正 員 畑 耕治郎* 正 員 長谷川 和彦** 非会員 丹羽 量久***

AIS シミュレータ

AIS simulator

Kojiro Hata, Member bv Kazuhisa Niwa

Kazuhiko Hasegawa, Member

Summary

AIS(Automatic Identification System) is a communication system that enables a ship to get information about other ships and navigation status, such as their position, course, speed, name etc. automatically by VHF radio. The system is expected to contribute to the improvement of marine traffic control and safety. In some congested waterways overloaded/conflict transmission of AIS is a potential problem from the planning stage. In this study, a simulation system has been developed for predicting AIS communication in real or simulated marine traffic flow considering the movement of each ship. This system can even evaluate the conflict state and the garble state of duplicate messages on the same slot in the actual navigation environment as real as possible.

1. 緒 亖

海上交通において輻輳海域の安全確保は非常に重要な課 題である。近年、IT を活用した船舶の運航支援や安全管理 の合理化・効率化を図るための研究開発や実用化が進められ ている。その取り組みの1つである AIS (Automatic Identification System) は、船舶-船舶間、または船舶-陸上 間において、各船舶の位置や航行に関する情報を自動的に送 受信するシステムである。現行のマリンレーダや ARPA (衝 突予防援助装置)などでは得られなかった他の船舶の航行状 況が把握できるなど衝突予防や安全航行への貢献が期待さ れている。

しかしながら AIS は、VHF 帯を用いた通信システムである ことから数多い日本の輻輳海域では、かねてより通信のひっ 迫化が懸念されているが未だ AIS の通信容量に関しては明 確には示されていない。このような問題に対して、鈴木らは 簡易的な海上交通流モデルによる AIS の通信容量の評価を 行っている¹⁾。しかし、AISの通信容量は船舶どうしの位置 関係や船舶の速度、変針の状況などに大きく影響されること から、簡易的な運動モデルによる交通流に基づいた通信容量 評価では正しい評価を行うことは困難である。

- * 大手前大学
- * * 大阪大学大学院
- * * * 長崎大学

原稿受理 平成 19 年 8 月 31 日

一方、長谷川らは、統計に基づいて現実的な海上交通流を 作ることができるシミュレーションシステム(以後、輻輳海 域シミュレータ(Marine Traffic Simulator)²⁾)を開発し、 改良を重ねてきている。この輻輳海域交通流シミュレータを 用いて AIS の通信容量の評価を行っているが簡易的な AIS 通信モデルによるものである。著者らは、この簡易的なモデ ルで行われてきた評価方法を改善し、実際の AIS 機器の規格 に準じた AIS 通信モデルを用い、かつ、実状に近い航行環境 で AIS 通信を模擬できる AIS シミュレータを開発した。この AIS シミュレータを用いれば、より現実的に AIS の通信容量 を評価することができる³⁾。さらにAIS シミュレータは、船 舶の運動モデルや AIS 通信に関する設定を自由に変更する ことができるので AIS を活用した新たなサービスなどにも 柔軟に対応することが可能となる4)。

本論文では、開発した AIS シミュレータの特徴と有効性に ついて説明する。

2. AIS 通信の特徴

社会基盤としての情報ネットワークが確立するなか、ユビ キタス社会の到来により無線ネットワークがさまざまな場 面で利用されているが、無線であるがゆえに十分な通信性能 を確保するための課題は多く⁵⁾、AIS も例外ではない。

AISは、1分間を2,250個のタイムスロットに分割し、そ の1スロットを使って ITU 勧告 ITU-R M. 1371-12⁶⁾に定めら れたメッセージを送信する。現在は、2つの周波数帯を使っ て通信を行うので1分間に 4,500 個のスロットをメッセー ジの送受信に使用することができる。スロットの管理は、多 元接続方式を採用しており、周辺の船舶から送られるメッセ ージに影響を受けながら 4,500 個のスロットをそれぞれの 船舶が自己管理する。スロット管理の主な目的は、他船から 送られてくるメッセージを欠かさず受信するために、自船の メッセージ送信が他船のメッセージ送信のタイミングと重 ならないようにすることである。

航行中、最も多く使われる通信方式である SOTDMA では、 自船の位置情報と次に送信に用いるスロットの予約情報を 同時に送信する。このメッセージを受信した船舶は、送信元 の船舶が次にどのスロットを使って送信を予定しているの かを知ることができるため、その予約されたスロットを避け て送信することができる。このように SOTDMA では、複数の 船舶が同じスロットを使ってメッセージを送信しないよう な工夫がなされている。Fig. 1 に SOTDMA の概念図を示す。

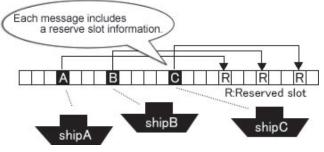


Fig.1 Schematic diagram of SOTDMA.

しかしながら、SOTDMA を用いた場合であっても、状況に より複数の船舶が同一のスロットを使ってメッセージを送 信してしまうことがある。Fig.2 の Case1 (上の図) は、3 隻の船舶のスロット管理の状況 (図の右側) と位置関係 (図 の左側) を示したものである。スロット管理では、スロット 番号0番から7番までの8スロット分を図式化したもので ある。塗りつぶされているスロットは受信もしくは送信に使 用したスロットで、枠内の文字はスロットを送信に使用した 船舶名を表している。空白のスロットは未使用のスロットで ある。また、船舶の位置関係では、各船舶の周りにある丸い 破線は、それぞれの船舶の送信電波の到達範囲を示している。

Fig.2のCase1では、船舶Aと船舶Bは互いの電波が受信 できる場所に位置し、船舶Cは船舶Aと船舶Bの電波が届か ない場所に位置している。この位置関係の場合、船舶Aと船 舶Bは互いのメッセージを受信しあうことができるが、船舶 Cは船舶Aと船舶Bとはメッセージの交換は行えない。つま り、スロット番号6に見られるように船舶Aと船舶Cが同一 スロットを使ってメッセージを送信しても不都合は生じな い。

一方、Fig.2のCase2(下の図)では、船舶Aと船舶B、 そして、船舶Bと船舶Cは互いの電波が受信できる場所に位 置し、船舶Aと船舶Cは互いの電波が届かない場所に位置し ている。この位置関係の場合、船舶Aと船舶Bは互いのメッ セージを受信しあうことができる。また、船舶 B と船舶 C も互いのメッセージを受信しあうことができる。つまり、船 舶Bは船舶Aと船舶Cの両船舶とメッセージの交換を行うこ とになる。もし、スロット番号6に見られるように船舶 A と船舶 C が同一スロットを使ってメッセージを送信すると 船舶Bは、電波の状態により、いずれかのメッセージ、もし くは両方のメッセージを受信できない。著者らは、このよう な状態をメッセージの衝突(Conflict)と呼ぶことにする。メ ッセージの衝突が多発すると船舶間の情報伝達が遅れ、AIS の運用に支障をきたす。

したがって、AISを運用する上でいかなる状況においても メッセージの衝突を抑制しなければならず、スロット管理の 役割はとても重要となる。

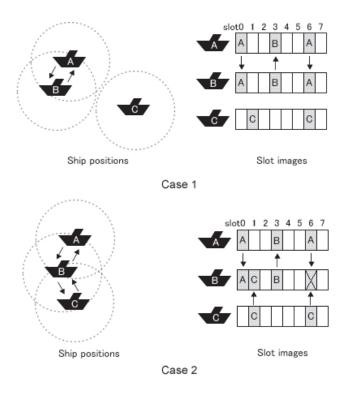


Fig.2 Schematic diagram of slot conflict.

3. AIS シミュレータの重要性と必要性

AISは、船舶どうしが有機的かつ動的に通信ネットワーク を構成していく通信システムのため、船舶どうしの位置関係 や船舶の速度、針路状況の変化などが AIS の通信容量に影響 を与える。つまり、海域や速度規制などの航行環境が異なれ ば、AIS を搭載した船舶数が同じであっても、通信容量は異 なる。そのため、通信容量の評価精度には、想定する海上交 通流がとても重要な因子となる。

また、AIS は、さまざまな用途でその活用が期待されてお

り、例えば、バイナリ情報を使った船舶どうしによる情報交換や、漁船やプレジャーボードなどの非 SOLAS 船への AIS 装置の配備などが検討されている。このような AIS の活用シーンの増加は、AIS の通信容量のひっ迫化の要因となるため、 実運用の前にあらかじめ通信容量の推定を行う必要がある。

したがって、AISの通信容量の評価には、実状に近い航行 環境で評価できることに加え、さまざまな AIS の活用シーン を想定できることが求められる。そのため、実際の海上を使 った調査だけでは不十分であり、多様なシミュレーションに よる通信評価が必要となる。

4. AIS シミュレータにおける航行情報

AISの通信シミュレーションに使う航行情報は、AISの通 信容量の評価を行う際にはとても重要である。AIS シミュレ ータでは、輻輳海域シミュレータで生成された航行記録、ま たは海上交通センターなどの陸上に設置した AIS 受信機に よる AIS 情報の受信記録のいずれか、さらには、その組み合 わせを航行情報として使用する。AIS シミュレータは、この ような航行情報を利用することで実状に即した仮想の海上 交通環境を再現している。

以下に、輻輳海域シミュレータについて説明する。輻輳海 域シミュレータは、統計に基づいて現実的な海上交通流を作 ることができるシミュレーションシステムで、船舶の生成、 操船判断、船舶運動の要素から構成される。生成した個々の 船舶が目標点に向かって自動航行しつつ、周辺海域を航行す る他船の動きや海域状況に応じて、航行規則にしたがい必要 に応じた衝突回避や座礁回避を行うことができる船舶自動 航行エキスパートシステムを備えた海上交通流シミュレー タである。輻輳海域シミュレータを用いれば、さまざまな海 域に合わせて、任意の海上交通流を構築することができる。 そのため、AIS シミュレータでは、航行情報を差し替えるだ けで簡単にさまざまな海域の通信シミュレーションを行う ことができる。Fig. 3 に AIS シミュレータの概念図を示す。

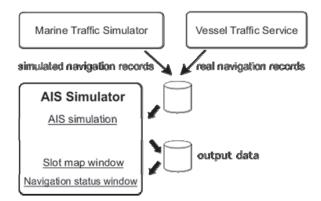


Fig.3 Schematic diagram of AIS simulator.

なお、AIS シミュレータは、今後、さらに検討される AIS 陸上局の設置計画において、AIS 陸上局が与える海域全体の 通信容量への影響の調査に対処するために AIS 陸上局に関 しては、これらの航行情報とは無関係に AIS 陸上局の設置数 や設置座標を任意に取り扱うことができる。

5. AIS シミュレータにおけるスロット管理

AIS の通信容量評価で最も重要な指標のひとつであるメ ッセージの衝突は、各船舶のスロット管理、特にメッセージ を送信するためのスロットを予約する処理が大きく影響す る。すなわち、AIS 通信を正しくシミュレーションするには、 スロット予約の処理を実状に即した手順で行うことが重要 となる。

そこで、AIS シミュレータではメッセージの送受信に ITU 勧告 ITU-R M. 1371-12 に準じた RATDMA、ITDMA、SOTDMA、 FATDMA ならびに現在、仕様が検討されている CSTDMA を用い る。陸上局は RATDMA、ITDMA、FATDMA を、 Class A AIS 搭 載船舶は RATDMA、ITDMA、SOTDMA を状況に応じて使い分ける。 Class B AIS 搭載船舶については、正式な仕様が決定してい ないため、著者らが IEC 62287-1 Ed. 1⁷⁾を元に独自に検討し た。

5.1 AIS シミュレータにおけるスロット予約の手順

ここでは、AIS シミュレータにおけるスロット予約処理に ついて説明する。

まず、反復性のないメッセージ(静的情報、バイナリ情報 など)のスロット予約について説明する。

- 1. RATDMA を用いて、送信に使用するスロットを探す。
- 送信できるスロットが見つかると他船舶の送信状況にか かわらず、メッセージを送信する。
- 送信に使用したスロットは、メッセージの送信が終了した時点で空きスロットとなる。

このように反復性のないメッセージは、あらかじめ予約し ておいたスロットを使って送信を行うのではなく、送信でき ると判断したスロットで即座に送信を行う。したがって、反 復性のないメッセージは、メッセージの衝突が起こりやすい 特性がある。

次に反復性のあるメッセージ(動的情報)のスロット予約 について説明する。

- 1. RATDMA を用いて、送信に使用するスロットを探す。
- 2. 送信できるスロットが見つかると ITDMA を用いて、次の 送信に使用するスロットを別のチャンネル上から探す。

- 次の送信に使用するスロットが見つかるとそのスロット を予約し、そのスロット番号を含むメッセージを送信す る。
- 時間が経過し、先に予約したスロットに到達すると改め て、ITDMAを用いて、次の送信に使用するスロットを別の チャンネル上から探す。次の送信に使用するスロットが 見つかるとそのスロットを予約し、そのスロット番号を 含むメッセージを送信する。この処理を動的情報の通報 間隔に合わせて1フレーム分の送信に必要なスロット数 分を繰り返し、スロットを予約しながらメッセージを送 信していく。
- 5.1フレーム分のスロットの予約が済むと次のフレームからは予約されたスロットを使用してメッセージの送信を行う。送信にはSOTDMAが用いられる。1度予約されたスロットは、動的情報の通報間隔が変更される、あるいはスロットのタイムアウト値が0分になるまでは、予約した船舶が優先的に使用する(ただし、他船舶が使用することもある。「2.AIS通信の特徴」参照)。ここで送信されるメッセージには、送信に使用したスロットのタイムアウト値が含まれる。
- タイムアウト値が0分になったスロットに到達した場合、
 そのスロットに変わる新たなスロットを探す。タイムアウト値が0分になったスロットは、その時点で空きスロットとなる。

このように、反復性のあるメッセージは、あらかじめ予約 したスロットを使って送信する。したがって、反復性のある メッセージは、反復性のないメッセージに比べて、メッセー ジの衝突が起こりにくい特性がある。

5.2 AIS シミュレータにおけるメッセージの受信判定

情報伝達を目的とした AIS において、メッセージの受信判 定は、送られてきたメッセージを受信するのかしないのかを 判断する重要な処理である。AIS では、メッセージの送信元 船舶と自船との間の距離やメッセージの電波の強さ、または、 他船舶の送信状況などを複合的に考慮して受信判定が行わ れる。

ここでは、AIS シミュレータにおけるメッセージの受信判 定処理について説明する。

受信対象船 *j*に対して、1 隻の船舶からのみメッセージが 送られてきたとき、受信対象船 *j*が送信処理をしていなけれ ば、このメッセージを受信し、この受信状態を**受信(Receive)** とする。もし、送信処理を行っている場合には、このメッセ ージを受信しない。

一方、受信対象船 jに対して、2 隻以上の船舶から同時に メッセージが送られてきたときは、各船 i からメッセージの 受信電力を算出する。それぞれの受信電力を比較し、最大値 と2 番目に大きな値に、AIS シミュレータの設定条件で指定 した受信判定倍率以上の差があった場合は、最大値を送信し た船舶のメッセージを受信し、この受信状態を**衝突して受信** (Receive stronger message)とする。受信判定倍率以上の差が なかった場合は、いずれのメッセージも受信せず混信 (Garble)とする。

すなわち、衝突は同時に2隻以上の船舶からメッセージ が送られてきたとき、最も受信感度のよいメッセージを受信 したことになり、混信はいずれのメッセージも受信できなか ったことになる。

以下に、メッセージの受信電力の計算式を示す。

$$Pr_{ij} = \frac{Ps_i}{D_{ij}^2} \tag{1}$$

 Pr_{ii} : Received Power of ship *i* message from Ship *j*

 Ps_i : Power of Ship *i* message

 D_{ii} : Distance between Ship *i* and Ship *j*

さらに、電波の減衰は考慮せず、海上は常に見通しがよく、 反射波および途中遮へいはないものとする。

6. AIS シミュレータにおける通信状況の可視化

通信は、目に見えて確認できるものではなく、数値情報だ けでは対象海域でどのような通信状況が行われているのか 様子がわかりにくい。そこでAIS シミュレータでは、視覚的 に AIS 通信の状態を表すことができる Slot map window と Navigation status windowの2つのGUI ツールを用意した。

まず、Fig.4にSlot map windowの表示例を示す。Slot map window は、個々の船舶のスロットの使用状況を把握する目的で開発したツールであり、これを利用すれば衝突したスロットや混信したスロットを一目で特定することができる。

画面には、1フレーム、すなわち、1チャンネルあたり 2,250 個のスロットを2チャンネル分の計4,500 スロット分 のマス目を配置し、最上段はチャンネルAの最初の75 スロ ット分で左端が1スロット目(スロット番号:0)に対応す る。その一つ下段はチャンネルBの最初の75 スロットを示 す。順次、チャンネルAとチャンネルBを対として下方向に 進む。ここに指定した1隻のスロットの使用状況をアニメー ションで描画する。描画する色で各スロットの状態を分類す る。図中、実際の画面では、それぞれ、三角マーク(青色): 自船が送信に使用、丸マーク(赤色):混信、四角マーク(黄 色):衝突して受信、その他(緑色):他船が使用、を表し ている。

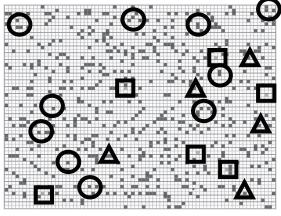


Fig.4 A sample output of Slot map window.

次にFig.5にNavigation status windowの表示例を示す。 Navigation status window は、船舶の位置とスロットの使 用状況、あるいは海域全体の通信状況との関係を把握する目 的で開発したツールであり、これを利用すれば海域のどのよ うな場所で、またどのような状況でメッセージの衝突が発生 するのかを視覚的に把握することができる。

画面中央には、指定した海域上に船舶が航行する様子がア ニメーションで表示される。指定された船舶は、海域上に赤 いマークで表示されるとともに、画面左上に小画面でスロッ トの使用状況も表示される。



Fig.5 A sample output of Navigation status window.

Fig.6は、船舶の位置と通信状態の関係を評価する目的で Navigation status window を用いて、東京湾を航行する船 舶のメッセージの衝突状況を色分けしてアニメーションで 描画した様子をキャプチャしたものである。この例の場合、 画面中央部 (Fig.6の太線内部) にメッセージの衝突頻度の 高い船舶が集中していることがわかる。

このように時間の経過とともに航行する船舶とその位置 におけるメッセージの衝突状況をアニメーションで確認す ることができるので、海域全体の通信状態の変化を評価する 際に有効である。

Fig.7は、海域とメッセージの衝突状況の関係を評価する 目的でメッセージの衝突回数を海域ごとに累積したグラフ である。

このように海域ごとに累積値を算出にすることで特定の 海域における通信上の特徴を把握することができる。

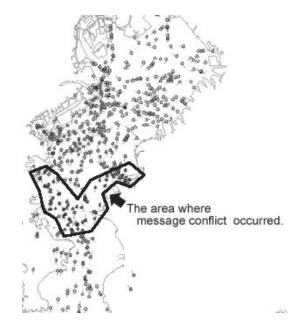


Fig.6 A sample which evaluated the conflict state of a message.

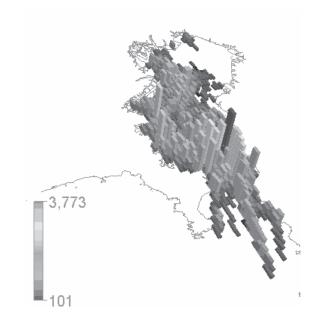


Fig.7 A sample output of cumulative distribution of conflict.

7. 結 言

本論文では、開発した AIS シミュレータの特徴と機能を紹介するとともに、その重要性と必要性を述べた。AIS シミュ

レータと輻輳海域シミュレータを組み合わせて活用するこ とで容易に AIS の通信状況を高い精度で予測することが可 能となり、VTS や AIS 陸上局の設置計画やベイエリア開発な どに利用することができる。さらには、その応用として、海 上交通の安全管理の研究などにも活用することができる⁸⁰。

本研究における結論を述べる。

- (1) 個々の船舶の運動状態ならびにスロット管理などの AIS の通信手順を実状に即した状態で再現できる AIS シミュレータを開発した。
- (2) AIS シミュレータは、AIS 通信容量の推定や AIS 通信 の分析に有効であることを示した。

本研究の一部は「新任教員の教育研究推進支援経費」(長 崎大学学長裁量経費)の支援を受けた。

参考文献

- 鈴木浩之,河野隆二: AIS ネットワークシミュレーションによる通信容量の評価, AIS セミナー, pp. 4.1-4.8, 2004
- 2)長谷川和彦, 立川功二: 輻輳海域シミュレータと海の ITS, 計測自動制御学会関西支部シンポジウム「計測と制御に 見る 21 世紀の幕開け」講演論文集, pp. 184-189, 2001
- 3) 畑耕治郎,福戸 淳司,長谷川和彦,丹羽量久:AIS シミ ユレータを用いた AIS 通信の評価-Class B AIS 搭載要件 の影響-,日本航海学会論文集第 117 号,2007
- 4) 畑耕治郎,長谷川和彦,丹羽量久:シミュレーションを
 活用した AIS の性能評価,第76回マリンエンジニアリン
 グ学術講演会講演論文集,pp.73-74,2007
- 5) 戸出秀樹:ネットワーク技術の現状と今後,システム制 御情報学会誌, pp. 2-9, 2007
- Technical characteristics for a universal shipborne automatic identification system using time division multiple access in the VHF maritime mobile band, ITU-R M.1371-1, ITU, 2001
- Maritime navigation and radiocommunication equipment and systems - Class B shipborne equipment of the automatic identification system (AIS) - Part 1: Carrier-sense time division multiple access (CSTDMA) techniques, IEC 62287-1 Ed.1, IEC, 2006
- 8) K.Hasegawa, K.Hata, M.Shioji, K.Niwa, S.Mori, H.Fukuda : Simulation-based.Master plan Design and ITS Safety Assessment For Congested Waterways Management, The 2nd International Conference on Design for Safety , Japan , pp.265-270, 2004

Appendix 1 用語

フレーム

フレームとは、2,250 個のタイムスロットの集まりのこと である。1フレームは1分間に相当する長さである。

空きスロット

空きスロットとは、自船を含むいずれの船舶および陸上局 からもスロットを使用することを宣言されていないスロッ トのことである。

タイムアウト値

タイムアウト値とは、同一船舶による同一スロットの占 有時間を示す値のことである。反復性のあるメッセージを取 り扱うスロットには、3~8分のランダムな値が割り当てら れ、その値がタイムアウト値となる。タイムアウト値はその スロットで送信が行われる度に1分ずつ減っていく。タイム アウト値が0分になったスロットは、次フレームでは使用で きない。したがって、同一船舶による同一スロットの占有時 間は最大でも8分となる。

Appendix 2 AIS シミュレータに実装した通信手順

以下に AIS シミュレータに実装した各通信手順を説明する。

RATDMA (Random access Time Division Multiple Access)

送信の試行を開始するスロットを*NSS、NSS*から数えて150 スロット目までの間にある空きスロット数を*RTCSC、*候補ス ロット確率を*RTP1、*送信確率を*RTP2、*確率増加を*RTPIと*す る。

はじめに、送信の試みを開始するスロット NSS を 0 から 2,249 スロットの中から一様乱数で決める。次に NSS から数 えて 150 スロット目までの間にある空きスロット数 RTCSC を求める。RATDMA では、送信の試行は NSS から 150 スロッ ト以内の空きスロットでのみ行われる。つまり、送信の試行 をはじめて4秒以内 (26.7 ミリ秒×150 スロット) に送信す ることになる。試行する空きスロットに到達するとまず、候 補スロット確率 RTP1を0 から100 の中から一様乱数で決め、 次に送信確率 RTP2を求める。このとき RTP2 は式(A1) で求め る。

$$RTP2 = 100 \ / \ RTCSC \tag{A1}$$
$$RTP1 \leq RTP2 \tag{A2}$$

$$IITI \cong \Pi ITZ$$
 (A2)

ここで式(A2)が真ならば、このスロットで送信する。偽なら

ば送信しないで確率増加 *RTPI* を算出する。このとき *RTPI* は式(A3)で求める.

$$RTPI = (100 - RTP2) / (RTCSC - 1)$$
(A3)

求めた *RTPI*を用いて *RTP2*を再計算し、次の空きスロットまで待つ。このとき *RTP2*の再計算は式(A4)で求める。

(ここで、+=はC言語で言う複合代入演算子であり、

```
とは
```

a に b を加算して、再び、a に代入することを意味する。)

$$RTP2 \mathrel{+=} RTPI \tag{A4}$$

式(A2)で真を得られるまで式(A3)と(A4)の処理を繰り返す。 送信の試行は送信されるまで同じチャネンル上で行う。

ITDMA (Incremental Access Time Division Multiple Access)

現在、AISは2つの周波数を使用しているので反復性のあ るメッセージを送信する場合は、チャンネルA、チャンネル Bを交互に使用して送信する。したがって、予約するスロッ トもチャンネルAとチャンネルBから交互に選択する。

1分間に通報しなければいけない位置通報回数を Rr、動 的情報の報告間隔を Interval、チャンネル A 用の送信基準 スロットを NSa、チャンネルB用の送信基準スロットを NSb、 スロットの候補範囲の開始スロットを SIlow、スロットの候 補範囲の終了スロットを SIhigh、候補スロット範囲を SI、 チャンネル A 用の予約スロットを NTSa、チャンネル B 用の 予約スロットを NTSb とする。

まず、1分間に通報しなければいけない位置通報回数 *Rr* を Table 1 に示す動的情報の報告間隔 *Interval* を参照し、式(A5)を用いて計算する。

$$Rr = 60 / Interval$$
 (A5)

次に NSS と Rr を用いてチャンネル A 用の送信基準スロット NSa、チャンネル B 用の送信基準スロット NSb を求める。こ のとき、チャンネル A を使用する場合は式(A6)を、チャンネ ル B を使用する場合は式(A7)を用いて計算する。

 $NSa = NSS + (n \times 2 \times (2250 / Rr))$ (A6) $\hbar t t (0.5 \times Rr)$

$$NSb = NSS + 2250 / Rr + (n \times 2 \times (2250 / Rr))$$
 (A7)

ただし、0 = \leq n< (0.5×Rr)

続いて、スロットの候補範囲の開始スロット *SIIow* と終了ス ロット *SIhigh* をチャンネル A の場合は式(A8) と(A9) を、チ ャンネル B の場合は式(A10) と(A11) を用いて計算する。

$$SIlow = NSa - 0.1 \times 2250 \swarrow Rr$$
(A8)

$$SIhigh = NSa + 0.1 \times 2250 \swarrow Rr$$
(A9)

$$SIlow = NSb - 0.1 \times 2250 \swarrow Rr$$
(A10)

 $SIhigh = NSb + 0.1 \times 2250 / Rr$ (A11)

SIIowから SIhighの間のスロットが候補スロット範囲 SIと なる。最後に SIにある空きスロットの中から一様乱数で1 スロットを選択し、そのスロットをチャンネルAの場合は、 予約スロット NTSa、チャンネルB用の場合は、予約スロッ ト NTSb として予約する。Fig.8 に反復性のあるメッセージ のスロット予約モデルを示す。

Table 1 Reporting interval of Class AAIS

Ship's dynamic conditions	Interval
Ship < 1 knots	3 min
Ship 1-14 knots	10 s
Ship 1-14 knots and changing course	3-1/3 s
Ship 14-23 knots	6 s
Ship 14-23 knots and changing course	2 s
Ship > 23 knots	2 s
Ship > 23 knots and changing course	2 s

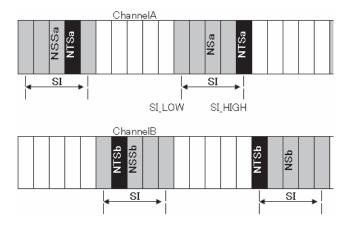


Fig.8 The slot reserve insured model of ITDAM and SOTDMA

SOTDMA (Self Organized Time Division Multiple Access) SOTDMA は、予約スロットのタイムアウト値が0以外のと きには、新たなスロットの予約は行わない。タイムアウト値 が0に達したスロットは、次フレームでは使用できないため、 次フレームからの送信に使用するスロットを ITDMA で求め た候補スロット SI の中から新たに1スロットを予約しなけ ればならない。スロットは ITDMA と同様、候補スロット SI にある空きスロットの中から一様乱数で1スロットを選択 し、予約スロットとする。

FATDMA (Fixed Access Time Division Multiple Access)

FATDMA は、陸上局による Message4 Base station report の送信にのみ使用する。AIS シミュレータでは、陸上局ごと に Message4 の送信に使用するスロットをあらかじめ AIS シ ミュレータに登録しており、毎回決まったスロットを使用し て送信する。なお、シミュレーション中は使用するスロット を変更しない。

CSTDMA (Career Sense Access Time Division Multiple Access)

CSTDMA は、Class B AIS 搭載船舶のみが使用する。Fig.9 に CSTDMA のスロット予約モデルを示す。

メッセージの送信間隔を RI、RIから算出される基準スロ ットを NTT、スロット選択範囲を TI、送信試行スロットを CPとする。TIは、RIの3分の1であり、最大でも375スロ ット[10秒に相当]である。

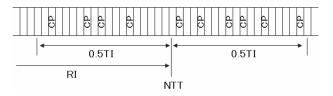


Fig.9 The slot reserve insured model of CSTDMA

CSTDMA では、まず、基準スロット NTT を中心とするスロ ット選択範囲 TIの中から 10 回分の送信試行スロット CPが 任意に選択される。ただし、すでに予約済みのスロットは除 かれる。次に、最初の送信試行スロット CPにおいてキャリ アセンス方式を用いて周辺の Class A AIS 搭載船が送信して いないかを調べ、送信していなければ、このスロットを使っ て送信する。もし、Class A AIS 搭載船が送信していれば、 このスロットでの送信は行わず、次の送信試行スロット CP まで待機する。候補として選択した 10 回分の送信試行スロ ット CP すべてにおいて送信できなかった場合には、送信せ ずに処理を破棄する。