the random oracle model), which implies the class of the CCA2-secure encryption,
denoted IND-CCA2 [17,2]. The notion of PA was suggested in [3] and later formalized in
[2].

The key property of the notion of plaintext-awareness is, roughly said, that nobody can
produce a new ciphertext without knowing the plaintext. Informally, we say that a public-
key encryption scheme is plaintext aware if it is secure (indistinguishable) against chosen-
plaintext attacks (IND-CPA), in addition to satisfying the above property. PA implies IND-
CCA2 [2] — Intuitively, it comes from the following idea: If the target encryption scheme is
plaintext aware, an adversary is aware of the decryption of the ciphertexts he has submitted
to the decryption oracle. Hence, the adversary cannot get any additional information from

the decryption oracle because he already knows the corresponding plaintexts. Therefore, we
can transform an adaptive chosen-ciphertext attack against the target encryption scheme
into a chosen-plaintext attack against the same encryption scheme. Hence, if the scheme is
secure in the IND-CPA sense, it would be also secure in the IND-CCA2 sense.

The opposite direction does not hold — IND-CCA2 does not imply PA. Paper [2] provides
an “artificial” counter-example to prove this fact, whereas we can suggest a few “natural”
counter-examples later.

In most cases, PA is merely a “means” rather than a “goal” — a tool to prove that a
public-key encryption scheme is CCA2-secure, because it looks much easier to prove that a
scheme meets PA than to prove “directly” that it meets IND-CCAZ2. So far, only an excep-
tion that requires the full power of PA is known in the literature [11], but the application
makes sense only in a restricted computational model, so called the Dolev-Yao model [8].
In the ordinary adversary model for cryptographic protocols, no application using the full-
advantage of PA has been published. Namely, PA is “unnecessarily” strong in the most
cases. So far, a large number of generic methods for constructing CCA2-secure encryption
schemes in the random oracle model have been proposed and it is true that most of them
belong to the class of PA. It could be, however, explained by the fact that PA is the only
criterion to “systematically” create a CCA2-secure encryption scheme in the random oracle
model. Meanwhile, a few schemes proposed recently such as [9,15,1] are CCA2-secure (in
the random oracle model) but not PA, though the authors do not mention that fact. Security
for those schemes was proven “heuristically” in each proposal. In other words, there is no
observation that looks over those schemes and extracts the essence of those security proofs.

The notion of PA might be possibly too strong from another viewpoint. Obviously PA
has a strong analogy with the notion of CPA security (semantic security) coupled with a
non-interactive zero-knowledge proof system of knowledge of the plaintext, suggested in [4,
20] 1. The existence of a NIZKP system of knowledge for a NP relation is assured under the
existence of a dense secure public-key cryptosystem [19] which has not been proven weaker
than or equivalent to the general assumption (that trap-door functions exist). Therefore, the
previous CCA2-secure encryption schemes such as [7,18, 14], which stand in the standard
model under the general assumption (that trap-door functions exist), do not depend on
NIZKP systems of knowledge, but on NIZKP systems for membership of languages (because
they exist if trap-door functions exist). Here the point is the following: Suppose that one
suggests a CCA2-secure encryption scheme in the random oracle model under the general
assumptions. He must hope that someday he or someone would find a transformation of his
scheme into the one in the standard model, while preserving its security. However, it seems
hard to modify a secure one if it is a PA encryption scheme, because of the close relation
between PA and NIZKP systems of knowledge.

1.1 Our results

In this paper, we propose a weaker but still enough strong security class, called “plaintext-
simulatability” (denoted PS). The difference of PS from PA is “subtle” in terms of definition,
but PS is “properly” weaker than PA and stronger than IND-CCA2. As well as PA, PS can
also give the designers of the schemes a better view of the security proofs: Namely, one can

! The subtle difference between them is that in PA the (knowledge) extractor cannot take (part of) a public
key under its control to play with it.

treat “independently” or “orthogonally” the indistinguishability of the encryption and the
simulation of decryption.

Technically speaking, if the simulation of decryption is perfect or statistically close to real
decryption, the proof that PS implies IND-CCA2 is a natural extention of the proof that PA
implies IND-CCAZ2 in [2]. However, if the simulation of decryption is only computationally
indistinguishable from the real decryption, the proof is more involved.

We present a few “natural” examples that lie in the gap between PA and PS. It also means
that they lie in the gap between PA and IND-CCA2, because PS implies IND-CCA2. In
[2], they contrived an “artificial” encryption scheme to show that PA is “properly” stronger
than IND-CCA2, whereas ours are more natural examples in the gap.

The PS encryption schemes in Sec. 6 are of independent interest. One is an encryp-
tion scheme “interpreted in the random oracle model” from Dolev-Dwork-Naor’s encryption
scheme [6,7]. One is a public-key encryption scheme that provides the optimal ciphertext
lengths for verifying validity of ciphertexts, i.e., (ciphertext size) = (message size) + (ran-
domness size).

PS looks “properly” stronger than IND-CCA2. So far, however, it is not sure how to
prove this, and so this remains open.

2 Preliminary

We begin with some notations.

We write = := a to denote the operation of assigning the value of a to the variable x.
Let X be a probability space on some finite set S(C {0,1}*). We denote by = «— X the
operation of sampling an element of S according to the distribution of X, and assigning the
result of this experiment to the variable x. We also write, for some finite set S’, x < S’
to denote the operation of sampling an element of S’ uniformly, and assigning the result of
this experiment to the variable x.

For probability spaces, X1, ..., Xy, and k-ary predicate ¢, we write Prx; <« Xj;x9 «—

Xo;--+ ¢ ¢(x1,...,x)] to denote the probability that the predicate ¢(z1,...,xx) is true
after the experiments, “xq «— Xq;z9 <+ Xo;---”, are executed in that order. In this case, it
is important that x1,...,x; are sampled in that order.

Let ¢, 7 : N — [0, 1](C R) be positive [0, 1]-valued functions. We say that (k) is negligible
in k if, for any constant ¢, there exists a constant, kg € N, such that e(k) < (1/k)¢ for any
k > ko. We say that 7(k) is overwhelming in k if e(k) £ 1 — 7(k) is negligible in k. Let
f.g: N — R. We write f(k) € O(g(k)) to denote that there is a constant ¢ > 0 such that
f(k) < cg(k) for every sufficiently large k. We write g(k) € £2(f(k)) to denote that there is
a constant ¢ > 0 such that g(k) > cf(k) for every sufficiently large k.

2.1 Syntax of encryption schemes

A public-key encryption scheme is given by a triple of algorithm, IT = (K, £, D), where, for
every sufficiently large k € N,

— K, the key-generation algorithm, is a probabilistic polynomial-time algorithm which on
input 1% outputs a pair of strings, (pk, sk) € PK x SK, where PK x SK is the product set
of all possible corresponding public and secret keys generated by applying 1% to K.
This experiment is written as (pk, sk) « K(1%).

For given pk (and possibly k), the message and coin spaces, MSP and COIN, of I are
uniquely determined.

— &, the encryption algorithm, is a probabilistic polynomial-time algorithm that takes a
public key pk € PK and a message x € MSP, draws a string r uniformly from the coin
space COIN, and produces a string y := Epp(x;7).

This experiment is written as y « Eyp(x).

— D, the decryption algorithm, is a deterministic polynomial-time algorithm that takes a

secret key sk € SK and a string y € {0, 1}*, and returns a string x := Dy (y).

We further require that a public-key encryption scheme should be complete in the following
sense: For every sufficiently large £ € N that Il can be defined on, it always holds that
D (Epr()) = x, for every (pk, sk) € PK x SK and every x € MSP. A string pk is called valid
for I with k, if pk € PK for k.

2.2 CPA/CCAZ2-Security

We briefly recall the security notions for public-key encryption, called CPA-security (IND-
CPA) and CCA2-security (IND-CCAZ2), following [17,2].

Let IT = (K, &, D) be a public-key encryption scheme. For II, we consider the following
games, CPA and CCA2 games. In both games, adversary A takes two modes, “find” and
“guess”. A always starts with the find mode and then takes the guess mode. A start by
taking pk and ends up the find mode by outputting two messages, xg,r; € MSP. A takes
y* and enters the guess mode, where b is a random challenge bit and y* is computed as
y* «— Epk(xp). In the CCA-2 game, at both modes, A can make access to the decryption
oracle, Dy(-), at any time with any sequence of queries for decryption, whereas, in the
CPA game, A cannot make access to the decryption oracle. The only restriction is that she
cannot query the oracle on the challenge ciphertext y* in the guess mode. Finally she ends
up the guess mode by outputs b’. The advantage of A indicates how much better she can
guess the value b than 3, namely 2Pr[b = b'] — 1.

The random oracle version of this security notion is defined by allowing A to query a
random oracle (s). We define by Hash a family of all the maps from an appropriate domain to
an appropriate range. The domain and range depend on the underlying encryption scheme.
For simplicity, even if we draw different random functions, G and H, from different function
families, Hashg and Hashpy, we just write G, H < Hash to denote the experiment.

In the following, we formally define these security notions in the random oracle model.

Definition 1. Let IT = (K, &£, D) be a public-key encryption scheme. Let A be an adversary
for II. For k € N, denote the success event of A for II by

Succli; (k) £ H —p Hash; (pk, sk) — K(1%); (o, 21) «— A™C(find, pk);
b—pr {0,1}; y* — EF(zp) : ATO(guess,y*) = b,

where O = e (no oracle access) if atk = cpa; O = Dgy(+) if atk = cca2. We then define the
advantage of A for Il as

Adv‘zt}}](k) £9. Pr[Succif}}Y(k)] —1.

We say that II is secure in the IND-ATK sense (or ATK-secure for short) if, for every

polynomial-time (in k) adversary A, Adv%}},(k) is negligible in k, where atk = {cpa, cca2}.

2.3 Plaintext Awareness

For completeness, we recall the definition of plaintext awareness, following [2]. Plaintext-
awareness is defined in the random oracle model.

A knowledge extractor for a public-key encryption scheme is defined as follows. Let
II = (K,£,D) be a public-key encryption scheme. Let B and K be algorithms, called an
adversary and a knowledge extractor, respectively. We describe their specifications here:

— B on input pk makes access to random oracle H and encryption oracle Ef , and, after
that, finally outputs string y €), where
e Ty denotes the entire interaction between B and H, and
e Y denotes the set of all “answers” made by Eﬁi(-).
The experiment that we get (7z,),y) by running B with pk is written as (7g,),y) <«
runBEpk (pk). Here we insist the following:
e The queries of B to Sﬁc are not included in Y, and
e The interaction between 5;{2 and H is not included in 7g.
— K on input (7, Y, y, pk) outputs string x. Here we insist that K is not allowed to access
H nor Szﬁé, i.e., K must output the decryption of y without any help of the oracles.

Definition 2. [Knowledge Extractor| [2] Let IT = (KC,&,D) be a public-key encryption
scheme, let B and K be algorithms. For k € N, define the success event of K for I and B,
Succll‘fyB’H(k), as

H g Hash; (pk, sk) «— K(1*); (T, Y, y) — runB" 5k (pk) : K(Tiz, Y.y, pk) = DI (y).
We then denote the advantage of K for II and B by
AdVl[(gB’H(k) = PY[SUCCII(?,B’H(k)].

We say that K is a knowledge extractor for Il if, for every polynomial-time algorithm B,
K runs in polynomial-time and Adv1}§7B7H(k) s overwhelming in k.

This formal definition of the knowledge extractor yields the security class of plaintext-
awareness.

Definition 3. [Plaintext Awareness| [2] Let II = (K,&,D) be a public-key encryption
scheme. We say that II is secure in the sense of PA if II is secure in the sense of IND-CPA
and there is a knowledge extractor for II.

3 Plaintext Simulatability

We introduce the security notion of plaintext simulatability (denoted PS). First, we in-
troduce an algorithm, called the knowledge simulator, which is similar to the knowledge-
extractor. The notable differences from the knowledge extractor are twofold:

— The knowledge simulator is allowed to make access to the random oracle H to
produce the decryption of given ciphertext.

— The output of the knowledge simulator is needed to be computationally indistin-
guishable from the real decryption of given ciphertext (over the random choice of H)
against any distinguisher algorithm (even given the corresponding secret key).

Reminder: In the notion of PA, the knowledge extractor is not allowed to make access to
the random oracle and its output must be the same as the real decryption of the given
ciphertext.

A knowledge simulator for a public-key encryption scheme is defined as follows. Let
IT = (K,&,D) be a public-key encryption scheme. Let B, K and C be algorithms, called
an adversary, a knowledge simulator, and a distinguisher, respectively. We describe their
specifications here:

— B on input pk makes access to random oracle H and encryption oracle Eﬁg, and, after
that, finally outputs string y &€), where
e 7y denotes the entire interaction between B and H, and
e)V denotes the set of all “answers” made by Eﬁc(-).
The experiment that we get (7z,),y) by running B with pk is written as

(T, Y, y) — runBT €k (pk).

Here we insist that the interaction between Eﬁc and H is not included in 7g.

— K, on input (7,), y, pk), makes access to random oracle H, and finally outputs string
x.
Informally, algorithm K is a knowledge simulator if the output of K as given above is
(computationally) indistinguishable from the “real” decryption, over the random choice
of H.

— C, on input (7, Y, y, pk, sk, X), outputs just one bit, where X denotes a random string
of the size of the plaintext, possibly representing K (7, Y, y, pk) or D (y).

We formalize this notion as follows.

Definition 4. [Knowledge Simulator] Let II = (K,&,D) be a public-key encryption
scheme. Let B, K and C be algorithms specified above. For k € N, denote the success event
of K for II, B and C by

Succ® o (k) 2 H g Hash; (pk, sk) < K(1%); (T, Y,) < runB" ok (pk) -
C(Tu, Y.y, ok, sk, K (T, Y.y, pk)) = C(Tig, .y, ph, sk, DIE(y).

For k € N, denote the advantage of K for II, B and C by
Advlf(?,B,C,H(k) £ PT[SUCCIF?,B,C,H(’C)]'

We say that K is a knowledge simulator for IT if, for all polynomial-time (in k) algo-
rithms, B and C, K runs in polynomial-time in k and Advlfé g.c.1(k) is overwhelming in
k.

Remark 1. The reader might think that to give the distinguisher C the private key sk looks
a little bit tricky, but it is definitely necessary. If C' is not given sk, C' has no advantage over
adversary A. Then for any query y whose plaintext is not open via the interaction between
A and H, C cannot distinguish the decryption of y from any garbage message (if IT is at
least IND-CPA secure). Indeed, sk is essential in the proof of Lemma 2, which states that
PS implies IND-CCA2.

Definition 5. We say that €(-) is the knowledge simulation error function for IT if
there is a knowledge simulator K for II and, for all polynomial time (in k) algorithms, B
and C, Advig p o (k) > 1 — (k).

The advantage of distinguisher C is upper-bounded by the knowledge simulation error func-
tion for I1. To prove this, we define some notations. For probability space X and distinguisher
C, let us define pg(b) £ Pr[C(X) = b]. For II, B, C, and K mentioned above, we define
Distp o, (K, DH) £ |p$ (1) — p{/(1)|, where X denotes the probability space specified by
the sequence of the random variables,

< TH7y’y?pk;78k7KH(TH7y7y’pk;) >7
and Y denotes the probability space specified by the sequence of the random variables,
< TH,y,y,pk,sk,Di(y) >

Lemma 1. Let K be a knowledge simulator for II. Let €(-) be a knowledge simulation
error function for II. Then, for every polynomial-time algorithms B and C,

Distp,p,in (K", D) < (k). (1)
Proof. Let us define p§ (b, 1) £ Pr[C(X) = bAC(Y) = V']. Note that Pr[C(X) # C(Y)] =
p%Y(l, 0) +p)c(7y(0, 1) < é9(k). Hence,
P51 =P (1) = P&y (1,0) = X v (0,1)

< (k) — 205y (0,1) < €°(k).

We define the security notion of plaintext simulatability as follows.

Definition 6. [Plaintext Simulatability] Let II = (IC,&, D) be a public-key encryption
scheme. We say that I is secure in the PS sense if Il is secure in the IND-CPA sense and
there is a knowledge simulator for II.

4 PS implies IND-CCA2

In the following, we show that PS implies IND-CCA2.
Theorem 1. PS implies IND-CCA2.

The proof follows from the following lemma.

Lemma 2. Let Il be a public-key encryption scheme that is secure in the PS sense. For
every IND-CCA2 adversary A against II, we can construct IND-CPA adversary A’ against
the same II such that they satisfy the following relation:

AdvFF (k) < Adviy (k) + 2 (k), (2)

where q denotes the total number of queries of A to the decryption oracle and €<(-) denotes
the knowledge simulation error function for II defined in Def. 5.

Proof. Suppose for contradiction that we have adversary A that breaks IT in the IND-CCA2
sense in the random oracle model. We then construct adversary A’ that breaks IT in the
IND-CPA sense in the random oracle model. Intuitively, the idea is that A’ runs A and, for
the queries of A to the decryption oracle, A’ uses knowledge-simulator K and random oracle
H, to simulate the answers.

Formally, to use knowledge simulator K, we construct a sequence of adversaries, By, ..., By,
where ¢ denotes the total number of queries of A to the decryption oracle. On each tran-
script of B;, K produces the corresponding plaintext, making access to random oracle H.
B runs A until A outputs the first decryption query, where By just hands queries of A to
random oracle H and hands the answers of H to A. Each pair of query and answer is put on
list 7. When A outputs the first decryption query, By halts and outputs it as a ciphertext.
B;, 1 < i, is a similar algorithm except that it uses K, too. It starts by running A. For j-th
decryption query made by A, 1 < j <4, B; runs K on the corresponding transcript of B;,
to produce the decryption, which is sent to A. When K asks the random oracle H, B; just
hands the query to H and replies to K with the answer of H. Each interaction between
A and H (via B;) is put on list 7. B; halts and output the i-th decryption query of A.
In addition, each interaction between K and H (via B;) is also put on list Ty, which is
the significant difference from the knowledge extractor in the plaintext awareness setting. B;
halts and outputs the i-th decryption query of A. For some i/, 1 < ¢/ < ¢, A is given the
challenge ciphertext y*. Namely, J = {} in the transcript of B;, for 1 <i < i', and Y = {y*}
in the transcript of B;, for ¢/ < i < ¢. The presence of the adversaries, Bi,..., By, is just
“conceptual”. In the following, we directly construct A’ to break IT in the IND-CPA sense,
where what we insist on is that the transcript given to K for the i-th decryption is identical
to the transcript of B; described above.

Construction. We construct A’ by using A as a black box as follows.

1. A’ is given pk.

2. A’ runs A with pk in the find mode.

3. When A asks random oracle H, A’ submits query h of A to random oracle H and replies
A with the answer H(h). Then A’ puts (h, H(h)) in Tg.

4. When A submits y to the decryption oracle, A’ runs K with (7, {},y,pk) and returns
the answer z to A.

When A outputs a pair of plaintexts, (zg,z1), A’ outputs the same pair (zg, z1).
A’ is given y* := &, (xp) where bit b is randomly chosen.
A’ hands y* to A and runs A in the guess mode.

® N> o

When A asks random oracle H, A’ submits query h of A to random oracle H and replies
A with the answer H(h). A" puts (h, H(h)) in Tg.
9. When A submits y to the decryption oracle, A’ runs K on (7y,{y*},y, pk) and returns
the answer x to A.
10. Finally, A output bit ¥'.

First, to help the reader’s comprehension, we analyze a simple case in which A’ can use
a knowledge simulator such that its output is statistically indistinguishable from the real
decryption. We will consider then the general case that A’ can use a knowledge simulator
whose output is computationally indistinguishable from the real decryption.

Analysis of the “statistically close” case. As mentioned above, the transcript that A’ makes
for the i-th decryption is identical to the transcript of B; for every . So, from the definition,
K can successfully produce the “real” decryption of every query y except for a negligible
error probability, €(k). Let F be the event that at least one of the replies of A’ to A is not
equal to the “real” decryption. Then it is obvious that Pr[F] < qe**(k).

If A’ succeeds in decrypting all the queries of A, it is obvious by construction that the
success event of A’ is identical to the success event of A, namely

Succilp,?n(k) N =F = Succk 3 (k) N —F. (3)

Some modification is necessary to make their probability spaces coincide, but we omit the
description since it is somewhat trivial.

Claim. Let A, B, and F be events on some probability space (2. Suppose that AN —-F =
BN ~—F and Prp[A] > Pro[B]. Then we have Prp[B] > Prp[A] — Prg[F].

Proof. Pro[A] — Prp[B] < Prp[ANF] —Prp[BnN F| < Prg[F].
By applying this claim to our case, we have
Pr[Suchp/?H(k)] > Pr[Succi 5 (k)] — qe*s (k). (4)

Hence, we complete the proof in this case. (Note: Since Adviﬁll‘](lﬁ) = 2Pr[Succd; (k)] — 1,
the entire error probability becomes double.)

Analysis of the “computationally close” case. We now consider the “computationally close” case.
As with the statistically close case, the transcript that A’ makes for the i-th decryption is
identical to the transcript of B; for every i. However, each output of K is only computa-
tionally indistinguishable from the real decryption of each query (over the choice of H for
almost all (pk, sk)). Suppose for contradiction that

Pr[Succi37 (k)] — Pr[Suchp,‘?H(k)] > g (k). (5)

Then we show that we can construct distinguisher C' to distinguish, for some ¢, random
variable

Si £< Ty, Vi yir vk, sk, K (Tig 3, Vi, i, pk) >
from random variable
Ri é< TH,hy’iayiapkak?Dg{(yi) >

with probability more than €5(k), where Tr,; and Y; denote, respectively, the lists, Ty
and), at the time A’ submitted the i-th query to the decryption oracle and y; denotes
the i-th query of A’ to the decryption oracle. If such a distinguisher exists, it contradicts
the assumption that the output of K is computationally indistinguishable from the real
decryption.

Such distinguisher C' can be constructed by the hybrid argument method. Now let us
denote by Succf}%(k,i) the success event of A for II where the first ¢ decryption queries
come from the real decryption oracle but the latter answers of the queries come from the

simulator. Then obviously Succiﬁ‘}%(k, q) = Succféﬁ%(k) and Succh"f}%(k, 0) = Succ’f (k).

Pr[Succhﬁ"}%(k, q)] — Pr[Such"}YZ(k,O)] > g€ (k).
Hence, for some 7, by the hybrid argument,
Pr[Suchaj%(k, i)] — Pr[Succiﬁ‘ﬁ(k,i —1)] > €5(k).

Note that C' is given sk and picks up the challenge bit b by itself. Hence, for some ¢, C' can
distinguish, using A as above, random variable S; from random variable R; with at least
probability €(k). This contradicts the original assumption. Hence, (5) is not true. This
completes the proof.

5 PA CPS

It is obvious by definition that PA still implies PS, namely PA C PS. We will now show
that PA C PS.

We propose a public-key encryption scheme, denoted I1j, based on one-way permutation.
The scheme is CCA2 secure in the random oracle model because it meets PS. At the same
time, the scheme is evidence that PS is “properly” weaker than PA, because it does not
meet PA. In addition, the scheme exemplifies a more natural example than the one shown
in [2], namely PA is “properly” stronger than IND-CCA2.

Let f : {0,1}*¥ — {0,1}* be a trap-door permutation over {0,1}*. Let G : {0,1}F —
{0,1}¥ and H : {0,1}* — {0,1}* be hash functions. Consider public-key encryption scheme
11 as follows:

Key generation. Simply run the generator for the one-way trapdoor permutation scheme,
obtaining f and f~'. The public-key is f and the private-key is f~!.

Encryption. For plaintext m € {0, 1}*, the encryption algorithm with public-key f randomly
picks up inner coins ¢ € {0, 1}* and computes the ciphertext 5;2' (m; o) as follows.

EX(m;0) = f(o) || Go) @m || H(ollellc), (6)

where e = f(0) and ¢ = G(0) ® m.

Decryption. Given ciphertext y, check whether the string can be parsed into the specified
form. If not, just reject it, otherwise, appropriately parse it into e € {0,1}*, ¢ € {0,1}*, and
h € {0,1}*". The decryption algorithm with f~' then computes

c=f1Ye) and m=G(o)Pec (7)

If o,m € {0,1}* and h = H(c||e||c), then the decryption algorithm outputs m; otherwise
reject the ciphertext.

5.1 IIp does not meet PA

We prove in the next section that this scheme is CCA2-secure when G and H are modeled
as random oracles. However this is not PA at the same time, which we can prove as follows:
Consider an adversary B for Iy that takes public-key pk and outputs a ciphertext, after
asking queries to the random oracles. The adversary can produce a new ciphertext y =
(e, ¢, h), without knowing the corresponding plaintext in the following way — The adversary
just picks up any o,c € {0,1}* and computes e = f(o), using pk = {f}. The adversary
submits (o,e,c) to H to get h = H(olle||c), and then submits, not asking G with o, the
ciphertext y = (e, ¢, h) to the decryption oracle. The decryption for this ciphertext, G(o)@e,
is unpredictable, because G(o) is unpredictable. Hence, the adversary can’t be aware of
the decryption for this ciphertext before getting it from the decryption oracle. Formally
speaking, it is necessary to show that Il is “plaintext-aware”, i.e., that one can construct
a knowledge-extractor that outputs the value D?,Z’G’H(e, ¢, h) on the transcript given above,
ie., ((o,e,¢,h),{}, vy, pk). However, if such a knowledge extractor exists for IIy, it contradicts
the unpredictability of G(o). Finally, we have the following claim.

Theorem 2. Let Il be the above encryption scheme. There exists a polynomial-time bounded
adversary B so that there is no knowledge extractor for Ily such that

Advig g 1, (k) > 27F,

Proof. Suppose that K is a knowledge extractor for I1y. We construct adversary B as men-
tioned above. We then run K on B’s transcript ((o,e, ¢, h),{},y, pk). If K outputs m/, we
set G(o) as m' @ ¢ and output it. Since G is a random oracle and K is not allowed to access
G, it is obvious by construction that Advl;?" B.1, (k) < 27% which is negligible in k.

By this theorem, Ily does not meet PA.

5.2 IIp meets PS

We prove that scheme I1j is “plaintext-simulatable”.
Theorem 3. Scheme Iy meets PS.
The proof follows from the lemmas below.

Definition 7. Let F be the generator for the one-way trapdoor permutation over {0,1}*,
obtaining (f, f~1). Let A be an adversary that attacks f. For k, we denote the advantage of
A by AdviT (k) =

Pr((f, f7) « Fiy < {0,1}" - A(f,9) = f ' (y)].

We denote by e* (k) the mazimum of Adv's(k) over all adversaries A who run in polyno-
mial time in k.

Lemma 3. Let Ily be the scheme mentioned above. For every polynomial time adversary
A, we have

AdviT (k) < 2- €™ (k). (8)

Lemma 4. Let € be the knowledge simulation error function for ITy mentioned above. We
then have

(k) < (k) +27%. (9)

We give the proofs below. By these two lemmas and theorem 1, it automatically turns out
that Il is plaintext-simulatable in the random oracle model. In particular, applying lemma 2
to Iy, the following lemma holds.

Lemma 5. Let Il be the scheme mentioned above. For every polynomial time adversary
A,

cca2 ow 1K —1
AAVER (k) £ 20+ De™ (k) +a- (5) (10)

where q denotes the total number of the queries of A to the decryption oracle.

Proofs of Lemmas, 3 and 4 To save space, we first describe common operations in both
proofs.

Simulation of oracle G. Let T be the list of pairs of the form (o, g) (€ {0,1}* x {0, 1}*).
T is initially empty. For a fresh query o € {0,1}* to G, pick up g €r {0,1}* to reply with.
Then add (o, g) to Z¢.

Simulation of oracle H. Let Ty be the list of tuples of the form (o, ¢, h) (€ {0,1}* x {0, 1}* x
{0,1}¥). Ty is initially empty. For a fresh query (o,¢) to H, pick up h € {0,1}* to reply
with. Then add (o, ¢, h) to H.

These simulations will be done by the constructed adversaries specified later, namely A’
and K.

Proof of Lemma 3. Let A be a CPA-adversary for Ily. We then construct adversary A’
that attacks the one-wayness of f. A’ takes e*, picked up uniformly on {0,1}*. A’ runs
A with pk = {f}. For every query of A to the random oracle(s), A" returns the answer
to A, following the procedures above. When A outputs (mg, m1), A picks up at random
¢ €{0,1}*, h* € {0,1}* and returns (e*, ¢*, h*) to A. A’ outputs o* and halts if A submits
a query to the random oracles with o* such that e* = f(o*).

Denote by AskG* the event that A submits query o*(£ f~1(e*)) to random oracle G.
Similarly, denote by AskH™* the event that A submits query (¢*, e, c) to random oracle H
where (e, c) # (e*,c*). Denote by AskG*V H* the event that either AskG* or AskH* occurs.

It is obvious by construction that the distribution of challenge ciphertext (e*,c¢*, h*) is
independent of the distribution of hidden bit b unless AskG* vV H* occurs. Therefore, we
have

1
Succy 'y, (k) < Pr[AskG™ v H*] + 5 Pr[-AskG™ vV H™].
Since Pr[AskG* vV H*] < €°¥(k), it leads that

AV (k) < 2¢7 (k). (11)

Proof of Lemma 4. We construct knowledge simulator K as follows. For given (Z¢, 7, V, y, pk)
to K, where y = (e,c,h) € Y and Y = {(e*, ¢*, h*)}, simulate the decryption of y as follows.

1. Search (o, e, ¢, h) in Ty such that e = f(o). If not successful, reject the ciphertext and
halts, otherwise

2. For the tuple (o, ¢, ¢, h) in Ty, search 7¢ to find (o, g). If it exists, return ¢® g, otherwise

3. Query oracle G on o to get g = G(o) (where we simulate G as above) and finally return

cdg.

Analysis. Denote by AskG* the event that B submits query o*(£ f~!(e*)) to random oracle
G. Similarly, denote by AskH* the event that B submits query (¢*,e,c) to random oracle
H where (e,c) # (e*,c*). Denote by AskG* V H* the event that either AskG* or AskH*
occurs. Denote by AskH the event that B submits query (o, e, c) to random oracle H such
that e = f(o) and y = (e, ¢, h).

Assume AskG* V H* does not occur. If AskH occurs, K always succeeds in decrypting
y. On the other hand, if AskH does not occur, K always rejects y, whereas the real decryp-
tion oracle would reject it except with probability 2*’“/, which means that the knowledge
simulation error of K, conditional on =AskG* Vv H* N =AskH, is bounded by 27"

To sum up, we have

k:/
55 (k) < Pr[AskG™ V H*] + Pr[~(AskG* v H*) N —AskH] - G)

1

< (k) + (2)'“

6 Other PS Encryption Schemes

In this section, we present two public-key encryption schemes that lie in PS but not in PA.
Why these schemes do not meet PA is essentially as the same as why I1y above does not
meet PA. So we will omit these proofs.

6.1 A DDN-based construction of CCA2-secure encryption

The Dolev-Dwork-Naor encryption scheme [6,7] is CCA2 secure. A concrete description
of the scheme is given in the appendix. The key for the security proof is as follows: Let
< F*,s*,c*,p* > be the challenge ciphertext. Since F* is the verification key of secure
signature scheme X' in the sense of [10], the adversary cannot produce signature s on (c, p)
such that (¢,p) # (c¢*,p*). For F # F*, the public key e]', ..., el» happens to be different

e n

from e]',..., ep" with overwhelming probability where vy ---v, = h(F) and v}-- v} =

h(F*). Hence, the simulator can decrypt < F,s,c,p > such that F' # F*, using a secret key

df; such that v} # v;.

The following scheme is an interpretation of the Dolev-Dwork-Naor encryption scheme
in the random oracle model. When F' # F™*, the session key H happens to be different from
H* with overwhelming probability. This is a point that allows the knowledge simulator to
simulate the decryption of the ciphertext in the scheme.

Let f : {0,1}* — {0,1}* be a trap-door permutation over {0,1}*. Let H : {0,1}* x
{0,1}* — {0,1}* be a hash function modeled as a random oracle. We denote by ¥ =
(G,S,V) a signature scheme secure against adaptive chosen message attacks [10] (For in-
stance, if Y is the Schnorr signature, the total encryption scheme is efficient and secure in

the random oracle model).

Key generation. Simply run the generator for the one-way trapdoor permutation scheme,
obtaining f and f~'. The public-key is f and the secret-key is f~!.

Encryption. Encrypt plaintext m € {0, 1}’“, using public-key f, as follows.

1. Run G(1%) to obtain (F, P), a pair of verification and signature keys.

2. Randomly pick up inner coins o € {0, 1}* and compute e := f(o) and ¢ := m® H(o, F).
3. Generate signature s on (e, ¢), using the signing key P.

4. The encryption of m is (F, s, e, c).

Decryption. Given the ciphertext, check whether the string can be parsed into the specified
form. If not, just reject it, otherwise appropriately parse it into (F, s, e, c). Then,

1. Verify that s is a signature on (e,c) € {0,1}* x {0,1}*, using the verification key F. If
not, just reject it, otherwise,

2. Compute o = f~(e)

3. Output m =c® H(o, F).

Theorem 4. The scheme meets PS.

Proof. (Sketch) It is obvious by construction that the scheme meets IND-CPA. The con-
struction of a knowledge simulator is as follows: Let (F, s, e, ¢) be a ciphertext that B submits
to the knowledge simulator. Let (F*,s* e*,¢*) € Y be the challenge ciphertext. If F = F*,
we just reject the ciphertext (implicitly assuming (s*,e*,¢*) # (s,e,c)). If FF # F* and s
is a valid signature on (e,c), we then simulate the decryption of (e,c¢) as in the proof of
Lemma 4. Namely if there is the corresponding plaintext of (e, ¢) in list 7z, then return it;
otherwise register a random string as H (o, F') in 7y and return ¢ ® H (o, F).

As with the proof Lemma 4, when F' # F* and s is a valid signature on (e, c), each
output of this simulation is identical to the real decryption of (e, c) except with negligible
error 27 where k is the size of the output of H. When F = F*, the probability that s
is a valid signature on message (e,c) with the verification-key F' is negligible because of
unforgeability of X

Remark 2. Since the Schnorr signature is known to be secure [10] in the random oracle
model [16], this DDN encryption scheme by applying the Schnorr signature to X' turns out
IND-CCA2 in the random oracle model. To the best of our knowledge, there has been no
IND-CCA2 encryption scheme (in the random oracle model) except this construction and
[1] such that it is composed of a IND-CPA encryption plus a 3-move ZK-like signature. For
instance, the signed El Gamal encryption scheme has not been proven IND-CCA2.

6.2 A CCAZ2-secure encryption scheme based on a strong pseudo-random
permutation family

Let P = {{P, : {0,1}} — {0,1}k}ae{0,1}k}keN be a strong pseudo-random permutation
family [12]. Informally, a strong pseudo-random permutation has the property that the
output of P; !, not only P,, with any input, looks random, i.e., pseudo-random. A well-
known construction of strong pseudo-random permutations comsists of four rounds of Feistel
permutations where each round takes a pseudo-random function with a different key [12].
Another construction is known in [13]. Using this family, we can naturally construct a PS

encryption scheme. This scheme provides the optimal ciphertext lengths for verifying the
validity of ciphertexts, i.e., (ciphertext size) = (message size) + (randomness size). According
to [15], such a construction remained open 2.

Let f: {0,1}*¥ — {0,1}* be a trap-door permutation over {0,1}*. Let G : {0,1}* —
{0,1}* be a hash function modeled as a random oracle.

Key generation. Simply run the generator for the one-way trapdoor permutation scheme,
obtaining f and f~'. The public-key is f and the secret-key is f~1.

Encryption. For plaintext m € {0, 1}*, the encryption algorithm with public-key f randomly
picks up inner coins o € {0,1}* and computes the ciphertext £y (m; o) as follows.

Epp(m; o) := f(0) || Poo)(m). (12)

Decryption. Given ciphertext (e, ¢), check whether the string can be parsed into the specified
form. If not, just reject it, otherwise, appropriately parse it into e € {0,1}*, ¢ € {0,1}*. The
decryption algorithm with f~! then computes

o=f1e) and m= Pg(la)(c). (13)
If o,m € {0,1}*, the decryption algorithm outputs m; otherwise reject the ciphertext.

Theorem 5. The scheme meets PS.

Proof. (Sketch) It is obvious by construction that the scheme is IND-CPA. The key for
constructing a knowledge simulator is that if adversary B submits ciphertext (e, c) so that
o = f~1(e) is not in the list 7, we let the simulator reply with a truly random string m/,
which is computational indistinguishable from the real decryption P(;(lg) (c) because P is a
strong pseudo-random permutation. Therefore, we can also construct a knowledge simulator.

7 Open problem

Although we believe that this new security class can help designers find a lot of new schemes,
at least the current definition does not seems to cover the ideas of constructing secure hybrid
encryption schemes such as the one proposed by Shoup [21] where the underlying symmetric
encryption scheme is IND-CCA2 (in the symmetric encryption setting). We do not know
how to prove Shoup’s hybrid encryption schemes meet PS, except for the case that the
underlying symmetric encryption scheme is a strong pseudo-random permutation (which
implies IND-CCA2 symmetric encryption). We also can’t prove that they do not meet PS.
So far, we do not have any counter-example that PS is “properly” stronger than IND-CCA2.

References

1. M. Abe. Combining encryption and proof of knowledge in the random oracle model. The Computer
Journal, 47(1):58-70, 2004. (Presented in CT-RSA 2002, LNCS 2271).

2. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key
encryption schemes. In H. Krawczyk, editor, Advances in Cryptology — CRYPTO’98, volume 1462 of
Lecture Notes in Computer Science, pages 26—45. Springer-Verlag, 1998.

2 Independently, Choi, Kobara, and Imai recently presented another construction with optimal redun-
dancy [5]. This scheme also lies in PS but not in PA.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Alfredo De Santis, editor, Advances
in Cryptology — FUROCRYPT’9, volume 950 of Lecture Notes in Computer Science, pages 92—111.
Springer-Verlag, 1995.

M. Blum, P. Feldman, and S. Micali. Proving security against chosen cyphertext attacks. pages 256-268.
Springer-Verlag, 1988. Lecture Notes in Computer Science No. 403.

Y. Cui, K. Kobara, and H. Imai. A generic conversion with optimal redundancy. In RSA Conference
2005, Cryptographers’ Track (CT-RSA 05), 2005. To appear.

D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In Proceedings of the 23rd annual ACM
Symposium on Theory of Computing, pages 542—552, New York City, 1991.

D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM. J. Computing, 30(2):391-437,
2000. (Presented in STOC’91).

D. Dolev and A. Yao. On the security of public-key protocols. Transactions on Information Theory, 29,
1983.

P. A. Fouque and D. Pointcheval. Threshold cryptosystems secure against chosen ciphertext attacks. In
C. Boyd, editor, Advances in Cryptology — Asiacrypt 2001, volume 2248 of Lecture Notes in Computer
Science, pages 351-368. Springer-Verlag, 2001.

S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal of Computing, 17(2):281-308, April 1988.

J. Herzog, M. Liskov, and S. Micali. Plaintext awareness via key registration. In G. Goos, J. Hartmanis,
and J. van Leeuwen, editors, Advances in Cryptology — CRYPTO 2003, volume 2729 of Lecture Notes
in Computer Science, pages 548-564. Springer-Verlag, 2003.

M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions.
SIAM. J. Computing, 17(2):373-386, 1988. (Presented in CRYPTQO’85).

M. Naor and O. Reingold. On the construction of pseudorandom permutations: Luby-rackoff revisited.
JOC, 12(1):29-66, 1999. (Presented in STOC’97).

M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In
Proceedings of the 21st annual ACM Symposium on Theory of Computing, pages 427-437, 1990.

D. H. Phan and D. Pointcheval. Chosen-ciphertext security without redundancy. In C. S. Laih, editor,
Advances in Cryptology — Asiacrypt 2003, volume 2894 of Lecture Notes in Computer Science, pages
1-18. Springer-Verlag, December 2003.

D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. Maurer, editor, Advances in
Cryptology — EUROCRYPT’96, volume 1070 of Lecture Notes in Computer Science, pages 387-398.
Springer-Verlag, 1996.

C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext
attack. In J. Feigenbaum, editor, Advances in Cryptology — CRYPTO’91, volume 576 of Lecture Notes
in Computer Science, pages 433—444. Springer-Verlag, 1992.

A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In
FOCS99, pages 543-553, 1999.

A. De Santis, G. Di Crescenzo, and G. Persiano. Necessary and sufficient assumptions for non-interactive
zero-knowledge proofs of knowledge for all np relations. In ICALP 2000, volume 1853 of LNCS, pages
451-462. SV, 2000.

A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without interaction. In FOCS92,
pages 427-436, 1992.

V. Shoup. A proposal for an ISO standard for public key encryption. Technical report, December 2001.
Cryptology ePrint Archive, Report 2001/112 http://eprint.iacr.org.

A The DDN encryption scheme

For completeness, we recall the encryption scheme presented by Dolev, Dwork and Naor [6,
7], which is the first NM-CCA2 secure (CCA2-secure) encryption scheme under the generic
assumption (that trap-door functions exists).

Let IT = (K,&,D) be a CPA-secure encryption scheme and let X = (G, S, V) be a (pos-

sibly, one-time) signature scheme secure against adaptive chosen message attacks [10]. Note
that a CPA secure encryption scheme can be obtained by using any trap-door encryption
scheme and a secure signature scheme in the sense of [10] can be obtained by using any
one-way function.

HDDN

The DDN encryption scheme is constructed as follows.

Key generation.

Ll o

Run K(1%) 2n times. Denote the output by (e?,dY), (el,dd), ..., (e2,d%), (e}, dL).
Generate random U, the shared random string for non-interactive zero-knowledge proof.
Pick up a universal one-way hash function h: {0,1}* — {0,1}".

The public key for the target encryption scheme ITPPN is < h e el ... el el U >.
The corresponding secret key is < dY,d3,...,d2, d} >.

sy Uns Yn

Encryption. For plaintext m € {0,1}*, the encryption algorithm works as follows.

Ll

5.
6.

Run G(1%) to obtain (F, P), a pair of verification and signature keys.

Compute h(F). Denote the output by vy, ..., v,, where v; € {0,1}.

For each 1 < i < n, pick up random string r; and compute ¢; := & v (m;r;).

Given c:=<el',... e, c1,...,cy, >, generate a non-interactive zero-knowledge proof p
for language L, using witness (r1,...,r,) and string U, where L := {C|delq (c1)="---=
Dyen(cn)}

Generate signature s on (¢, p), using the signing key P.

The encryption of m is < F), s,c,p >.

Decryption. Given ciphertext < F) s, ¢, p >, check whether the string can be parsed into the
specified form. If not, just reject it, otherwise, appropriately parse it. Then,

1.
2.

3.
4.

Verify that s is a signature on (¢, p), using the verification key F'.

Verify the validity of the non-interactive proof p that asserts ¢ € L, using the common
string U.

Compute h(F) and check vy - - - v, = h(F).

Retrieve m using one of d*,...,dp".

Claim. The encryption scheme ITPPN is CCA2 secure if trap-door functions exist [7].

