On the continuity of functions

Ricardo Almeida

Abstract. Some theorems on continuity are presented. First we will prove that every convex function $f : \mathbb{R}^n \to \mathbb{R}$ is continuous using nonstandard analysis methods. Then we prove that if the image of every compact (resp. convex) is compact (resp. convex), then the function is continuous.

M.S.C. 2000: 26E35, 52A41, 26B05, 54C05, 54J05.

Key words: nonstandard Analysis, convex functions, continuity, compact set, convex set.

§1. Sufficient conditions for continuity

The purpose of this paper is to present some results on continuity. Now let us introduce some terminology. In what follows, if E is a (standard) set, *E will denote its nonstandard extension. If $(E, |\cdot|)$ is a normed space and $x, y \in *E$, we say that $x \approx y$ if x - y is infinitesimal, *i.e.*, if |x - y| < r for all positive real $r \in \mathbb{R}$; if x is standard and $x \approx y$, we say that y is near-standard and write x = st(y). For further details, the reader is referred to [3], [4], [5] or [6].

Definition 1. Let *E* be a linear space and consider a function $f : E \to \mathbb{R}$. The function *f* is called convex if

(1.1)
$$f((1-\lambda)x_1 + \lambda x_2) \le (1-\lambda)f(x_1) + \lambda f(x_2)$$
 (Jensen's inequality)

for all $x_1, x_2 \in E$ and $\lambda \in]0, 1[$.

Theorem 1. Let $(E, |\cdot|)$ be a normed space and $f : E \to \mathbb{R}$ a convex function. If $f(^*S^1) \subseteq fin(^*\mathbb{R})$, where S^1 denotes the unit sphere in E and $fin(^*\mathbb{R})$ the set of finite hyperreals, then f is continuous.

Proof. Fix any $x_0 \in E$. Without any loss of generality, we may assume that $x_0 = 0$ and $f(x_0) = 0$ (simply replace f by the convex function $g(x) := f(x + x_0) - f(x_0)$). Then given $0 \approx \epsilon \in {}^*E$, $\epsilon \neq 0$, we have that

1. $f(\epsilon) \lesssim 0$ because

(1.2)
$$f(\epsilon) = f\left((1 - |\epsilon|)0 + |\epsilon| \cdot \frac{\epsilon}{|\epsilon|}\right) \le (1 - |\epsilon|)f(0) + |\epsilon| \cdot f\left(\frac{\epsilon}{|\epsilon|}\right) \approx 0.$$

Applied Sciences, Vol.9, 2007, pp. 1-4.

[©] Balkan Society of Geometers, Geometry Balkan Press 2007.

2. $f(\epsilon) \gtrsim 0$ because

(1.3)
$$0 = \frac{1}{1+|\epsilon|}\epsilon + \frac{|\epsilon|}{1+|\epsilon|} \cdot \frac{-\epsilon}{|\epsilon|}$$

and so

(1.4)
$$0 \le \frac{1}{1+|\epsilon|}f(\epsilon) + \frac{|\epsilon|}{1+|\epsilon|}f\left(\frac{-\epsilon}{|\epsilon|}\right) \Rightarrow f(\epsilon) \ge -|\epsilon| \cdot f\left(\frac{-\epsilon}{|\epsilon|}\right) \approx 0.$$

We conclude then that $f(\epsilon) \approx 0$.

We will now see the special case when E is a finite dimensional space. First we need the following result due to Michel Goze (see [1] or [2]):

Theorem 2. Let $M \in \mathbb{R}^n$ be an infinitesimal vector. Then there are non-null infinitesimals $\epsilon_1, \ldots, \epsilon_k \in \mathbb{R}$ and standard vectors $V_1, \ldots, V_k \in \mathbb{R}^n$, for some $k \leq n$, with

(1.5)
$$M = \epsilon_1 V_1 + \epsilon_1 \epsilon_2 V_2 + \ldots + \epsilon_1 \epsilon_2 \ldots \epsilon_k V_k.$$

With this we can prove the well known theorem:

Theorem 3. Every convex function $f : \mathbb{R}^n \to \mathbb{R}$ is continuous.

Proof. Again we assume that $x_0 = 0$ and $f(x_0) = 0$. Fix any $\epsilon \approx 0$ and write $\epsilon = \epsilon_1 V_1 + \epsilon_1 \epsilon_2 V_2 + \ldots + \epsilon_1 \epsilon_2 \ldots \epsilon_k V_k$. We can also assume that all the infinitesimals ϵ_i are positive (replacing V_i by $-V_i$ if necessary).

1.
$$f(\epsilon) \lesssim 0$$
:

(1.6)
$$f(\epsilon) = f\left((1-\epsilon_1)0 + \epsilon_1(V_1 + \epsilon_2V_2 + \epsilon_2\epsilon_3V_3 + \dots + \epsilon_2\epsilon_3\dots\epsilon_kV_k)\right) \le (1-\epsilon_1)f(0) + \epsilon_1f(V_1 + \epsilon_2V_2 + \epsilon_2\epsilon_3V_3 + \dots + \epsilon_2\epsilon_3\dots\epsilon_kV_k).$$

It is enough to prove that $f(V_1 + \epsilon_2 V_2 + \epsilon_2 \epsilon_3 V_3 + \ldots + \epsilon_2 \epsilon_3 \ldots \epsilon_k V_k)$ is bounded from above:

(1.7)
$$f(V_1 + \epsilon_2 V_2 + \epsilon_2 \epsilon_3 V_3 + \ldots + \epsilon_2 \epsilon_3 \ldots \epsilon_k V_k) =$$
$$f((1 - \epsilon_2)V_1 + \epsilon_2 (V_1 + V_2 + \epsilon_3 V_3 + \ldots + \epsilon_3 \ldots \epsilon_k V_k)) \leq$$
$$(1 - \epsilon_2)f(V_1) + \epsilon_2 f(V_1 + V_2 + \epsilon_3 V_3 + \ldots + \epsilon_3 \ldots \epsilon_k V_k).$$

To see that $f(V_1 + V_2 + \epsilon_3 V_3 + \ldots + \epsilon_3 \ldots \epsilon_k V_k)$ is bounded above, we have

(1.8)
$$f(V_1 + V_2 + \epsilon_3 V_3 \dots + \epsilon_3 \dots \epsilon_k V_k) =$$

$$f((1-\epsilon_3)(V_1+V_2)+\epsilon_3(V_1+V_2+V_3+\epsilon_4V_4+\ldots+\epsilon_4\ldots\epsilon_kV_k)) \le (1-\epsilon_3)f(V_1+V_2)+\epsilon_3f(V_1+V_2+V_3+\epsilon_4V_4+\ldots+\epsilon_4\ldots\epsilon_kV_k).$$

Repeating this process we obtain

 $f(V_1 + V_2 + \ldots + \epsilon_k V_k) \le (1 - \epsilon_k) f(V_1 + V_2 + \ldots + V_{k-1}) + \epsilon_k f(V_1 + V_2 + \ldots + V_k)$ which is bounded from above. 2. $f(\epsilon) \gtrsim 0$: Since

(1.10)
$$0 = \frac{1}{1+\epsilon_1}\epsilon + \frac{\epsilon_1}{1+\epsilon_1} \cdot \frac{-\epsilon}{\epsilon_1}$$

we obtain

(1.11)
$$0 \le \frac{1}{1+\epsilon_1}f(\epsilon) + \frac{\epsilon_1}{1+\epsilon_1}f\left(\frac{-\epsilon}{\epsilon_1}\right) \Rightarrow f(\epsilon) \ge -\epsilon_1 f\left(\frac{-\epsilon}{\epsilon_1}\right).$$

If

(1.12)
$$f\left(\frac{-\epsilon}{\epsilon_1}\right) = f(-V_1 - \epsilon_2 V_2 - \dots - \epsilon_2 \dots \epsilon_k V_k)$$

is bounded from above then $f(\epsilon) \gtrsim 0$. Replacing V_i by $W_i := -V_i$, with the same calculations as presented before, we conclude the desired.

For our next result, we need the following: If A is a compact set, then for each $a \in {}^{*}A$, there exists st(a) and $st(a) \in A$.

Theorem 4. Let $(E, |\cdot|)$ be a finite-dimensional normed space, (F, \mathcal{T}) a Hausdorff linear topological space and $f : E \to F$ a function. If the image of every compact subspace of E is compact in F and the image of every convex subspace of E is convex in F, then f is continuous.

Proof. Fix $x \in E$ and $y \in {}^*E$ with $y \approx x$. For every $n \in \mathbb{N}$, the closed ball $\overline{B_{1/n}(x)}$ is compact and convex, so $F_n := f\left(\overline{B_{1/n}(x)}\right)$ is also compact and convex. Besides this, we have for each $n \in \mathbb{N}$

(1.13)
$$x, y \in {}^*\overline{B_{1/n}(x)} \Rightarrow f(x), f(y) \in {}^*F_n \Rightarrow f(x), st(f(y)) \in F_n.$$

So there exists

(1.14)
$$x_n \in \overline{B_{1/n}(x)} \text{ with } f(x_n) = \frac{1}{n}f(x) + \left(1 - \frac{1}{n}\right)st(f(y)).$$

Since $\lim x_n = x$, the set $A := \{x\} \cup \{x_n | n \in \mathbb{N}\}$ is compact and so $f(A) = \{f(x_n) | n \in \mathbb{N}\}$ is also compact. Consequently, f(x) = st(f(y)).

As a consequence, we have:

Theorem 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. If the image of every compact subset of \mathbb{R} is compact and the image of every connected subset of \mathbb{R} is connected, then f is continuous.

Acknowledgments. The work was supported by *Centre for Research on Optimization and Control (CEOC)* from the "Fundação para a Ciência e a Tecnologia" FCT, cofinanced by the European Community Fund FEDER/POCTI.

References

- C. Costinescu, Éléments de Géométrie Riemannienne Infinitésimale, Balkan J. Geom. Appl. 6, 2 (2001), 17-26.
- [2] M. Goze, *Infinitesimal Algebra and Geometry*, In: Non standard analysis in Practice, Diener ed. Springer-Verlag, Universitex (1995), 91-108.
- [3] A.E. Hurd and P.A. Loeb, An Introduction to Nonstandard Real Analysis, Pure and Applied Mathematics 118, Academic Press, 1995.
- [4] A. Pasarescu, Nonstandard Algebraic Methods in the Study of Analytic Spaces, Ph.D. Thesis, Applied Sciences Monographs, Geometry Balkan Press 2003, html://www.mathem.pub.ro/apps/mono/apasa-q.zip
- [5] A. Robinson, Non-Standard Analysis, Studies in Logic and the Foundations of Mathematics, Amsterdam, North- Holland Publishing Company 1974.
- [6] K.D. Stroyan and W.A.J. Luxemburg, Introduction to the theory of infinitesimals, Pure and Applied Mathematics 72, Academic Press 1976.

Authors' addresses:

Ricardo Miguel Moreira de Almeida Dep. of Mathematics, University of Aveiro, Campus Universitrio de Santiago, 3810-193 Aveiro, Portugal email: ricardo.almeida@mat.ua.pt