辽西彰武地区中生代高镁安山岩地球化学及其 对新生下地壳拆沉作用的指示

黄华^{①*} 高山^{①②} 胡兆初^① 柳小明^③ 袁洪林[◎]

(① 中国地质大学地质过程与矿产资源国家重点实验室,武汉 430074;② 西北大学地质学系大陆动力学国家重点实验室, 西安 710069)

摘要 对产于辽西彰武地区的早白垩世 10 个火山岩样品的研究表明. 除一个样品为玄武岩外 (SiO₂=50.23%), 其余均为安山岩. 这些安山岩的 SiO₂ 含量为 53%~59%, 具有高的 MgO(3.4% ~6.1%, Mg[#] = 50~64), Ni(27~197 ug/g), Cr(51~478ug/g)和 Sr(671~1499ug/g)含量、高的 Sr/Y 比值 (34~115), 轻重稀土分异明显(La_N/Y_N = 10~30), 其微量元素显示出高镁埃达克质的特征.4件安山 岩样品的¹⁴³Nd/¹⁴⁴Nd比值为0.5118352~0.5122341, ENd(126Ma)=-6.36~-13.99,⁸⁷Sr/⁸⁶Sr为0.70634 ~0.70688,⁸⁷Sr/⁸⁶Sr(126 Ma)>0.706,它们与汉诺坝基性麻粒岩的 Sr-Nd 同位素组成相似.对一个安 山岩样品的锆石 LA-ICP-MS U-Pb 定年结果表明有 3 组谐和的锆石, 其 ²⁰⁶Pb/²³⁸U 年龄加权平均 值分别是: 第1组(253±5) Ma (2σ, MSWD=9.1, n=59), 第2组(172±2) Ma (2σ, MSWD=2.2, n=42), 第3组(126±2) Ma (2σ, MSWD=3.2, n=19). 阴极发光图像表明第1和第2组锆石均具有典型的岩 浆环带, 第3组锆石的阴极发光很弱且无环带, 3组锆石均具典型岩浆锆石的 REE 分配特征(如亏 损 LREE、正 Ce 异常)且 Th/U >0.1. 第1组年龄记录了古亚洲洋的闭合和蒙古板块与华北克拉通 北缘碰撞事件: 第2组年龄记录了该区的玄武岩浆底侵和地壳增厚的事件: 第3组最年轻的年龄应 代表火山岩喷发年龄. 矿物学上, 彰武高镁安山岩具核部高 Fe, 幔部高 Mg 的反环带单斜辉石斑晶, 并含有铬铁矿,根据上述锆石年代学、矿物学和地球化学特征,彰武高镁安山岩指示了~170 Ma的 中侏罗世时期玄武质岩浆底侵形成的加厚下地壳,相变为榴辉岩,然后拆沉至软流圈,发生部分熔 融、产生的熔体在上升过程中与新生的地幔橄榄岩反应、最终形成彰武高镁安山岩、由此可较好解 释彰武高镁安山岩的高镁和埃达克质微量元素特征以及无古老继承锆石特征。

关键词 高镁安山岩 底侵作用 新生下地壳 拆沉作用 华北克拉通

华北克拉通岩石圈地幔减薄作用已成为近年来 国内外研究的热点^[1-16],普遍认为该减薄事件主要发 生在中生代、新生代. 然而就减薄作用的确切时间, 机制和时空分布范围仍存在很大争议^[3,5-16]. 前人从 地幔和下地壳包体、花岗岩和火山岩等不同角度对该 问题进行了研究^[5-30].火山岩在此研究方面扮演着独特角色.其一,华北克拉通火山岩分布的时空范围要比地幔和下地壳包体广泛得多.例如,华北克拉通地幔和下地壳包体主要产于新生代火山岩中,严格意义的华北克拉通中生代地幔和下地壳包体仅零星出

* E-mail: huanghua0913@163.com

收稿日期: 2007-05-17; 接受日期: 2007-07-06

国家自然科学基金(批准号: 40521001, 40673019)、教育部基金(编号: B07039, IRT0441)以及北京大学造山带与地壳演化教育部重点实验室联合资助

露在辽西阜新 [6.23] 和山东莱芜地区 [24.25] 与徐淮 [8.12] 和信阳地区 [26]. 其二, 火山岩表现出宽广的成分变 化,并可能包括幔源的玄武岩,因此,火山岩是研究 华北克拉通岩石圈演化的重要途径. 前人地球化学 研究已发现, 华北克拉通玄武岩从中生代向新生代 随时代变新,所指示的源区由古老富集性地幔向年 轻亏损软流圈型地幔演化,这一变化主要发生在 120~100 Ma之间 [5.27.28], 指示了这一时期是华北克拉 通岩石圈地幔减薄作用导致的地幔性质发生重要转 变时期,对华北克拉通中酸性火山岩和花岗岩的研 究表明, 它们许多具有高Sr低Y型的埃达克质特征, 表明源区存在石榴石、当时存在加厚的地壳 [4.8.12.17~20.29~32], 这也被徐淮地区早白垩世岩浆岩中存 在榴辉岩包体所证实 [8,12]. 除埃达克质微量元素特征 外这些中酸性岩浆岩许多还具有高镁的特征 [6.8,12,25], 其中产于华北克拉通北部的早白垩世高镁安山岩被 解释为洋壳俯冲产物[6],而产于辽西北票地区的晚侏 罗世兴隆沟组高镁中酸性火山岩被认为代表了加厚 的华北克拉通榴辉岩下地壳拆沉至软流圈后发生部 分熔融作用所产生的埃达克质熔体在上升过程中与 地幔反应的产 物^[8]. 徐淮地区高镁闪长岩表现出与 兴隆沟火山岩相似的地球化学特征,且在地球化学 成分上与所包含的榴辉岩包体表现出互补性, 据此 也被认为与兴隆沟组火山岩类似, 代表了下地壳拆 沉作用的产物^[12]. 然而, 鲁西地区同时期的莱芜高 镁闪长岩被认为代表了太平洋洋壳俯冲的产物 [25]. 可见,对高镁中酸性岩浆岩的认识还存在很大分歧. 尽管对高镁中酸性岩石的成因仍有不同认识, 但它 们的高镁特征表明,这些岩石来自地幔深度或与地 幔物质发生了相互作用. 另一方面, 前人对华北克拉 通中生代火山岩的研究主要集中在燕辽地区 [32~35], 如北京西山地区 [33,35]、河北承德地区 [36]、辽西义县-北票地区 [8.30.37.38]、以及鲁西地区 [39], 对华北克拉通 北缘的中生代火山岩研究较少.因此,深入研究华北 克拉通中生代高镁中酸性岩浆岩的时空分布及其成 因对认识华北克拉通中生代岩石圈演化至关重要.

本文报道了对来自华北克拉通北缘辽西彰武地 区早白垩世高镁安山岩的研究,前人仅对该区火山 岩进行了初步研究^[29],对该套火山岩的年代学和地 球化学数据尚未见系统资料报道.

1 地质背景

辽西是华北克拉通中新生代火山岩发育的代表 性地区之一. 陈义贤和陈文寄^[40]于上世纪 90 年代围 绕下辽河油田的开发对辽西中生代火山岩年代学开展 了系统研究. 近年来许多学者对辽西中生代火山岩开 展了大量地质、年代学和地球化学研究^[6.8.30,37,38,41,42], 发现大量高镁火山岩^[6.8.38].

本文研究区位于辽西彰武地区(图 1),样品采自 距彰武县北西约 45 km 处的哈尔套乡.在1:20 万彰 武幅地质图上,该套火山岩划为义县组,露头出露情 况较差,大多覆盖.出露火山岩主要由玄武岩和安山 岩组成.本文主要讨论高镁安山岩.该套高镁安山岩 具斑状结构,斑晶为橄榄石和辉石,橄榄石大多已蚀 变为伊丁石.基质为玻基交织结构,斜长石微晶具半 定向排列,在斜长石间隙中充填有辉石微晶和隐晶 质(图 2).

2 分析方法

所采集的样品首先经薄片显微镜下鉴定,选择 其中最新鲜样品用于地球化学分析. 主量和微量元 素分析在西北大学大陆动力学国家重点实验室进行. 用于主量和微量元素分析的样品粗碎在刚玉颚板破 碎机中进行, 然后在 T1-100 型碳化钨钵体碎样机(日 本 CMT Co. LTD)中最终碎至 200 目,因此样品加工 过程均在无污染设备中进行. 主量元素分析采用 XRF(RIGAKU 2100型)玻璃熔片法完成. 微量元素采 用 ICP-MS (Perkin Elmer 公司具动态反应池的 Elan 6100 DRC)法完成, 样品溶解采用 1.5 mL HNO3+1.5 mL HF+0.02 mL HClO4 混合酸在 Teflon 高压溶样弹 (bomb)中进行. 对国际标准参考物质 BHVO-1(玄武 岩)、BCR-2(玄武岩)和 AGV-1(安山岩)的分析结果表 明, 主量元素分析精度和准确度优于 5%, 微量元素 分析的精度和准确度一般优于 10%. XRF 和 ICP-MS 两种方法对 Rb, Sr, Ba, Y, Zr, Nb, Y 的分析结果相差 一般<10%.

LA-ICP-MS 锆石 U-Pb 原位定年分析在西北大学 大陆动力学国家重点实验室完成,所使用的 ICP-MS 为 Elan 6100DRC,激光剥蚀系统为德国 Lamda Physik 公司的 GeoLas 200M 深紫外(DUV)193 nm ArF 准分子(excimer)激光剥蚀系统. 该剥蚀体系相对常规 的 266 nm 或 213 nm Nd:YAG 剥蚀系统具有明显较小

图 1 辽西彰武地区地质简图(据 1:20 万区域地质图修改)

图 2 辽西彰武地区早白垩世高镁安山岩样品 YX-269 显 微照片(正交偏光) 岩石为斑状结构和玻基交织结构,斑晶为橄榄石

的元素分馏效应,这对于U-Pb锆石定年至关重要.分 析中采用的激光斑束直径为 30 μm,以²⁹Si作为内标, 哈佛大学标准锆石 91500 作为外标校正.91500 锆石 的同位素比值和年龄已被前人广泛研究,是国际上 常用的 3 个标准锆石之一.同位素比值数据处理采用 GLITTER(4.0版)软件和Yuan等^[43]的数据平滑方法进行,年龄计算采用ISOPLOT(3.23版)软件^[44].

Nd和Sr同位素位素比值在西北大学大陆动力学 国家重点实验室多接收器等离子体质谱仪 MC-ICPMS (Nu Plasma HR)上完成. 整个实验流程本 底Sr为2~5×10⁻¹⁰g, Nd小于5×10⁻¹⁰g. Nd同位素标样 La Jolla 的测定值为 ¹⁴³Nd/¹⁴⁴Nd=0.511859±6 (2 σ , n=20),美国国家标准局 Sr 同位素国际标样 NIST SRM 987 测定值为 ⁸⁷Sr/⁸⁶Sr = 0.710250±12 (2 σ , n=15). Sr 和 Nd 的同位素组成分别用 ⁸⁶Sr/⁸⁸Sr = 0.1194 和 ¹⁴⁶Nd/¹⁴⁴Nd=0.7219 校正仪器的质量分馏. ⁸⁷Rb/⁸⁶Sr 和 ¹⁴³Sm/¹⁴⁴Nd比值根据 ICP-MS 分析获得的 Rb, Sr, Sm 和 Nd 含量计算获得.

矿物主量元素分析在北京大学造山带与地壳演 化教育部重点实验室电子探针(JEOL Super probe JXA-8100)上完成,分析条件为加速电压 15 kV; 束流 1×10⁻⁸ A; 束斑 1 μm; 修正方法 PRZ; 标准样品采用 美国 SPI 公司 53 种矿物.

3 结果

电子探针分析表明,彰武高镁安山岩的未蚀变 新鲜斑晶主要由单斜辉石和橄榄石组成,并含有钛 铬铁矿(Cr₂O₃ = 37.69~38.79). 单斜辉石具核部高 Fe(Mg[#]=76~79)、幔部高 Mg(Mg[#]=83~85)的反环带 (表 1). 在背散射电子图像上,核部颜色较浅呈浅灰 色,幔部呈灰黑色(图 3).

图 3 彰武早白垩世高镁安山岩中单斜辉石反环带背散射 照片

所分析的 10 个彰武地区火山岩样品中除一个样 品为玄武岩(SiO₂=50.23%)外, 其余均为安山岩, SiO₂ 含量为 53%~59%(表 2). 这些安山岩均具高 Mg($3.9\% \sim 6.1\%$, Mg[#] =50 ~ 64), Ni($27 \sim 197 \mu g/g$), Cr(51~478 µg/g)特征, Mg 含量明显高于岛弧英安岩、太古 宙 TTD 和由实验获得的基性岩石部分熔融产生的熔 体(图 4). 它们的稀土元素分配曲线为轻稀土富集型 (La_N/Y_N=10~30), 亏损重稀土元素(Yb<1.8 µg/g)和 (Y<20 µg/g). 仅一个样品 (YX-267) 具有较高的 Yb(2.04 µg/g)和 Y(24 µg/g). 它们基本无铕异常(Eu / Eu*=0.94~1.01)(图 5(a)). 在微量元素蛛网图上(图 5(b)), 它们显示出 Nb-Ta 负异常和 Pb 正异常的典型 大陆地壳微量元素配分模式.此外,它们还具有高的 Sr(671~1499 µg/g)含量, 高的 Sr/Y 比值(34~115). 4 件安山岩样品的 ¹⁴³Nd/¹⁴⁴Nd 比值为 0.5118352~ 0.5122341, $\varepsilon_{Nd}(126 \text{ Ma}) = -6.36 \sim -13.99$; ⁸⁷Sr/⁸⁶Sr 比 值为 0.706342~0.706884, ⁸⁷Sr/⁸⁶Sr(126Ma)>0.706(表 2).

4 锆石年代学

对安山岩样品 YX-270 的锆石采用 LA-ICP-MS 方法进行了 U-Pb 定年. 结果表明,有 3 组谐和的锆 石年龄(表 3,图 6),其 ²⁰⁶Pb/²³⁸U 年龄加权平均值分 别是:第1组(253±5) Ma(2σ, MSWD=9.1, *n*=59),第 2 组(172±2) Ma (2σ, MSWD=2.2, *n*=42),第 3 组(126±2) Ma (2σ, MSWD=3.2, *n*=19). 阴极发光图像表明第 1(图 7(a), (b))、2 组(图 7(c), (d))锆石均具典型的岩浆 环带,第 3 组(图 7(e), (f))阴极发光很弱且无环带. 3

农工 于村村内风石市市市市大师 电丁环计力 机石木(70)														
分析点	矿物	SiO_2	TiO ₂	Al_2O_3	Cr_2O_3	TFeO ^{e)}	MnO	MgO	NiO	CaO	Na ₂ O	K_2O	总量	Mg ^{#g)}
YX270-1C ^{c)}	Cpx ^{a)}	50.46	0.58	3.13	0.09	7.29	0.15	15.39	0.01	21.43	0.59	0.02	99.15	79
YX270-1M ^{d)}	Срх	52.09	0.62	1.57	0.01	5.58	0.30	17.21	- ^{f)}	20.64	0.81	0.03	98.86	85
YX271-1C	Срх	48.61	0.85	4.78	-	7.81	0.30	15.15	0.03	20.91	0.51	-	98.95	78
YX271-1M	Срх	52.73	0.19	1.10	0.28	5.57	0.17	18.27	-	19.99	0.30	-	98.60	85
YX265-1C	Срх	49.14	1.12	5.04	-	8.27	0.27	14.97	-	20.03	0.35	-	99.18	76
YX265-1M	Срх	52.55	0.40	1.68	0.26	5.69	0.10	16.98	_	21.07	0.27	_	99.00	84
YX265-2C	Срх	50.15	0.79	3.93	0.29	7.39	0.10	15.25	0.02	20.67	0.38	0.01	98.96	79
YX265-2M	Срх	52.47	0.39	1.68	0.38	6.11	0.28	17.54	-	19.94	0.22	0.01	99.02	84
YX268-1.1C	Срх	53.39	0.15	0.39	0.04	8.14	0.22	16.40	-	20.50	0.35	-	99.58	78
YX268-1.1M	Срх	53.96	0.12	0.91	0.08	5.58	0.11	18.16	0.07	21.04	0.29	0.01	100.32	85
YX268-1.2C	Cpx	53.45	0.18	0.30	_	7.88	0.28	15.91	_	21.42	0.38	_	99.80	78
YX268-1.2M	Cpx	54.48	0.07	0.28	0.07	5.77	0.17	17.65	0.02	21.15	0.26	-	99.92	85
YX268-1.3C	Срх	54.01	0.11	0.34	0.02	7.65	0.23	16.16	0.01	20.95	0.31	-	99.78	79
YX268-1.3M	Срх	54.82	0.04	0.17	0.07	6.04	0.17	17.66	-	21.34	0.21	-	100.52	84
YX269-1C	Срх	49.84	1.02	4.86	0.09	8.02	0.19	14.84	0.05	20.92	0.34	-	100.16	77
YX269-1M	Срх	51.94	0.51	2.72	0.87	5.78	0.12	16.52	0.02	21.33	0.28	0.01	100.09	84
YX263-1C	Срх	49.95	0.99	3.23	0.07	8.39	0.23	15.00	-	20.62	0.50	0.02	99.00	76
YX263-1M	Срх	52.34	0.46	2.40	0.22	6.39	0.18	17.87	0.01	18.35	0.33	-	98.54	83
YX269-3	Chr ^{b)}	0.12	1.29	15.36	38.79	31.56	0.52	10.67	0.20	0.01	-	-	98.52	
YX269-4	Chr	0.12	1.18	15.43	37.69	32.02	0.52	10.42	0.11	0.01	0.01	_	97.51	

表1 单斜辉石反环带和铬铁矿电子探针分析结果(%)

a) 单斜辉石; b) 铬铁矿; c) C 代表单斜辉石核部; d) M 代表单斜辉石幔部; e) 为全铁; g) Mg[#]=100Mg/(Mg+Fe)(原子数); - 代表低于检测限

图 6 彰武地区早白垩世高镁安山岩样品 YX-270 锆石 U-Pb 谐和图(a)与 U-Pb 年龄分布频谱图(b)

组锆石均具典型岩浆锆石的REE分配特征(如亏损 LREE, 正Ce异常)(图 7(g), (h), (i)), 且Th/U均≥0.2 (表 4), 因此这三组锆石都是岩浆锆石. 其中第 1 组 年龄与晚二叠至早三叠时古亚洲洋的闭合导致的蒙 古板块与华北板块的碰撞造山运动时间一致, 该期 年龄在华北克拉通已有越来越多的年龄记录^[7,45-48]. 第 2 组年龄与华北克拉通大量分布的侏罗纪花岗岩 和玄武岩浆底侵事件年龄一致^[49-52]. 第 3 组最年轻 的年龄 126 Ma应代表火山岩喷发年龄.

5 岩石成因

彰武高镁安山岩与兴隆沟组火山岩表现出相似的的地球化学特征,它们均具高Mg,高Cr-Ni,高Sr,低Y和高Sr/Y比值的特征.矿物学上它们具辉石反环带.这些地球化学特征与高镁安山岩和榴辉岩熔体与橄榄岩反应后的产物一致^[53~55].

高镁安山岩的形成机制可能有4种:(1)俯冲板片 部分熔融之后与上覆地幔橄榄岩反应^[56-59];(2)含水 地幔的部分熔融^[60,61];(3)拆沉的下地壳在软流圈中 熔融形成的熔体在上升过程中与地幔橄榄岩反应的 产物^[8,38,55];(4)岩浆混合作用^[62-64].

彰武高镁安山岩 Sr-Nd 同位素组成明显不同于 由洋壳板片俯冲部分熔融形成的高镁安山岩,这种 高镁安山岩应具有与 MORB 相近的 Sr-Nd 同位素组

表 2 彰武玄武岩和高镁安山岩元素和 Sr-Nd 同位素分析结果

SiO ₇ 50.23 54.89 53.25 55.87 55.81 58.08 53.78 55.38 56.78 55.78 55.78 55.78 55.89 10.80 0.92 0.70 0.63 AL(O ₁ 1.21 0.12 0.12 0.03 0.03 0.09 0.16 0.53 0.54 1.04 1.90 4.61 3.42 4.85 C40 8.86 6.50 7.05 6.33 6.59 3.88 7.40 6.61 5.14 K ₄ O 1.00 2.88 2.36 2.78 2.56 4.16 2.42 2.61 2.81 4.29 P.O. 0.45 0.47 0.39 0.50 2.44 0.42 0.37 0.43 0.31 L01 ¹⁰ 1.82 2.84 3.15 2.02 1.74 2.66 2.64 2.46 0.38 6.4 6.2 6.1 6.1 6.1 6.1 5.16 7.77 8.38 6.2 7.77 7.38 7.22 <td< th=""><th></th><th>YX-261</th><th>YX-262</th><th>YX-263</th><th>YX-264</th><th>YX-265</th><th>YX-266</th><th>YX-267</th><th>YX-268</th><th>YX-270</th><th>YX-271</th></td<>		YX-261	YX-262	YX-263	YX-264	YX-265	YX-266	YX-267	YX-268	YX-270	YX-271
TiO ₂ 1.00 0.97 0.95 0.89 0.86 0.60 1.08 0.92 0.70 0.53 TFEQD ⁰ 9.21 6.16 7.25 6.66 7.20 5.66 7.45 6.56 5.72 5.84 MnO 0.12 0.01 0.03 0.09 0.08 0.09 0.10 0.05 0.06 MgO 9.89 5.43 6.51 6.53 6.59 3.68 7.40 6.01 3.62 2.84 4.17 3.63 3.54 2.87 Naco 2.61 3.82 2.35 2.16 2.78 2.56 4.16 2.42 2.63 2.84 3.10 3.11 3.13 3.13 3.48 4.17 3.64 2.64 1.70 1.81 1.30 1.71 1.61 2.84 3.10 1.81 1.57 1.7 1.99 9.73 100.10 Mg ⁰ 9.86 9.99.71 9.91.69 9.72 9.83 100.21 9.99 7.1 <	SiO_2	50.23	54.89	53.25	55.47	55.81	58.08	53.78	55.38	58.97	57.84
Al.O. 15.77 16.17 15.64 15.84 15.46 15.93 17.21 16.36 5.79 15.29 MnO 0.12 0.12 0.09 0.013 0.09 0.08 0.09 0.04 6.35 5.54 MnO 2.80 5.43 6.07 5.34 5.57 4.41 3.64 3.41 4.61 3.42 4.85 CaO 8.86 6.50 7.05 6.33 6.59 3.55 4.93 2.81 4.29 Pago 0.45 0.49 0.47 0.30 0.36 0.34 0.42 2.63 2.81 4.29 Pago 0.45 0.49 0.47 0.30 0.36 0.34 0.42 2.63 2.81 4.21 Lil 8 0.50 9.97 9.96 9.90 9.99 9.97 9.96 9.97 9.96 9.90 9.97 9.96 1.01 1.01 1.01 1.01 1.01 1.01 1.01	TiO ₂	1.00	0.97	0.95	0.89	0.86	0.60	1.08	0.92	0.70	0.63
TFEO,0 ² 9.21 6.16 7.35 6.666 7.20 5.66 7.65 6.55 6.72 5.72 5.84 MiGO 9.89 5.43 6.07 5.14 5.57 4.54 3.90 4.61 5.42 4.85 CaO 8.86 6.50 7.02 6.33 6.59 3.68 7.40 6.61 5.02 2.87 NaO 2.61 3.52 3.34 3.51 3.48 4.17 3.63 3.54 0.43 0.34 0.42 0.26 2.66 2.64 2.63 2.81 0.30 0.34 LOP 1.82 2.14 1.31 1.5 1.5 1.6 2.1 1.1 7 Be 1.3 1.7 1.6 2.1 1.8 1.5 1.6 2.1 1.1 7 1.7 1.9 2.11 1.0 1.0 1.0 2.0 2.0 1.0 1.0 2.0 2.0 1.0 1.0 2.0 2.	Al_2O_3	13.57	16.17	15.64	15.84	15.46	15.93	17.21	16.36	15.99	15.23
MnD 0.12 0.02 0.03 0.03 0.048 0.045 0.031 0.045 0.045 0.031 0.045 0.045 0.031 0.045 0.045 0.031 0.045 0.045 0.031 0.045 0.045 0.031 0.045 0.045 0.031 0.045 0.056 0.045 0.04	$TFe_2O_3^{a)}$	9.21	6.16	7.35	6.66	7.20	5.66	7.65	6.56	5.72	5.84
Mg0 9.89 5.43 6.77 5.34 5.57 4.54 3.90 4.61 5.42 4.85 CaO 8.86 6.50 7.05 6.33 5.51 3.48 4.17 3.63 3.55 4.93 5.14 K40 1.90 2.88 2.26 2.16 2.64 2.64 2.64 2.64 2.64 2.64 3.04 0.34 <td>MnO</td> <td>0.12</td> <td>0.12</td> <td>0.09</td> <td>0.13</td> <td>0.09</td> <td>0.08</td> <td>0.09</td> <td>0.10</td> <td>0.05</td> <td>0.06</td>	MnO	0.12	0.12	0.09	0.13	0.09	0.08	0.09	0.10	0.05	0.06
Ca0 8.86 6.50 7.05 6.33 6.59 3.68 7.40 6.61 5.56 4.83 5.14 Na0.0 2.61 3.52 4.38 2.56 4.16 2.42 2.63 2.81 4.29 PcO_0 0.45 0.49 0.47 0.39 0.36 0.34 0.42 0.37 0.43 0.31 L10 ¹⁰ 1.82 2.84 3.15 2.62 1.74 2.66 2.66 2.84 1.70 8.04 Mathing 99.67 99.90 99.72 99.88 10.11 77 8.00.10 Be 1.3 1.7 1.6 2.1 1.8 1.7 1.7 9.2 2.1 1.1 1.7 Be 1.3 1.77 1.60 2.1 1.8 1.7 1.8 1.3 1.5 7.5 Sc 2.5 2.0 1.3 1.37 1.40 1.37 1.40 1.5 2.5 2.1 1.1	MgO	9.89	5.43	6.07	5.34	5.57	4.54	3.90	4.61	3.42	4.85
NB ₂₀ 2.61 3.52 3.38 3.51 3.48 4.17 3.63 3.55 4.93 5.14 K ₀ O 1.00 ⁶ 0.45 0.49 0.47 0.39 0.36 0.34 0.42 0.33 0.43 0.31 LO ⁶ 1.82 2.84 3.51 2.66 2.67 1.1 1.61 1.76 1.62 1.77 1.8 2.76 1.77 1.80 1.73 1.78 4.22 Cr 6.69 4.78 4.01 2.67 2.53 2.21 1.11 1.61 V1 1.37 3.73 2.74	CaO	8.86	6.50	7.05	6.33	6.59	3.68	7.40	6.61	5.06	2.87
k,O 1.90 2.88 2.36 2.78 2.56 4.16 2.42 2.63 2.84 4.29 P5O, 0.45 0.44 0.47 0.39 0.36 0.34 0.37 0.34 0.31 0.31 0.34 0.37 0.34 0.31 0.	Na ₂ O	2.61	3.52	3.38	3.51	3.48	4.17	3.63	3.55	4.93	5.14
P-O ₀ 0.45 0.47 0.39 0.36 0.34 0.42 0.37 0.43 0.31 LOP ¹¹ 18.2 2.84 0.15 2.66 2.66 2.66 2.68 2.84 0.10 Mg ⁴⁰ 6.8 6.4 6.2 6.1 6.1 6.0 9.99 9.78 100.10 Mg ⁴⁰ 6.8 6.4 0.2 1.8 1.5 1.6 2.1 1.1 7 Be 1.3 1.7 1.6 2.1 1.8 1.7 1.7 1.9 2.1 1.1 10 V 187 137 140 139 145 87 189 151 73 42 2.6 Co 644 30 2.9 2.9 35 2.2 31 31 30 Ni 2.10 133 8.0 6.7 71 8.0 73 72 6.0 Gia 1.6 2.0 1.0 1.8<	K_2O	1.90	2.88	2.36	2.78	2.56	4.16	2.42	2.63	2.81	4.29
L Cl ¹⁹ 1.82 2.84 3.15 2.62 1.74 2.66 2.66 2.64 1.70 3.04 B 99.76 99.76 99.76 99.78 100.10 99.78 100.10 Mg ⁴⁰ 6.8 6.4 6.2 6.1 6.1 50 58 54 6.2 Be 1.3 1.7 1.6 2.1 1.8 1.7 1.7 1.6 2.1 1.8 1.7 1.7 1.6 2.1 1.8 1.7 1.7 1.6 2.1 1.8 1.7 1.7 1.6 2.1 1.8 1.7 1.7 1.6 2.1 1.8 1.7 1.7 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.1 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <th1.0< th=""> 1.0<td>P_2O_5</td><td>0.45</td><td>0.49</td><td>0.47</td><td>0.39</td><td>0.36</td><td>0.34</td><td>0.42</td><td>0.37</td><td>0.43</td><td>0.31</td></th1.0<>	P_2O_5	0.45	0.49	0.47	0.39	0.36	0.34	0.42	0.37	0.43	0.31
bft 99.66 99.77 99.78 100.21 99.99 99.98 100.21 Li 16 20 20 18 15 15 16 21 11 7 Be 1.3 1.7 1.6 2.1 1.8 1.7 1.9 2.1 1.5 Sc 2.5 2.0 19 2.0 2.0 9 2.2 2.1 1.1 10 V 187 137 140 139 145 87 183 51 156 145 2.3 Cr 609 478 461 267 210 133 51 156 145 2.3 30 37 30 Ni 210 122 197 107 81 123 27 60 13 20 20 22 120 22 122 17 Rb 38 67 36 67 62 109 58 149 <td>LOI^{b)}</td> <td>1.82</td> <td>2.84</td> <td>3.15</td> <td>2.62</td> <td>1.74</td> <td>2.66</td> <td>2.66</td> <td>2.84</td> <td>1.70</td> <td>3.04</td>	LOI ^{b)}	1.82	2.84	3.15	2.62	1.74	2.66	2.66	2.84	1.70	3.04
Mg ⁴⁵¹ 68 64 62 61 61 50 58 54 62 Li 16 20 20 18 15 15 16 21 11 7 Be 1.3 1.7 1.6 2.1 1.8 1.7 1.7 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.9 2.1 1.1 1.0 V 187 137 140 139 1.45 87 189 1.8 1.8 2.2 2.1 1.1 1.0 1.5 7.8 4.4 3.0 2.9 2.9 3.5 3.2 3.1 3.7 3.0 4.6 2.0 1.9 1.3 2.2 2.0 2.6 0.6 1.0 1.0 2.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	总量	99.66	99.97	99.76	99.96	99.72	99.88	100.21	99.9	99.78	100.10
Li 16 20 20 18 15 15 16 21 11 7 Be 1.3 1.7 1.6 2.1 1.8 15 15 16 21 11 7 Sc 25 20 19 20 20 9 22 11 11 10 V 187 137 140 139 145 87 189 151 78 42 Cr 609 478 461 267 210 138 51 106 145 236 Co 44 30 29 29 35 23 32 31 37 30 Ni 210 192 197 107 81 123 27 64 94 146 Cu 45 33 29 39 37 22 39 40 25 28 Zn 73 87 80 80 67 71 80 73 72 60 Ga 16 20 19 19 18 22 21 20 22 17 Rb 38 67 36 67 62 109 58 61 59 90 Sr 795 1013 1035 804 798 937 806 799 1499 671 Y 19 20 20 20 20 19 13 24 20 13 13 Zz 140 198 190 171 164 194 197 107 81 72 20 13 13 Zz 140 198 190 171 164 194 175 102 204 172 Nb 8.3 10.4 9.8 8.8 84 9.7 8.7 8.7 11.8 7.7 Cs 3.8 10.4 9.8 8.8 84 9.7 8.7 8.7 11.8 7.7 Cs 3.8 10.4 9.8 8.8 84 9.7 8.7 8.7 11.8 7.7 Cs 3.8 10.4 9.8 8.8 84 9.7 8.7 8.7 11.8 7.7 Cs 3.8 10.4 9.8 8.8 8.4 9.7 8.7 8.7 11.8 7.7 Cs 3.8 10.4 9.8 8.8 8.4 9.7 8.7 8.7 11.8 7.7 Cs 3.8 10.4 9.8 8.8 8.4 9.7 8.7 8.7 11.8 7.7 Cs 3.8 10.4 9.8 8.8 8.4 9.7 8.7 8.7 11.8 7.7 Cs 3.8 10.4 9.8 8.8 8.4 9.7 8.7 8.7 11.8 7.7 Cs 3.8 10.4 9.8 8.8 8.4 9.7 8.7 8.7 11.8 7.7 Cs 3.8 10.4 9.8 8.8 8.4 9.7 8.7 8.7 11.8 7.7 Cs 3.8 10.4 9.8 8.8 8.4 9.7 8.7 8.7 11.8 7.7 Cs 3.8 10.4 0.9 8.3 0.4 0.7 2.0 8.3 10.1 1146 115 La 34.7 51.7 47.3 33.2 30.4 40.7 30.5 33.2 13.1 32. 32.1 43.2 32.0 Cc 71.1 101.3 95.3 63.7 61.1 72.7 61.0 62.6 76.2 60.1 Pr 8.7 12.5 11.8 7.9 7.2 8.9 7.8 7.6 9.5 7.2 Nd 35.7 50.6 4.86 32.5 29.8 34.2 33.2 31.7 37.2 2.88 8 Sm 6.3 8.9 8.6 6.9 5.9 5.4 5.2 6.3 8.5.8 5.8 4.8 Eu 1.8 2.3 2.2 1.6 1.5 1.4 1.8 1.6 1.5 1.4 Gd 4.84 6.28 6.08 4.66 4.39 3.47 5.20 6.48 3.99 3.51 T4 0.024 0.027 0.24 0.025 0.14 0.31 0.025 0.14 0.31 0.25 0.49 Dy 3.5 4.0 3.9 3.4 3.4 2.2 3.9 3.3 1.7 3.5 2.5 2.4 Ho 0.66 0.74 0.72 0.66 0.66 0.66 0.44 0.31 0.25 0.16 0.17 Yb 1.6 1.7 1.9 1.8 1.7 1.0 2.1 1.8 1.2 1.2 Tm 0.24 0.27 0.24 0.25 0.14 0.31 0.25 0.16 0.17 Yb 1.6 1.7 1.18 0.42 7.2 0.44 0.27 0.16 0.17 Yb 1.6 1.7 1.9 1.8 0.7 0.9 0.9 0.90 0.90 0.90 0.90 0.90 0.	Mg ^{#c)}	68	64	62	61	61	61	50	58	54	62
Be 1.3 1.7 1.6 2.1 1.8 1.7 1.7 1.9 2.1 1.1 V 187 137 140 139 143 87 189 151 78 42 Cr 609 478 461 227 21 31 37 30 Ni 210 192 197 107 81 123 27 64 94 146 Cu 45 33 29 39 37 22 39 40 25 28 Cu 45 33 29 39 37 22 19 0 22 21 7 64 94 146 Cu 45 33 20 19 13 22 21 20 22 17 Rb 38 67 36 67 62 100 93 13 Zr 140 198 190 1	Li	16	20	20	18	15	15	16	21	11	7
Sc 2.5 2.0 19 2.0 2.0 9 2.2 2.1 11 10 V 187 137 140 129 145 87 189 151 78 42 Co 64 30 29 25 25 23 13 37 30 Ni 210 192 197 107 81 123 27 64 94 146 Cu 45 33 29 39 37 22 21 20 22 17 Ro 38 67 36 67 62 109 58 61 59 90 Y 19 20 20 20 19 13 24 20 13 13 Zr 140 198 190 171 164 194 175 72 204 172 Nb 8.3 1.4 9.7 72 8	Be	1.3	1.7	1.6	2.1	1.8	1.7	1.7	1.9	2.1	1.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sc	25 187	20	19	20	20	9 87	22	21	11	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	v Cr	609	478	461	267	210	138	51	196	145	236
Ni 210 192 197 107 81 123 27 64 94 146 Cu 45 33 29 39 37 22 39 40 25 28 Ga 16 20 19 19 18 22 21 20 22 17 Rb 38 67 36 67 62 109 58 61 59 90 Sr 795 1013 1035 804 798 937 806 799 1499 671 Y 19 20 20 20 19 13 24 20 13 13 Zr 140 198 190 171 164 194 175 172 204 172 Nb 8.3 10.4 9.8 8.8 8.4 9.7 8.7 11.8 7.7 Cs 3.8 13.5 12.5 11.8<	Co	44	30	29	29	35	25	32	31	37	30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni	210	192	197	107	81	123	27	64	94	146
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu	45	33	29	39	37	22	39	40	25	28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zn	73	87	80	80	67	71	80	73	72	60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ga	16	20	19	19	18	22	21	20	22	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Rb	38	67	36	67	62	109	58	61	59	90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr	795	1013	1035	804	798	937	806	799	1499	671
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Y	19	20	20	20	19	13	24	20	13	13
Nb 8.3 10.4 9.8 8.8 8.4 9.7 8.7 11.8 7.7 CS 3.8 1.3 0.4 0.7 2.0 0.6 1.0 0.9 0.6 0.6 0.6 Ba 1080 1286 1257 1085 997 1006 938 1017 1146 1195 La 34.7 51.7 47.3 33.2 30.4 40.7 30.5 32.1 43.2 32.0 Ce 71.1 101.3 95.3 63.7 61.1 72.7 61.0 62.6 76.2 60.1 Pr 8.7 18.8 7.8 7.6 9.5 7.2 28.8 Sm 6.3 8.9 8.6 5.9 5.4 5.2 6.3 5.8 4.8 Eu 1.8 2.2 1.6 1.5 1.4 1.8 1.6 1.5 1.4 Gd 4.84 6.28 6.08 4.66	Zr	140	198	190	171	164	194	175	172	204	172
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nb	8.3	10.4	9.8	8.8	8.4	9.7	8.7	8.7	11.8	7.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cs	3.8	1.3	0.4	0.7	2.0	0.6	1.0	0.9	0.6	0.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ba	1080	1286	1257	1085	997	1006	938	1017	1146	1195
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	La	34.7	51.7	47.3	33.2	30.4	40.7	30.5	32.1	43.2	32.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ce	71.1	101.3	95.3	63.7	61.1	72.7	61.0	62.6	76.2	60.1
Nd35.750.648.632.529.834.233.231.737.228.8Sm6.38.98.65.95.45.26.35.85.84.8Eu1.82.32.21.61.51.41.81.61.51.4Gd4.846.286.084.664.393.475.204.683.993.51Tb0.700.870.840.680.650.470.780.690.550.49Dy3.54.03.93.43.42.23.93.52.52.4Ho0.660.740.720.660.660.380.810.710.460.45Er1.71.91.81.71.71.02.11.81.21.2Tm0.240.270.240.250.140.310.250.160.17Yb1.61.71.61.61.70.92.01.71.11.1Lu0.240.260.250.240.260.140.310.270.160.17Hf3.34.74.44.13.84.44.24.04.73.9Ta0.430.560.530.480.470.430.470.480.520.38Pb8.214.916.714.314.217.011.014.016.417.6Th<	Pr	8.7	12.5	11.8	7.9	7.2	8.9	7.8	7.6	9.5	7.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nd	35.7	50.6	48.6	32.5	29.8	34.2	33.2	31.7	37.2	28.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sm	6.3	8.9	8.6	5.9	5.4	5.2	6.3	5.8	5.8	4.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Eu	1.8	2.3	2.2	1.6	1.5	1.4	1.8	1.6	1.5	1.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gd	4.84	6.28	6.08	4.66	4.39	3.47	5.20	4.68	3.99	3.51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tb	0.70	0.87	0.84	0.68	0.65	0.47	0.78	0.69	0.55	0.49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dy	3.5	4.0	3.9	3.4	3.4	2.2	3.9	3.5	2.5	2.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ho	0.66	0.74	0.72	0.66	0.66	0.38	0.81	0.71	0.46	0.45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Er	1.7	1.9	1.8	1.7	1.7	1.0	2.1	1.8	1.2	1.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tm	0.24	0.27	0.24	0.24	0.25	0.14	0.31	0.25	0.16	0.17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Yb	1.6	1.7	1.6	1.6	1.7	0.9	2.0	1.7	1.1	1.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Lu	0.24	0.26	0.25	0.24	0.26	0.14	0.31	0.27	0.16	0.17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hf	3.3	4.7	4.4	4.1	3.8	4.4	4.2	4.0	4.7	3.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Та	0.43	0.56	0.53	0.48	0.47	0.43	0.47	0.48	0.52	0.38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pb	8.2	14.9	16.7	14.3	14.2	17.0	11.0	14.0	16.4	17.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Th	4.0	7.8	7.3	4.6	4.3	4.7	3.4	4.5	5.4	3.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U	0.72	1.50	1.18	0.85	1.01	0.96	0.79	0.94	0.87	0.37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sr/Y	42	51	52	40	42	72	34	40	115	52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	La _N /Yb _N	15	21	19	14	12	30	10	13	27	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Eu/Eu*	0.99	0.94	0.95	0.96	0.97	0.99	0.96	0.96	0.98	1.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	147Sm/144Nd	0.10818	0.10446	0.10688	0.11068					0.0951	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁴³ Nd/ ¹⁴⁴ Nd	0.51209400	0.5122341	0.5122338	0.5119384					0.5118352	
	$\pm 2\sigma$	0.000002	0.0000029	0.0000033	0.0000042					0.0000027	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁴³ Nd/ ¹⁴⁴ Nd(126 Ma)	0.5120047	0.5121480	0.5121457	0.5118471					0.5117568	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\varepsilon_{\rm Nd}(0 {\rm Ma})$	-10.58	-7.84	-7.85	-13.61					-15.62	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>E</i> _{Nd} (126 Ma)	-9.15	-6.36	-6.40	-12.23					-13.99	
	⁸⁷ Rb/ ⁸⁶ Sr	0.15962	0.21444	0.11465	0.27082					0.12897	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	⁸⁷ Sr/ ⁸⁶ Sr	0.706478	0.706743	0.706569	0.706884					0.706342	
⁸⁷ Sr/ ⁸⁶ Sr (126 Ma) 0.706192 0.706359 0.706364 0.706399 0.706111	$\pm 2\sigma$	0.000006	0.000007	0.000006	0.000007					0.000008	
	⁸⁷ Sr/ ⁸⁶ Sr (126 Ma)	0.706192	0.706359	0.706364	0.706399					0.706111	

a) TFe₂O₃ 为全铁; b) LOI 为烧失量 M; c) Mg[#]=100Mg/(Mg+Fe)(原子数). 主量元素含量单位为%; 微量元素单位为µg/g

图 7 彰武地区早白垩世高镁安山岩样品 YX-270 锆石阴极发光(CL)图像((a)~(f))和稀土元素分配曲线((g)~(i)) 按²⁰⁶Pb/²³⁸U加权平均年龄锆石分为 3 组,分别是:第1 组年龄为(253±5) Ma((a),(b),(g)),第2 组年龄为(172±2) Ma((c),(d),(h)), 第3 组年龄为(126±2) Ma((e),(f),(i)).(a)~(f)中比例尺为 20 µm

成(如ɛ_{Nd}>+5).本研究中演化程度最低(对应SiO₂ 最低 和 Mg[#]最高)的两个高镁安山岩样品YX-262 和 YX-263 的ɛ_{Nd}(126 Ma)值(-6.0)甚至高于共生的玄武 岩(ɛ_{Nd}(126 Ma)=-9.2)(表 2),表明它们较少受到地壳 混染作用的影响,指示了源区特征,因而不应是洋壳 熔融的产物.具有反环带的单斜辉石斑晶排除了高 镁安山岩由含水地幔部分熔融形成的可能性,因为 含水地幔部分熔融形成的熔体在岩浆结晶过程中应 向酸性方向演化,单斜辉石只能形正环带.此外,彰 武安山岩的高Mg(Mg[#]>50)和Cr-Ni含量,表明它们也 不是榴辉岩等地壳岩石部分熔融的原始岩浆(Mg[#]< 45^[54]).

根据以下证据,我们认为彰武高镁安山岩也不 是基性岩浆与酸性岩浆混合的产物:

(1) 如果彰武高镁安山岩是基性和酸性岩浆两端元混合的产物,混合产物的元素和同位素组成应介于两端元之间.如果如此,彰武玄武岩样品 YX-261(SiO₂=50.23%)是最可能的基性端元,而彰武高镁

安山岩样品中 SiO₂ 含量最高的样品 YX-270 (SiO₂=58.97%)是最接近酸性端元的样品,该样品是 对酸性端元成分极性程度的最小制约.例如,酸性端 元的 SiO₂和不相容元素含量以及 ⁸⁷Sr/⁸⁷Sr 初始比值 应高于 YX-270 的相应含量和比值,相反相容元素(如 Cr, Ni)和 ϵ_{Nd} (126 Ma)应低于 YX-270 的相应含量和初 始值.由表 2 可见,SiO₂介于上述两样品之间的高镁 安山岩样品(YX-262, YX-263)的 ϵ_{Nd} (126 Ma)为-6.4, 明显高于上述基性和酸性端元(两者的 ϵ_{Nd} (126 Ma)≤ -9.15,表 2).

(2) 利用 YX-261 和 YX-270 为两个端元进行简 单混合计算表明, 对于 SiO₂, YX-262(SiO₂=54.89%) 中需要含 47%的 YX-261 和 53%的 YX-270. 对于 Cr, YX-262 需要含 72%的 YX-261 和 28%的 YX-270. 用 两种元素模拟的结果相差较大.

(3) Streck等^[64]最近对Mount Shasta地区经典的 高镁安山岩进行了深入研究,在其中亦发现了辉石 反环带.他们根据这些辉石低的Al₂O₃含量(斜方辉石

表 3 彰武高镁安山岩(YX270)LA-ICP-MS 锆石 U-Pb 同位素分析结果

公析占		U-Th-Pb	同位素比值	年龄/Ma							
万仞点	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ			
YX270-26	0.1455	0.00239	0.02065	0.00021	138	2.6	132	2.4			
YX270-X1	0.1268	0.00478	0.01887	0.00023	121	5.1	121	2.4			
YX270-X2R ^{a)}	0.1512	0.01541	0.02045	0.00051	143	18	130	7.1			
YX270-X3C ^{b)}	0.12996	0.00502	0.01919	0.00024	124	6.4	123	4.7			
YX270-X4	0.13178	0.00445	0.01944	0.00023	126	5.1	124	2.4			
YX270-X5	0.14166	0.00569	0.01877	0.00025	135	6.4	120	4.7			
YX270-X7	0.13872	0.00335	0.02084	0.00022	132	3.9	133	2.4			
YX270-X8	0 1 3 9 6 8	0.00346	0.02101	0.00022	133	39	134	2.4			
YX270-X9	0.15784	0.00564	0.01954	0.00024	149	6.4	125	4.7			
YX270-X11	0 12931	0.00437	0.019	0.00022	123	5.1	121	2.4			
YX270-X13	0.15076	0.0053	0.0191	0.00024	143	6.4	122	47			
YX270-X15	0.13282	0.00647	0.01902	0.00027	127	77	121	47			
YX270-25	0.13148	0.00322	0.02023	0.00021	125	39	129	2.4			
YX270-27	0.13016	0.00322	0.01889	0.00021	123	3.9	121	2.1			
YX270-28	0.12811	0.00359	0.01002	0.00021	124	3.9	121	2.4			
YX270-Y23	0.12517	0.0033	0.01991	0.00021	122	3.0	125	2.4			
VX270-V24	0.13387	0.00514	0.01991	0.00021	125	6.4	127	4.7			
VX270-V25	0.14272	0.00360	0.01920	0.00024	133	2.0	110	7.7			
VX270-V34	0.15882	0.00309	0.01804	0.00021	154	5.5	119	2.4			
VX270-01	0.1030	0.00472	0.02027	0.00023	134	2.1	129	2.4			
VX270-01	0.17791	0.00179	0.02048	0.00027	161	2.0	162	4.7			
1X270-02 VX270-00	0.17232	0.001/8	0.02545	0.00026	101	2.0	102	4.7			
1 X270-09 VX270-11	0.19009	0.00197	0.02688	0.00028	1//	2.0	1/1	4.7			
VX270-11	0.1/332	0.00181	0.02379	0.00027	104	2.0	104	4.7			
1 X270-12 VX270-10	0.19793	0.00203	0.02831	0.0003	183	2.0	181	4.7			
1 X270-19 VV270-20	0.22053	0.0023	0.02907	0.0003	202	2.6	185	4.7			
YX270-20	0.1955	0.00203	0.02787	0.00029	181	2.6	1//	4.7			
YX270-21	0.18636	0.00194	0.02662	0.00028	1/4	2.6	169	4.7			
Y X2/0-22 VY270-25	0.19741	0.00205	0.02836	0.0003	183	2.6	180	4.7			
Y X270-25	0.22946	0.0024	0.02691	0.00028	210	2.6	1/1	4.7			
Y X2/0-29	0.19498	0.00204	0.02577	0.00027	181	2.6	164	4.7			
Y X2/0-31	0.18776	0.00496	0.02574	0.00028	175	5.1	164	4.7			
Y X2/0-32	0.18113	0.00189	0.02628	0.00027	169	2.6	167	4.7			
Y X2/0-33	0.20366	0.00214	0.02747	0.00029	188	2.6	175	4.7			
YX2/0-3/	0.21072	0.00769	0.02716	0.00032	194	7.7	173	4.7			
YX2/0-38	0.17553	0.00186	0.02565	0.00027	164	2.6	163	4.7			
YX 270-5	0.18607	0.00833	0.02728	0.00038	173	9	174	4.7			
YX 270-6	0.18584	0.0054	0.02673	0.00031	173	6.4	170	4.7			
YX270-23	0.19103	0.00439	0.02687	0.00028	178	5.1	171	4.7			
YX270-24	0.19172	0.00851	0.02795	0.00038	178	9	178	4.7			
YX270-7	0.19655	0.00377	0.02819	0.0003	182	3.9	179	4.7			
YX270-2	0.17123	0.00572	0.02563	0.00031	160	6.4	163	4.7			
YX270-15	0.16391	0.01335	0.02564	0.00037	154	15.4	163	4.7			
YX270-16	0.16302	0.00783	0.02562	0.0003	153	9	163	4.7			
YX270-17	0.17778	0.00303	0.0251	0.00026	166	3.9	160	4.7			
YX270-14	0.16745	0.01551	0.02563	0.00045	157	16.7	163	7.1			
YX270-12	0.19374	0.00386	0.02742	0.00029	180	3.9	174	4.7			
YX270-10	0.18432	0.00368	0.02701	0.00028	172	3.9	172	4.7			
YX270-15	0.24775	0.02759	0.02636	0.00081	225	28.3	168	11.9			
YX270-14	0.20977	0.0074	0.02627	0.00033	193	7.7	167	4.7			
YX270-X12	0.19229	0.00995	0.02446	0.00038	179	10.3	156	4.7			
YX270-X14	0.19139	0.0104	0.02675	0.00041	178	11.6	170	7.1			
YX270-7	0.20696	0.0094	0.02686	0.00038	191	10.3	171	4.7			
YX270-6	0.18207	0.01045	0.02688	0.00042	170	11.6	171	7.1			
YX270-Y1	0.2106	0.00812	0.02903	0.00037	194	9	184	4.7			
YX270-Y11	0.20747	0.00421	0.02875	0.00029	191	5.1	183	4.7			
YX270-Y13	0.24005	0.01583	0.02712	0.00052	218	16.7	172	7.1			
YX270-Y14	0.1933	0.00506	0.0273	0.0003	179	5.1	174	4.7			
YX270-Y15	0.21713	0.01036	0.0298	0.00042	200	11.6	189	7.1			
YX270-Y18	0.20874	0.01828	0.02777	0.0006	192	19.3	177	9.5			
YX270-Y19	0.19925	0.00346	0.02831	0.00028	184	3.9	180	4.7			
YX270-Y20	0.19015	0.0052	0.02678	0.0003	177	5.1	170	4.7			

								表 3(续)		
公坛古		U-Th-Pb	同位素比值	年龄/Ma						
力机点	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ		
YX270-03	0.26988	0.00666	0.03818	0.00042	243	6.4	242	7.1		
YX270-04	0.30763	0.00824	0.03975	0.00044	272	7.7	251	7.1		
YX270-05	0.30158	0.00531	0.04098	0.00044	268	5.1	259	7.1		
YX270-06	0.27018	0.00279	0.03704	0.00038	243	2.6	234	4.7		
YX270-07	0.30063	0.0083	0.03791	0.00043	267	7.7	240	7.1		
YX270-08	0.283	0.00293	0.04024	0.00042	253	2.6	254	7.1		
YX270-10	0.29182	0.00816	0.04049	0.00044	260	7.7	256	7.1		
YX270-13	0.28264	0.00295	0.03834	0.0004	253	2.6	243	4.7		
YX270-14	0.28121	0.00293	0.0399	0.00041	252	2.6	252	7.1		
YX270-15	0.29548	0.00306	0.041	0.00043	263	2.6	259	7.1		
YX270-16	0.31555	0.00819	0.04174	0.00046	278	7.7	264	7.1		
YX270-17	0 27464	0.00286	0.03815	0.0004	246	2.6	241	47		
YX270-18	0 27422	0.00285	0.03797	0.00039	246	2.6	240	47		
YX270-23	0.2848	0.00205	0.04018	0.00042	254	2.0	254	7.1		
YX270-24	0.2840	0.00298	0.03988	0.00042	257	2.0	254	7.1		
VX270-26	0.28207	0.00204	0.03788	0.00042	252	2.0	252	7.1		
VX270-27	0.29023	0.00309	0.04119	0.00043	203	2.0	200	7.1		
VX270-27	0.39201	0.00433	0.04807	0.00031	350	2.9	300	7.1		
1 A270-28 VV270-20	0.27937	0.00292	0.03973	0.00041	250	2.0	251	7.1		
1 A270-30 VV270-34	0.29847	0.00312	0.04046	0.00042	203	2.0	230	7.1		
1 A270-34	0.29018	0.00304	0.04146	0.00043	259	2.6	262	/.1		
YX270-35	0.26933	0.00283	0.03662	0.00038	242	2.6	232	4./		
Y X2/0-36	0.28/33	0.00301	0.03898	0.00041	256	2.6	247	7.1		
Y X2/0-39	0.29351	0.00307	0.04085	0.00043	261	2.6	258	7.1		
Y X2/0-40	0.29072	0.00505	0.0403	0.00042	259	5.1	255	7.1		
YX270-1	0.32393	0.0046	0.04513	0.00046	285	5.1	285	7.1		
YX270-18	0.27789	0.00703	0.03775	0.00043	249	7.7	239	7.1		
YX270-8	0.3514	0.00426	0.04977	0.0005	306	3.9	313	7.1		
YX270-22	0.27719	0.00373	0.03906	0.00039	248	3.9	247	4.7		
YX270-3	0.2653	0.00652	0.03767	0.00042	239	6.4	238	7.1		
YX270-13	0.29687	0.00477	0.04186	0.00043	264	5.1	264	7.1		
YX270-11	0.30251	0.00471	0.04235	0.00043	268	5.1	267	7.1		
YX270-9	0.23818	0.01556	0.03752	0.00061	217	16.7	237	9.5		
YX270-X6	0.27773	0.0048	0.03979	0.00039	249	5.1	252	4.7		
YX270-11C	0.28467	0.00726	0.04046	0.00043	254	7.7	256	7.1		
YX270-11R	0.29895	0.00726	0.0414	0.00044	266	7.7	262	7.1		
YX270-X10	0.25367	0.00758	0.03486	0.0004	230	7.7	221	4.7		
YX270-Y2	0.3453	0.0132	0.04524	0.00058	301	12.9	285	9.5		
YX270-Y3	0.37883	0.02004	0.04029	0.00067	326	19.3	255	9.5		
YX270-Y4	0.36317	0.01279	0.04211	0.00053	315	12.9	266	7.1		
YX270-Y5	0.33409	0.01348	0.04032	0.00054	293	12.9	255	7.1		
YX270-Y6	0.32069	0.0131	0.041	0.00055	282	12.9	259	7.1		
YX270-Y7	0.29368	0.01185	0.04126	0.00053	261	11.6	261	7.1		
YX270-Y8	0.30192	0.01114	0.03869	0.00049	268	11.6	245	7.1		
YX270-Y9	0.32258	0.01162	0.04219	0.00053	284	11.6	266	7.1		
YX270-Y10	0.43202	0.01939	0.04191	0.00064	365	18	265	9.5		
YX270-Y12	0.29082	0.01116	0.03969	0.00051	259	11.6	251	7.1		
YX270-Y16	0 3946	0.03901	0.04985	0.00122	338	36	314	16.6		
YX270-Y17	0.3215	0.00717	0.04414	0.00046	283	77	278	7.1		
YX270-Y21	0.31016	0.01517	0.04	0.00059	205	15.4	253	9.5		
YX270-Y22	0.31265	0.01129	0.04323	0.00053	276	11.6	233	7.1		
YX270-Y26	0.32187	0.00777	0.04323	0.00033	283	77	275	7.1		
YX270-Y27	0.34468	0.009777	0.0454	0.00048	203	,., 7 7	286	7.1		
VX270-V28	0.34400	0.00604	0.0434	0.00048	272	6.4	200	7.1		
VX270-V20	0.30833	0.00039	0.04190	0.00043	2/3	0.4	203	/.1 7 1		
1 A2/0-127	0.31909	0.00998	0.02949	0.00032	201	10.5	201	/.1		
1 A2/0-1 30 VV270 V21	0.27861	0.00502	0.03848	0.00039	250	5.1	243	4./		
1 A270-1 31 VV270 V22	0.285/3	0.00/91	0.03802	0.00043	255	1.1	241	/.1		
1 A2/U-1 32	0.2/13/	0.00547	0.03236	0.00033	244	5.1	205	4./		
1 A2/0-133	0.34873	0.01233	0.04129	0.00052	304	11.6	261	/.1		
I AZ / U- Y 35	035399	0.01163	0.04566	0.00055	308	116	288	7.1		

a) R 代表锆石边部; b) C 代表锆石核部

表 4 彰武高镁安山岩 LA-ICP-MS 锆石微量元素分析结果(单位: μg/g)

分析点	年龄 /Ma	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Pb	Th	U	Th/U
YX270-X1	121	8.84	873	9.75	69.9	45.7	10.4	94	24.0	217.1	65.3	259.2	53.5	518.1	85.7	156.7	14262	2723	5.2
YX270-X2R ^{a)}	130	5.43	1158	19.21	196.6	144.0	25.5	268	62.6	508.5	139.9	469.3	92.4	845.9	115.7	103.8	7686	3510	2.2
YX270-X3C ^{b)}	123	16.40	1810	33.01	285.8	138.4	19.9	177	34.1	244.8	57.7	188.0	34.8	308.2	43.5	160.5	13248	8359	1.6
YX270-X4	124	6.96	691	7.16	50.1	33.8	7.5	67	17.1	158.5	47.7	189.7	39.4	375.9	61.0	203.2	17191	3676	4.7
YX270-X5	120	23.90	1444	30.39	230.3	156.3	31.6	296	70.3	608.5	166.4	621.0	120.0	1101.7	168.7	138.2	12403	3240	3.8
YX270-X7	133	8.00	1344	21.33	210.3	147.4	25.9	290	72.1	622.7	177.5	651.7	130.0	1171.7	185.6	174.1	13632	3851	3.5
YX270-X8	134	6.81	924	9.48	80.1	55.9	11.5	122	30.2	271.4	80.0	304.7	61.8	572.2	93.6	260.0	20457	3284	6.2
YX270-X9	125	2.91	515	4.54	47.6	38.7	7.4	79	20.3	180.7	53.3	206.8	43.4	412.1	66.1	144.5	11801	2515	4.7
YX270-X11	121	10.70	978	13.79	110.6	76.8	16.6	142	34.5	306.7	86.3	326.7	66.6	638.2	94.9	133.5	11250	4422	2.5
YX270-X13	122	62.50	2526	61.06	410.5	235 7	49.6	401	953	814.0	225 5	839 5	169.2	1595 5	239 5	165.5	14193	2625	54
YX270-X15	121	7 10	621	5 89	43.2	35.4	8.1	82	21.6	200.0	62.2	244 1	52.6	501.2	80.8	133.0	11524	2866	4.0
YX270-25	129	7 23	1005	13.27	124.6	83.3	13.5	159	393	342.0	99.2	370.1	76.2	710.8	112.5	204.1	16040	3458	4.6
YX270-27	121	19.50	1612	28.13	237.8	159.8	31.9	293	71.4	603.4	171.4	629.5	128.2	1174 7	185.6	167.2	14632	3448	4.2
VX270-28	123	8 29	926	9.76	73.5	53.2	10.8	110	27.0	237.0	70.6	272.6	57.3	547.0	89.0	238.3	19066	3321	5.7
YX270-Y23	125	11 20	1312	14.88	128.7	94.2	19.4	192	47.6	423.2	124.9	480.5	99.7	932.6	149.0	165.7	13384	4726	2.8
YX270-Y24	123	19.60	827	11.27	88.2	60.1	11.0	119	29.4	264.7	76.8	295.5	59.8	541.7	89.0	151.6	12939	3750	3.5
YX270-Y25	119	14.70	1164	17.7	135.2	83.5	15.9	159	37.2	317.2	90.3	333.7	67.8	624.9	100.9	236.1	21153	4067	5.2
YX270-15	168	0.19	36	0.14	2.4	3.8	1.7	19	6.8	86.0	33.9	155.4	35.7	358.0	69.7	4.9	265	266	1.0
YX270-14	167	155.70	813	49.38	216.9	65.8	17.3	88	23.5	247.8	91.0	430.2	103.1	1110.1	202.6	15.0	1617	3425	0.5
YX270-X12	156	1.30	68	1.04	6.5	5.2	1.4	17	7.2	98.4	45.8	261.2	74.3	916.3	183.9	13.7	854	1723	0.5
YX270-X14	170	1.20	78	2.09	6.3	4.2	1.1	15	5.9	78.6	37.1	203.0	56.8	645.2	139.7	9.2	597	1319	0.5
YX270-7	171	5.36	81	2.14	11.1	4.5	1.3	11	4.4	60.8	27.8	157.5	44.9	540.1	112.6	12.7	745	1652	0.5
Y X270-6	171	0.17	53	0.20	2.1	3.2	0.9	17	6.6	85.2	35.0	167.9	40.1	429.4	78.3	5.5	340	553	0.6
YX270-Y1 VX270-Y11	184	2.25	201	0.70	4.4	4.3 20.0	1.0	23 18	9.2	1017	45.9	210.3	49.8	510.0	95.4 220.5	51.6	2225	2820	1.1
YX270-Y13	185	2 50	113	0.35 2.05	43.2	20.9	23	40 25	89	191.7	43.8	213.8	52.4	580.9	110.3	9.6	488	936	0.8
YX270-Y14	174	5.98	323	4.24	24.8	16.0	5.7	59	21.2	274.1	117.1	608.4	152.4	1692.7	334.4	88.1	5338	3253	1.6
YX270-Y15	189	2.03	79	1.33	7.2	3.4	0.9	11	4.3	59.1	25.5	130.9	32.7	359.3	71.5	5.8	298	619	0.5
YX270-Y18	177	63.10	147	15.38	64.8	12.7	1.4	22	6.3	70.7	27.4	127.1	28.9	294.9	57.4	2.2	122	206	0.6
YX270-Y19	180	28.80	393	13.58	65.9	29.7	6.7	112	48.9	643.9	256.0	1170.5	256.0	2456.9	434.5	33.6	1913	7680	0.2
YX270-Y20	170	5.89	222	4.64	23.3	12.1	3.6	39	15.0	198.9	84.0	431.7	108.1	1198.7	231.4	24.2	1429	2904	0.5
YX270-X6	252	5.26	93	2.64	14.9	10.2	1.3	43	17.6	226.2	90.1	425.2	98.5	1017.2	183.6	39.8	1733	4348	0.4
YX270-11C	256	96.10	64	33.24	170.5	36.3	7.5	39	10.8	118.2	43.7	202.1	46.9	493.1	86.5	15.3	615	1386	0.4
YX270 X10	202	1/3.80	41/ 511	41.90	56.7	52.9 21.7	0.0 6.6	23 27	12.5	142.6	50.5 55.5	148.5	57.2 62.4	424.0	87.5	/.1	287	2445	0.2
YX270-X10	285	0.10	19	0.27	4.0	69	13	31	11.3	133.6	50.5	200.7	50.1	499 7	91.1	11.8	465	654	0.2
YX270-Y3	255	16.40	72	7.19	38.1	12.5	1.2	27	8.2	94.2	36.6	170.2	38.2	387.5	72.2	7.6	282	405	0.7
YX270-Y4	266	54.09	163	12.61	52.3	12.2	2.5	26	8.7	105.4	41.7	194.0	43.7	443.1	82.0	10.0	353	615	0.6
YX270-Y5	255	0.29	27	0.26	3.0	5.0	0.6	31	12.5	157.7	63.2	299.6	67.9	683.5	126.5	16.1	586	1661	0.4
YX270-Y6	259	5.73	55	2.63	15.6	8.0	1.8	26	8.7	104.8	40.7	186.1	42.2	425.0	79.0	10.1	399	706	0.6
YX270-Y7	261	0.02	20	0.14	2.2	4.2	1.0	22	8.6	111.0	45.6	214.7	48.8	491.2	92.7	11.7	460	561	0.8
YX270-Y8	245	0.02	12	0.07	1.0	2.1	0.5	12	4.6	61.2	24.8	119.8	28.2	295.8	56.8	6.8	227	749	0.3
YX270-Y9	266	12.64	44	4.43	21.3	6.8	0.9	17	5.6	65.6	25.6	118.7	27.2	282.1	53.0	6.7	248	656	0.4
YX270-Y10	265	1.79	51	1.74	11.4	9.2	3.4	29	9.7	111.2	42.0	192.6	42.9	432.9	84.3	8.6	297	359	0.8
YX270-Y12	251	0.03	20	0.08	1.4	2.8	0.0	13	4./	59.1 82.2	24.1	115.0	28.1	241.0	40.0	3.5	130	102	0.2
YX270-Y17	278	3.86	26	3.10	19.4	7.2	2.0	22	8.2	05.2 101.4	40 5	120.2	45.8	483.2	40.9 94 9	11.0	442	1993	0.7
YX270-Y21	253	0.07	12	0.16	2.7	47	1.2	22	7.9	92.6	35.9	163.9	36.8	372.3	71.0	4 7	190	433	0.2
YX270-Y22	273	0.08	27	0.09	1.3	3.0	0.7	16	6.0	74.5	29.9	142.3	32.8	337.7	65.7	7.4	284	638	0.4
YX270-Y26	281	2.57	29	1.09	5.8	3.9	0.4	17	7.2	96.2	40.5	197.6	46.8	484.7	92.8	10.5	393	1446	0.3
YX270-Y27	286	12.36	226	7.31	42.5	16.9	3.5	32	9.5	108.8	41.3	194.0	45.2	467.7	88.2	9.3	396	1435	0.3
YX270-Y28	265	8.63	78	4.23	21.2	8.4	2.1	25	9.3	119.3	47.9	231.3	54.7	561.2	106.3	11.2	453	2294	0.2
YX270-Y29	281	0.98	20	0.43	2.8	2.9	0.5	15	5.5	72.1	29.1	139.4	32.0	338.7	65.4	7.9	293	857	0.3
YX270-Y30	243	29.25	100	9.31	48.9	19.3	2.1	44	14.5	171.3	67.4	325.1	78.8	859.9	172.3	23.5	960	3679	0.3
Y X270-Y31	241	4.02	109	3.32	18.0	8.1	2.6	18	6.0	73.6	30.4	152.0	39.5	456.4	99.3	9.1	388	1632	0.2
1 A2/0-Y32 VX270 V22	205	3.91 0.10	265	3.41 0.10	18.0	8.5 2.2	2.8	19	0.8	90.4 92.0	42.0	245./	28.0	8/9./	191.6	18.4	214	2843	0.5
YX270-Y35	288	10.43	71	3.21	15.8	7.7	2.0	22	7.9	96.2	37.9	175.8	40.2	411.7	76.9	9.3	356	774	0.5

a) R 代表锆石边部; b) C 代表锆石核部

Al₂O₃≤2%,单斜辉石Al₂O₃≤3%),认为这些辉石不 是在地幔深度下结晶出来的,而是代表了基性和酸 性岩浆在地壳深度混合形成的.Guo 等^[63]亦将延吉 地区古新世高镁安山岩中的单斜辉石反环带解释为 岩浆混合产物,其中单斜辉石亦具有低Al₂O₃(≤3%) 的特征,同时还具有Eu负异常,表明岩浆混合是在斜 长石稳定的地壳深度发生的.与上述地壳内部岩浆 混合形成的辉石明显不同,彰武高镁安山岩单斜辉 石Al₂O₃ 含量变化很大,核部最高值可达 5%(表 1), 表明它们是在地幔深度形成的^[64].

因此,现有资料不支持彰武高镁安山岩的岩浆 混合成因.我们认为,对其中辉石反环带最好的解释 是拆沉的榴辉岩是地幔深度部分熔融产生的长英质 岩浆上升过程中与地幔反应的结果.这也得到这些 中酸性火山岩中存在通常出现于基性-超基性岩浆岩 中的铬铁矿支持.彰武高镁安山岩中 Mg[#]最高、SiO₂ 最低,即与地幔反应程度最大的两个样品 YX-262 和 YX-263 具有最高的 Nd 同位素初始比值 *E*_{Nd} (126 Ma) 进一步支持这一解释.

如前所述, 彰武高镁安山岩与兴隆沟高镁中酸 性火山岩具有相似的地球化学和矿物学特征,它们 均具高的Mg, Cr, Ni, Sr含量和低的Y和Yb以及高的 Sr/Y比值,均含反环带辉石斑晶.因此我们认为两者 具有相似的成因,即它们都是下地壳拆沉作用的产 物.关于彰武高镁安山岩所代表的源区下地壳性质 和拆沉的时间有两种可能性. 第一种可能性是, 它们 与兴隆沟火山岩一样,指示了华北克拉通原岩为太 古宙的下地壳榴辉岩拆沉作用. 兴隆沟火山岩中的 锆石以华北克拉通前寒武纪基底特征的年龄为 2.5 Ga的继承锆石为主, 而彰武高镁安山岩中不存在太 古代的锆石, 证明与兴隆沟火山岩指示的古老下地 壳源区不同, 彰武高镁安山岩源区应是年轻的. 我们 认为, 彰武高镁安山岩指示了~170 Ma的中侏罗世玄 武质岩浆底侵形成的新生下地壳加厚, 然后拆沉的 过程. 兴隆沟火山岩的年龄为 159 Ma^[8], 而彰武高镁 安山岩与辽西义县组高镁安山岩 [38] 年龄均为早白垩 世(约125 Ma), 暗示拆沉作用可能从晚侏罗世延续至 早白垩世. 目前认为拆沉作用伴随大量软流圈的物 质上涌和具有亏损特征玄武岩喷发是基于拆沉作用 是一个十分快速的过程(<5~10 Ma),导致软流圈物质 快速上涌, 且未与来自拆沉下地壳的熔体反应. 但动 力学模拟表明^[71],拆沉的时间尺度取决于许多因素, 例如一个厚度为 250 km的岩石圈根拆沉,取决于岩 石圈根的宽度、其流变学强度与周围地幔之间的差异 以及其他因素,拆沉作用的时间可在 55~750 Ma之间 变化.因此,拆沉作用的时间尺度可能变化很大.如 果是较慢的拆沉作用,软流圈上涌速度也较慢,软流 圈特征的玄武岩可能不会在拆沉的早期就出现.另 一方面,拆沉的榴辉岩产生的熔体会与软流圈岩浆 反应使来自软流圈的玄武岩具有富集特征.最后,榴 辉岩产生的熔体与岩石圈地幔反应将产生辉石岩, 辉石岩具有比橄榄岩低的熔融温度,从而更易熔融, 同样产生富集特征的玄武岩^[65-69].因此,我们认为 是否出现具有亏损特征的玄武岩不是判断拆沉作用 发生的必要条件.

关于~170 Ma时期华北克拉通的底侵作用直接 证据来自对汉诺坝基性麻粒岩和辽西阜新碱锅玄武 岩中二长岩包体的研究. 前人对汉诺坝地区出露的 大量基性麻粒岩包体研究表明, 180~160 Ma时期存在 明显的玄武岩浆底侵事件 [7.51]. Zheng等 [52]对辽西阜 新碱锅玄武岩中二长岩包体的研究发现其中年龄为 167 Ma的锆石 ε_{Hf} ≈0,标志着该区中生代玄武岩浆底 侵.因此,汉诺坝和碱锅包体反映出相似的底侵事件, 该事件的年龄与记录在彰武第二组岩浆锆石的年龄 一致.因此,我们推测在彰武地区同样存在着中生代 玄武岩浆底侵并使地壳加厚, 加厚的基性的下地壳 岩石部分熔融之后可产生TTG或埃达克质岩 石 [70.71], 这可以解释彰武高镁安山岩高Sr低以及轻稀土富集 与重稀土亏损的地球化学特征,但是此类岩石不应 具有高的Mg, Ni, Cr含量. 因此较好的解释是, 彰武 高镁安山岩指示了中侏罗世底侵玄武质岩浆形成的 新生加厚下地壳,该加厚新生下地壳进一步加厚相 变为榴辉岩, 然后拆沉至软流圈, 发生部分熔融, 产 生的熔体在上升过程中与地幔橄榄岩发生反应, 最 终形成彰武高镁安山岩. Sr-Nd同位素模拟进一步支 持了上述成因解释(图 8). 来自亏损地幔的新生地壳 如果没有与地壳发生同化混染作用则End应大于0,由 此形成的岩浆岩 End 也应大于 0. 然而, 底侵在下地壳 的新生地壳物质通常会与先存古老下地壳发生广泛 同化混染作用^[75],使得其 End小于 0. 汉诺坝基性麻粒 岩中即含有中生代锆石又含太古宙锆 石 [7.51], 证明 了中生代新生底侵下地壳与太古宙地壳

图 8 彰武高镁安山岩 Sr-Nd 同位素图解

汉诺坝基性麻粒岩同位素组成来自Zhou等^[27].上端曲线代表了由Sr 含量最高的汉诺坝基性麻粒岩包体(Sr=3491 µg/g, Nd=17.8 µg/g, 87 Sr/ 86 Sr=0.706976, ¹⁴³Nd/¹⁴⁴Nd=0.511757)所产生的熔体与亏损地幔反 应曲线(+代表了10%的增量).下端曲线代表由Sr含量最低的汉诺坝基 性麻粒岩包体(Sr=218 µg/g, Nd=26.5 µg/g, 87 Sr/ 86 Sr=0.706976, 143 Nd/¹⁴⁴Nd=0.511757)所产生的熔体与亏损地幔反应的曲线.模拟熔 体-地幔反应所采用的模型为同化混染结晶分异模型(AFC模型).汉诺 坝基性麻粒岩部分熔融假设残余体为等量石榴石和绿辉石组成的榴辉 岩,部分熔融程度为 30%.大十字表示汉诺坝基性麻粒岩平均同位素 组成与1 σ 范围.亏损地幔端元(Sr=8.8 µg/g, Nd=0.641 µg/g, 87 Sr/ 86 Sr =0.70258, 143 Nd/ 144 Nd=0.51297)Sr-Nd同位素组成取自Hofmann^[72],元素 含量取自Salters等^[73].华北古老下地壳(87 Sr/ 86 Sr=0.71613, 143 Nd/ 144 Nd=0.51297)Sr-Nd同位素组成取自Hofmann^[72],元素

¹⁴³Nd/¹⁴⁴Nd=0.511204)同位素组成由 Wu等^[74]汇编数据获得

的混合作用.因此,彰武高镁安山岩变化较大的负 *ɛ*_{Nd} 值正是继承了这种混杂下地壳的特征.由图 8 可 见,彰武高镁安山岩的 Sr-Nd 同位素组成可用原岩 为具有汉诺坝基性麻粒岩的同位素组成的榴辉岩经 过 30%的部分熔融形成的熔体,然后与<10%的地幔 橄榄岩反应来解释.上述模型也可较好解释为何彰 武高镁安山岩中无古老继承锆石.

致谢 作者感谢张宏博士在野外工作中给予的帮助,同时感谢陈斌和张旗及另一评审人对本文的评 审意见,使本文得以完善.

参考文献

- 1 Menzies A, Fan W M, Zhang M. Paleozoic and Cenozoic lithoprobes and loss of >120 km of Archean lithosphere, Sino-Korean craton, China. In: Prichard H M, Alabaster H M, Harris T, et al, eds. Magmatic Processes and Plate Tectonics. Geol Soc London, 1993. 73-81
- 2 Griffin W L, Zhang A D, O'Reilly S Y. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M F J, Chung S L, Lo C H, et al, eds. Mantle Dynamics and Plate Interactions in East Asia. Washington D C: Am Geophys Union, 1998. 107-126

- 3 徐义刚.太行山重力梯度带的形成与华北岩石圈减薄的时空差 异性有关.地球科学,2006,31(1):14-22
- 4 张旗,钱青,王二七,等. 燕山中晚期的"中国东部高原":埃达 克岩的启示. 地质科学, 2001, 36(2): 248-255
- 5 Xu Y G. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: evidence, timing and mechanism. Phys Chem Earth (A), 2001, 26(9-10): 747-757 [DOI]
- 6 Zhang H F, Sun M, Zhou X H, et al. Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites. Geochim Cosmochim Acta, 2003, 67(22): 4373—4387[DOI]
- 7 Wilde S A, Zhou X H, Nemchin A A, et al. Mesozoic crust-mantle interaction beneath the North China craton: a consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 2003, 31(9): 817–820[DOI]
- 8 Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature, 2004, 432(7019): 892– 897[DOI]
- 9 Niu Y L. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in Eastern China. 高校地质学报, 2005, 11(1): 9-46
- 10 Zhang H F. Transformation of lithospheric mantle through peridotite-melt reaction: a case of Sino-Korean Craton. Earth Planet Sci Lett, 2005, 237(3-4): 768-780[DOI]
- 11 Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 2005, 233(1-2): 103—119[DOI]
- 12 Xu W L, Gao S, Wang Q H, et al. Mesozoic crustal thickening of the eastern North China craton: evidence from eclogite xenoliths and petrologic implications. Geology, 2006, 34(9): 721-724 [DOI]
- 13 Zheng J P, Griffin W L, O'Reilly S Y. Mineral chemistry of garnet peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: constraints on mantle evolution beneath eastern China. J Petrol, 2006, 47(11): 2233-2256[DOI]
- 14 Menzies M, Xu Y G, Zhang H F, et al. Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos, 2007, 96(1-2): 1-21[DOI]
- 15 Deng J F, Su S G, Niu Y L, et al. A possible model for the lithospheric thinning of North China Craton: evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism. Lithos, 2007, 96(1-2): 22–35[DOI]
- 16 Zhai M G, Fan Q C, Zhang H F, et al. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China: underplating, replacement and delamination. Lithos, 2007, 96(1-2): 36—54[DOI]
- 17 刘红涛,孙世华,刘建明,等.华北克拉通北缘中生代高锶花岗 岩类:地球化学与源区性质.岩石学报,2002,18(3):257-274
- 18 李承东,张旗,苗来成,等. 冀北中生代高 Sr 低 Y 和低 Sr 低 Y 型花岗岩球化学、成因及其与成矿作用的关系. 岩石学报,2004, 20(2): 269—284
- 19 许文良, 王清海, 王冬艳. 华北克拉通东部中生代岩石圈减薄

的过程与机制:中生代火山岩和深源捕虏体证据.地学前缘, 2004, 11(3): 309-318

- 20 张旗,李承东,王焰,等.中国东部中生代高 Sr 低 Yb 和低 Sr 高 Yb 型花岗岩:对比及其地质意义.岩石学报,2005,21(6): 1527—1537
- 21 Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem Geol, 2005, 221(1-2): 127–156[DOI]
- 22 吴福元,杨进辉,张艳斌,等. 辽西东南部中生代花岗岩时代. 岩石学报,2006,22(2):315—325
- 23 许文良, 王冬艳, 郑常青, 辽西阜新中生代粗面玄武岩中地幔 和下地壳捕虏体的发现及其地质意义. 地质论评, 1999, 45(增 刊): 444—449
- 24 许文良,王冬艳,王清海,等.鲁西中生代闪长岩中两类幔源捕 虏体的岩石学和地球化学.岩石学报,2003,19(4):623-636
- 25 Chen L H, Zhou X H. Subduction-related metasomatism in the thinning lithosphere: evidence from a composite dunite- orthopyroxenite xenolith entrained in Mesozoic Laiwu high-Mg diorite, North China Craton. Geochem Geophys Geosyst, 2005, doi: 10.1029/2005GC000938
- 26 Zheng J P, Griffin W L, O'Reilly S Y, et al. Zircons in mantle xenoliths record the Triassic Yangtze-North China continental collision. Earth Planet Sci Lett, 2006, 247(1-2): 130–142[DOI]
- 27 Zhou X H, Sun M, Zhang G C, et al. Continental crust and lithospheric mantle interaction beneath North China: isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos, 2002, 62: 111–124[DOI]
- 28 汪方跃,高山,牛宝贵,等.河北承德盆地114Ma大北沟组玄武 岩地球化学及其对华北克拉通岩石圈地幔减薄作用的制约.地 学前缘,2007,14(2):98—108
- 29 张旗, 王焰, 王元龙. 燕山期中国东部高原下地壳组成初探:埃达克质岩 Sr、Nd 同位素制约. 岩石学报, 2001, 17(4): 236-244
- 30 李伍平,李献华.燕山造山带中段晚侏罗世中酸性火山岩的成 因及其意义.岩石学报,2004,20(3):501-510
- 31 张旗,金惟俊,王元龙.大陆下地壳拆沉模式初探.岩石学报, 2006,22(2):265-276
- 32 李伍平,路风香,李献华,等.北京西山髫髻山组火山岩的地球 化学特征及岩浆起源.岩石矿物学杂志,2001,20(2):123—133
- 33 汪洋,李家振,孙善平,等.北京西山髫髻山组火山岩 Sm-Nd等时线初步研究.北京地质,2001,13(3):18-21
- 34 李晓勇,范蔚茗,郭锋,等.古亚洲洋对华北陆缘岩石圈的改造 作用:来自北京西山南大岭组中基性火山岩的地球化学证据.岩 石学报,2004,20(3):557-566
- 35 袁洪林,柳小明,刘勇胜,等.北京西山晚中生代火岩 U-Pb 锆 石年代学及地球化学研究.中国科学 D 辑:地球科学,2005, 35(9):821-836
- 36 牛宝贵,和政军,宋彪,等.张家口组火山岩 SHRIMP 定年及其 重大意义.地质通报,2003,22(2):140—141
- 37 彭艳东,张立东,张长捷,等.辽西义县组火山岩的 K-Ar,⁴⁰Ar/³⁹Ar 法同位素年龄测定.地球化学,2003,32(5):427 --435
- 38 王晓蕊,高山,柳小明,等. 辽西四合屯早白垩世义县组高镁安山岩的地球化学:对下地壳拆沉作用和 Sr/Y 变化的指示.中国科学 D辑:地球科学,2005,35(8):700-709

- 39 Guo F, Fan W M, Li C. Geochemistry of late Mesozoic adakites from the Sulu belt, eastern China: magma genesis and implications for crustal recycling beneath continental collisional orogens. Geol Mag, 2006, 143(1): 1—13
- 40 陈义贤,陈文寄.辽西及邻区中生代火山岩-年代学、地球化学 和构造背景.北京:地震出版社,1997.141-201
- 41 王五力,张宏,张立君,等.土城子阶、义县阶标准地层剖面及 其地层古生物、构造-火山作用.北京:地质出版社,2004.359 --434
- 42 张宏,柳小明,李之彤,等. 辽西阜新-义县盆地及附近地区早 白垩世地壳大规模减薄及成因探讨. 地质论评, 2005, 51(4): 360 -372
- 43 Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry. Geostand Geoanal Res, 2004, 28(3): 353-370[DOI]
- 44 Ludwig K R. ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No 4, 2003. 1-70
- 45 Rudnick R L, Gao S. Composition of the continental crust. In Rudnick, R. L eds. The Crust-Treatise on Geochemistry. Amsterdam: Elsevier, 2003. 1—64
- 46 阎国翰, 牟保磊, 许保良, 等. 燕辽阴山三叠纪碱性侵入岩年代 学和 Sr、Nd、Pb 同位素特征及意义. 中国科学 D 辑: 地球科学, 2000, 30(4): 383—387
- 47 韩宝福,加加美宽雄,李惠民.河北光头山碱性花岗岩的时代、 Nd-Sr 同位素特征及其对华北早中生代壳幔相互作用的意义. 岩石学报,2004,20(6):1375-1388
- 48 任康绪, 阎国翰, 牟保垒, 等. 辽西凌源河坎子碱性杂岩体地球 化学特征及地质意义. 岩石矿物学杂志, 2004, 23(3): 193—202
- 49 Wang L G, Qiu Y M, McNaughton N J. Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids. Ore Geol Rev, 1998, 13(1-5): 275–291[DOI]
- 50 Yang J H, Wu F Y, Wilde S A. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning. Ore Geol Rev, 2003, 23(3-4): 125—152[DOI]
- 51 Liu Y S, Gao S, Yuan H L, et al. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust. Chem Geol, 2004, 211(1-2): 87—109[DOI]
- 52 Zheng J P, Zhang R S, Yu C M, et al. In situ zircon Hf isotopic, U-Pb age and trace element study of monzonite xenoliths from Pingquan and Fuxin basalts: tracking the thermal events of 169 Ma and 107 Ma in Yanliao area. Sci China Ser D-Earth Sci, 2004, 34(Suppl 1): 39-52
- 53 Kelemen P B. Genesis of high Mg andesites and the continental crust. Contrib Miner Petrol, 1995, 120(1): 1—19
- 54 Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol, 1999, 160(4): 335—356 [DOI]
- 55 Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic

intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology, 2002, 30(12): 1111-1114[DOI]

- 56 Tatsumi Y. High-Mg andesites In the setouchi volcanic belt, South Western JAPAN: analogy to archean magmatism and continental crust formation? Annu Rev Earth Planet Sci, 2006, 34(1): 467— 499[DO1]
- 57 Yogodzinski G M, Volynets O N, Koloskov A V, et al. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, far western Aleutians. J Petrol, 1994, 35(1): 163-204
- 58 Furukawa Y, Tatsumi Y. Melting of a subducting slab and production of high-Mg andesite magmas: unusual magmatism in SW Japan at 13—15 Ma. Geophys Res Lett, 1999, 26(15): 2271—2274 [DOI]
- 59 Tatsumi Y, Hanyu T. Geochemical modeling of dehydration and partial melting of subducting lithosphere: towards a comprehensive understanding of high-Mg andesite formation in the Setouchi volcanic belt, SW Japan. Geochem Geophys Geosyst, 2003, doi:10.1029/2003GC000530
- 60 Tatsumi Y. Melting experiments on a high-magnesian andesite. Earth Planet Sci Lett, 1981, 54(2): 357–365[DOI]
- 61 Hirose K. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 1997, 25(1): 42-44[DOI]
- 62 Kawabata H, Shuto K. Magma mixing recorded in intermediate rocks associated with high-Mg andesites from the Setouchi volcanic belt, Japan: implications for Archean TTG formation. J Volcanol Geotherm Res, 2005, 140(4): 241-271[DOI]
- 63 Guo F, Nakamuru E, Fan W M, et al. Generation of Palaeocene adakitic andesites by magma mixing: Yanji Area, NE China. J Petrol. 2007, 48(4): 661–692[DOI]
- 64 Streck M, J, Leeman W P, Chesley J. High-magnesian andesite from Mount Shasta: a product of magma mixing and contamina-

tion, not a primitive mantle melt. Geology, 2007, 35(4): 351—354 [DOI]

- 65 Morency C, Doin M P, Dumoulin C. Convective destabilization of a thickened continental lithosphere. Earth Planet Sci Lett, 2002, 202(2): 303-320[DOI]
- 66 Lustrino M. How the delamination and detachment of lower crust can influence basaltic magmatism. Earth Sci Rev, 2003, 72(1-2): 21-38
- 67 Anderson D A. Large igneous provinces, delamination, and fertile mantle. Elements, 2006, 1(5): 271–275
- 68 Elkins-Tanton L T. Continental magmatism caused by lithospheric delamination. In: Foulger G R, et al, eds. Plates, Plumes, and Paradigms. Geological Society of America Special Paper, 2005, 388: 449-462
- 69 Sobolev A V, Hofmann A W, Sobolev S V, et al. An olivine-free mantle source of Hawaiian shield basalts. Nature, 2005, 434(7033): 590-597[DOI]
- 70 Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 1993, 362(6416): 144— 146[DOI]
- 71 Petford N, Atherton M P. Na-rich Partial Melts from Newly Underplated Basaltic Crust: the Cordillera Blanca Batholith, Peru. J Petrol, 1996, 37(6): 1491-1521[DOI]
- 72 Hofmann A W. Mantle geochemistry: the message from oceanic volcanism. Nature, 1997, 3859(6613): 219–229[DOI]
- 73 Salters J M, Andreas S. Composition of the depleted mantle. Geochem Geophys Geosyst, 2004, doi:10.1029/2003GC000597
- 74 Wu F Y, Zhao G C, Wilde S A, et al. Nd isotopic constraints on crustal formation in the North China Craton. J Asian Earth Sci, 2005, 24(5): 523—545[DOI]
- 75 Voshage H, Hofmann A W, Mazzucchelli M, et al. Isotopic evidence from the Ivrea Zone for a hybrid lower crust formed by magmatic underplating. Nature, 1990, 347(6295): 731-734[DOI]