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Abstract. Some theorems on continuity are presented. First we will prove
that every convex function f : Rn → R is continuous using nonstandard
analysis methods. Then we prove that if the image of every compact (resp.
convex) is compact (resp. convex), then the function is continuous.
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§1. Sufficient conditions for continuity

The purpose of this paper is to present some results on continuity. Now let us
introduce some terminology. In what follows, if E is a (standard) set, ∗E will denote
its nonstandard extension. If (E, | · | ) is a normed space and x, y ∈ ∗E, we say that
x ≈ y if x − y is infinitesimal, i.e., if |x − y| < r for all positive real r ∈ R; if x is
standard and x ≈ y, we say that y is near-standard and write x = st(y). For further
details, the reader is referred to [3], [4], [5] or [6].

Definition 1. Let E be a linear space and consider a function f : E → R. The
function f is called convex if

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2) (Jensen’s inequality)(1.1)

for all x1, x2 ∈ E and λ ∈]0, 1[.

Theorem 1. Let (E, | · | ) be a normed space and f : E → R a convex function. If
f(∗S1) ⊆ fin(∗R), where S1 denotes the unit sphere in E and fin(∗R) the set of
finite hyperreals, then f is continuous.

Proof. Fix any x0 ∈ E. Without any loss of generality, we may assume that x0 = 0
and f(x0) = 0 (simply replace f by the convex function g(x) := f(x + x0) − f(x0)).
Then given 0 ≈ ε ∈ ∗E, ε 6= 0, we have that

1. f(ε) <∼ 0 because

f(ε) = f

(
(1− |ε| )0 + |ε| · ε

|ε|
)
≤ (1− |ε| )f(0) + |ε| · f

(
ε

|ε|
)
≈ 0.(1.2)

Applied Sciences, Vol.9, 2007, pp. 1-4.
c© Balkan Society of Geometers, Geometry Balkan Press 2007.



2 Ricardo Almeida

2. f(ε) >∼ 0 because

0 =
1

1 + |ε|ε +
|ε|

1 + |ε| ·
−ε

|ε|(1.3)

and so

0 ≤ 1
1 + |ε|f(ε) +

|ε|
1 + |ε|f

(−ε

|ε|
)
⇒ f(ε) ≥ −|ε| · f

(−ε

|ε|
)
≈ 0.(1.4)

We conclude then that f(ε) ≈ 0.
We will now see the special case when E is a finite dimensional space. First we

need the following result due to Michel Goze (see [1] or [2]):

Theorem 2. Let M ∈ ∗Rn be an infinitesimal vector. Then there are non-null in-
finitesimals ε1, . . . , εk ∈ ∗R and standard vectors V1, . . . , Vk ∈ Rn, for some k ≤ n,
with

M = ε1V1 + ε1ε2V2 + . . . + ε1ε2 . . . εkVk.(1.5)

With this we can prove the well known theorem:

Theorem 3. Every convex function f : Rn → R is continuous.

Proof. Again we assume that x0 = 0 and f(x0) = 0. Fix any ε ≈ 0 and write
ε = ε1V1 + ε1ε2V2 + . . . + ε1ε2 . . . εkVk. We can also assume that all the infinitesimals
εi are positive (replacing Vi by −Vi if necessary).

1. f(ε) <∼ 0:

f(ε) = f ((1− ε1)0 + ε1(V1 + ε2V2 + ε2ε3V3 + . . . + ε2ε3 . . . εkVk)) ≤(1.6)

(1− ε1)f(0) + ε1f(V1 + ε2V2 + ε2ε3V3 + . . . + ε2ε3 . . . εkVk).

It is enough to prove that f(V1 + ε2V2 + ε2ε3V3 + . . . + ε2ε3 . . . εkVk) is bounded
from above:

f(V1 + ε2V2 + ε2ε3V3 + . . . + ε2ε3 . . . εkVk) =(1.7)

f ((1− ε2)V1 + ε2(V1 + V2 + ε3V3 + . . . + ε3 . . . εkVk)) ≤
(1− ε2)f(V1) + ε2f(V1 + V2 + ε3V3 + . . . + ε3 . . . εkVk).

To see that f(V1 + V2 + ε3V3 + . . . + ε3 . . . εkVk) is bounded above, we have

f(V1 + V2 + ε3V3 . . . + ε3 . . . εkVk) =(1.8)

f ((1− ε3)(V1 + V2) + ε3(V1 + V2 + V3 + ε4V4 + . . . . + ε4 . . . εkVk)) ≤
(1− ε3)f(V1 + V2) + ε3f(V1 + V2 + V3 + ε4V4 + . . . + ε4 . . . εkVk).

Repeating this process we obtain

f(V1 + V2 + . . . + εkVk) ≤ (1− εk)f(V1 + V2 + . . . + Vk−1) + εkf(V1 + V2 + . . . + Vk)
(1.9)

which is bounded from above.
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2. f(ε) >∼ 0:

Since

0 =
1

1 + ε1
ε +

ε1
1 + ε1

· −ε

ε1
(1.10)

we obtain

0 ≤ 1
1 + ε1

f(ε) +
ε1

1 + ε1
f

(−ε

ε1

)
⇒ f(ε) ≥ −ε1f

(−ε

ε1

)
.(1.11)

If

f

(−ε

ε1

)
= f(−V1 − ε2V2 − . . .− ε2 . . . εkVk)(1.12)

is bounded from above then f(ε) >∼ 0. Replacing Vi by Wi := −Vi, with the
same calculations as presented before, we conclude the desired.

For our next result, we need the following: If A is a compact set, then for each
a ∈ ∗A, there exists st(a) and st(a) ∈ A.

Theorem 4. Let (E, | · | ) be a finite-dimensional normed space, (F, T ) a Hausdorff
linear topological space and f : E → F a function. If the image of every compact
subspace of E is compact in F and the image of every convex subspace of E is convex
in F , then f is continuous.

Proof. Fix x ∈ E and y ∈ ∗E with y ≈ x. For every n ∈ N, the closed ball B1/n(x)

is compact and convex, so Fn := f
(
B1/n(x)

)
is also compact and convex. Besides

this, we have for each n ∈ N

x, y ∈ ∗B1/n(x) ⇒ f(x), f(y) ∈ ∗Fn ⇒ f(x), st(f(y)) ∈ Fn.(1.13)

So there exists

xn ∈ B1/n(x) with f(xn) =
1
n

f(x) +
(

1− 1
n

)
st(f(y)).(1.14)

Since lim xn = x, the set A := {x}∪{xn|n ∈ N} is compact and so f(A) = {f(xn)|n ∈
N} is also compact. Consequently, f(x) = st(f(y)).

As a consequence, we have:

Theorem 5. Let f : R → R be a function. If the image of every compact subset of
R is compact and the image of every connected subset of R is connected, then f is
continuous.
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