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SUMMARY: In this article we study the equilibrium of polytropes in poloidal
magnetic field. The magnetic field is the solution of a nonhomogeneous Euler equa-
tion for which we are able to give the general solution. It depends on the Lane—
Emden function. We use the approximate analytic solution of the Lane—Emden
equation proposed by Liu, to write it explicitly. For the polytropic indices n = 1,2

the approximation is very good, the maximum error is < 0.5%.

1. INTRODUCTION

The detection of the magnetic field at the stel-
lar surface (see Babcock, 1958) raised the question of
its role in the equilibrium of the star. Earlier, Chan-
drasekhar and Fermi (1953), using the virial theo-
rem, found the maximum value for the magnetic field
above which the equilibrium is lost. The measured
values were below it, so the stars are in equilibrium.
The problem of the magnetic field distribution in the
star gives rise to a complicated mathematical prob-
lem. An analytical solution of the problem could be
found only if we would make some supplementary
hypotheses. We shall presume, based on the pho-
tometric observations (Borra and Landstreet, 1980),
that at the stellar surface the magnetic field can be
approximated by a dipole with the center in the cen-
ter of the star and so the field has an axial symmetry.
We suppose that the field is weak. We also consider
that the star is a polytrope with a given polytropic
index n. In this case to obtain the distribution of the

magnetic field in the star we have to solve a singular
Sturm-Liouville problem (see Roxburgh, 1966). In
the particular case of the poloidal magnetic field (see
the decomposition proposed by Liist and Schliiter,
1954), the problem can be easily solved, because it
yields a nonhomogeneous Euler equation. Its general
solution will depend on the Lane-Emden function.

The equilibrium of a polytrope in a magnetic
poloidal field was studied by Monaghan (1965). He
found the differential equation that provides the ma-
gnetic field, solved it numerically for different poly-
tropic indices and discussed the influence of the poly-
tropic index m on the distribution of the magnetic
field. Further, we will show that Monaghan’s dif-
ferential equation for the poloidal magnetic field is
equivalent to an Euler equation and write its general
solution. The Lane-Emden function present in this
general solution will be substituted by the approx-
imate analytic form proposed by Liu (1995), a fact
that permits us a comparison between this solution
and a numerical one.
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2. BASIC EQUATION

To describe the equilibrium in a poloidal mag-
netic field we will use the equation of the hydromag-
netic equilibrium, the Poisson equation, the Ampere
law, the magnetic monopole equation and the poly-
tropic relation, respectively:

VP jx H
= vy I (1)
cp
V2¢ = dnGp, 2)
N P
curlH = %j, (3)
divH =0, (4)
P=Kp'*n, (5)

in which the notations are usual. Supposing that
the star has axial symmetry and using the spheri-
cal coordinates (r,0,¢) with 7 = 0 in the center of
the star and § = 0 the symmetry axis, we obtain

that % = 0. Having in mind the representation of

the general solution of (4) (see Chandrasekhar, 1961)
and the simplifications due to the hypotheses of axial
symmetry and poloidal magnetic field we will obtain

that H = (H,, Hp,0), with :
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Taking curl of equation (1) and using (3) we will

obtain : . B
H H
curl <M> =0, (7)
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Written in spherical coordinates it provides:
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relation that will be used further to express the de-
pendence of the magnetic field on radius. We shall
assume, in the first approximation, that the magnetic
field is weak, so that its presence will not modify the
mass density distribution in the star. So, p = po(r),
where pg is known from the equilibrium of an unper-
turbed polytrope.

We will consider that the exterior magnetic
field is dipolar and in the interior it is expressed by:

S(r,0) = A(r)sin?(6). 9)
In this situation the equation (8) becomes:

d 1 2A

which can be integrated and gives:

2A
pol A" = Dpr? (11)
where D is an arbitrary constant of integration.

To facilitate the evaluation of the magnetic
field we introduce the following transformations (Ro-
xburgh,1966):

A = Dpca'yy, (12)

r= afa Po = p0927

1
_ K(n+1)pr
N 4G
in which we recognize the Emden variables (,6,,)
and introduce a new dimensionless function vy, ()
proportional to the magnetic field. This substitution
allows us to build the dimensionless form of (10).
Using (6), (9) and (12) in (11) we get the following
nonhomogeneous second order differential equation:
29n

v
e 03)

where 6, is the Lane-Emden function of index n, i.e.
the solution of the Lane-Emden equation of order n:

1 n
L (o) g

The boundary conditions for the equation (13) are :

= _enn€27

(14)

dyn,
(0) = ~,,(0) = 0, E—= 4+ =0 (15)
dg £=&1
The first condition says that the magnetic field
must be finite in the center of the star and the second
in £ = & (with & the polytropic radius, i.e. the first
zero of the Lane-Emden function) reflects that at
the surface of the star there is no discontinuity in
the magnetic field.

3. THE GENERAL SOLUTION OF THE
NONHOMOGENEOUS EQUATION

The equation (13) is a nonhomogeneous Euler

equation. The unknown is function 7, (§) = —%
where B (€) is the unknown function from the equa-
tion (27) in the Monaghan’s (1965) paper. With the

transformation & = e! it becomes an equation with
constant coefficients:

v, dy ~n
b = =2y, = —0, e* 16
dt2 dt ’y € ’ ( )
where 7, (t) = yn(et), 0,(t) = O,(et). The funda-
mental system of solutions for (16) is:
e, ey, a7)
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so the general solution is:

() = c1(t)e ™ + ca(t)e™, (18)
where the functions ¢ (t) and co(t) are determined
from the following conditions:

(et + cy(t)e* =0,
—di (et + 24, (t)e? = =6, (t)e™

(19)

Solving the system (19) and substituting in
(18) we find that the general solution is:

1 ~ 1 .
Tu(t) = —gth/theﬁ(t)dt+ ge_t/emeﬁ(t)dt
+ Kie? + Kie™? (20)

where the constants K; and K», are determined us-
ing the boundary conditions (15).

Going back from the variable ¢ to & we find
the following expression for ~,, (&) :

1 . 11 .
1) = =3¢ [ o + 37 [ oniener
K€% + % (21)

Replacing in the integrands from (21) 67(¢) with the
left-hand member of the Lane-Emden equation and
using the formula for integration by parts we found
the following form for (21):

2 _2 2 2 &
%@75%@)5/5%@%+M5+€(%)

where the constants K7 and K5 are determined using
(25):

_é den(gl)

K:
! 3 de

, Ky= [12/8&,(5)%”

£=0
(23)
We note that (21) and (23) involve the Lane-Emden
function of index n. But as we know there are only
three cases (n € {0,1,5}) in which its exact form
could be written (see Chandrasekhar, 1939). Further
we will use an approximate form of it to be able
to compare our results with the numerical results
obtained using a routine of Runge—Kutta type.

4. CERTAIN SOLUTIONS FOR THE NON-
HOMOGENEOUS EQUATION

If we substitute in (21) the exact solution of
the Lane-Emden equation for n = 0, 1 we get two ex-
act solutions for (13). For n = 0, i.e. incompressible
medium: 6(¢) =1 — ££2 and we obtain the solution
found by Ferraro (1954):

4
_p2 S
Y0(8) =¢ 10

Forn=1: 6(§) = Smgﬁ we get the solution found by

Monaghan (1965) multiplied by (—2) as we showed
before:

(24)

2 sin 1
£, Lo

7(€) = Esin +2cosf - ==+ 3

(25)

Table 1. The expressions of the functions f; and F; where i € {1,2} and n € {2,2,3}

n fl (gvzca TL) f2(£a4cv n) Fl (57 G, TL) F2 (Ea &) n)
3 £ 1 £ 1 £ 5¢ 3arctan \/c€
2 (14c£2)2 (14c£2)3 2 ¢(1+c€?) + 2¢c arctan \/Eg 4c2(14c€2)2 ~— 8c2(1+cf2) 8c2\/c
9 ’ ’ & _ arctan /g €4 __ €& 3
1+c€? (1+ce2)? c c\/c 2 T 2c2(1+c€?) 2
&2 e 1 E\/1+C§2 1.1 . & 3+c€?  3argsinhy/cg
3 \/1+cg? (1+ce2)3 |2 c 20/ 18 sinh /¢ 2% S1gegr 2 Ve

Table 2. The values of the parameters that appear in -, for certain polytropic indices

n a An Bn ﬂ Cn Dn 51 Kl K2
510481 | L[ 1.1725107%] 1.9821 | 4.6184 10~ 1.110~% [3.3538 [ 0.2471 | 0
20512 [ £ [253321073]2.0043 | 8.3218 10~*| 2.56 10~2 | 4.3529 | 0.1421 | 0
3] 053 | 2] 46481073 [ 2.1992 | 5.5622 10~ "[ 2.745 1072 [ 6.8969 | 0.097 | 0
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For other values of n we will use the approx-
imate solution for (14) proposed by Liu (1995), i.e.
for0<n<5n#1:

+(1+a)1+ A,
Cug?L
(1+ D,&P)?
where the constants A,,, By, 3 are defined by the fol-

lowing relations:
4
) en

B = 6.47 — 7.0153, + 5.533% — 25.633, + 49.4233—

26.8833,
B 1 By = 1
T 1+m-52 T 1+m-3)2

and «, C,, D, are determined in each case such
as the relation (26) approximates the Lane-Emden
function with a maximum error < 1%. We will spec-
ify their values when we use them. Let us substitute
(26) in the general form of the solution (21) and use
the formula for integration by parts. So we find:

1
n

0n(€) = —a(l+ Bp&*) ™=

+ TE+ AT + (26)

B, =

nin—1)6 4o
(n—1)25 <4+5a

b1 (28)

(€)= —an fu(€, B ) + (Lt @) i (€ An) + &
Cn§25+1

(L+ Dag?P?
2(an +1)

- TFl(&Amn) -

20, 5,8+1

D31+ D,éh

2C,(B+2)
§6D2

in which we used the following notations:

20y,

f2(£7An;n)+ +TF1(£aann)

%FQ(E’ATL,”)

(B+2)C,
BD2

+ £

&@ﬂmm+m§+%3@m

n

f1(€7c7 ’I’L) = §2(1 + CEQ)ﬁan(é.vQ ’I’L) = §4(1 + C§2)m

Fa.08) = T (30)
Fi(&en) = [ Al emdg, Fagocon) =

— [ ale.comie (31)
B = [ 0 (32)

Therefore to write the function -, we have to
perform two indefinite integrals of binomial differen-
tial and one rational integral. The result of the in-
tegration of a binomial differential can be expressed

using elementary functions only if the conditions of
the Chebyshev theorem are fulfilled. This means re-
strictions on n, i.e. the polytropic index, so

q—1 p—2

n € {0,2, o where q,p € Z} (33)

Further we will restrict our discussion to the fol-
lowing values of the polytropic indices which are in
the former set and are also of astrophysical interest
n e {%, 2,3}. Let us evaluate the functions f;(¢, ¢, n)
and F;(&,¢,n) for ¢ € {1,2}. The results are listed
in table 1.

For F3(¢&, ¢, 3) we will use the following formu-
lae (see Gradshteyn and Ryzhik,1970), for the values
of the parameter § determined using (28) written as
a quotient of two prime integer numbers % and where

we use the following substitution x = c%ﬁ:

ks 1 x — cos 5t
/ 15 o% dxr = % Zarctan i)

S11

k
. onm(2v—1) 1 9 (2v— )
=7 =Y n(e? —2wcos " 41
sin ok 2~ n(x x cos )

2k
nr(2v —1)

2k

cos —— (34)

2k

where n < 2k, i.e. p+1 < g and ¢ is an odd number,
and:

"t -1 u 9
/1+x2k+1d‘”: e o

2v—1 2v—1
2 cos % + 1) cos %
k (2v—1)m
2 T — €os G
arctan
. 2v—1)m
T
. nm(2v —1) In |1+ z|
S Sl _qyntr 2 T
T T (35)

when n < 2k, ie. p+1<g—1, ¢qis an even num-
ber. Table 2. contains the values of the parameters
present in the general solution (29) computed using
(27), (28) or determined by Liu(1995).

So, all the entities from the relation (29) are
now determined. Except the intricate formulae (34)
and (35) all the other things could be easy computed.
We have evaluated ~2(§) using (29) and compared

the results with the numerical results. The maximum
error was 0.00404638. We have represented these two
solutions in Figure 1.
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Fig. 1. The poloidal magnetic field for the polytropic
the dots for the analytical ones.

A case treated separately by Liu (1995) was
the polytrope n = 1. For this case the approximate
solution for Lane-Emden equation is the following:

3 e p 2
01(8) = — ae*%(ﬁﬂ)%z (14 Oc)e_%
2
+ %523_% + Cl§251—1 (36)
where C1 = 127746 107, @ = 0.455 and f; =

2.71254 evaluated using (28). So, to find out the
~v1(§) we have to substitute (36) in (29). We get:

(€)= £26,(6) — § (~aFi(01,6) + (1+a)Fi(02,€)

Cn£2,8+2
208+ 2

where we used the following notations:

+%F2(oc2,£) + ) + K€% + K (37)

§

(09 = [ dae meg - [cleas

25 3 35 4 45

index n=2; the crosses are for numerical results and

4
3 4o 1
meg(ris) - m=g @

The integrals F;(c,&) with ¢ = 1,2 should be per-
formed and yield:

7552 -
Fi(e6) =52+ iﬁefk@
3 —652 —652
3 y/mert(y/)
S (39)

The first zero of the Lane-Emden equation of 15 or-
der, i.e. &, is 3.141593. So, for the constants K3
and Ko we will use the relations (27) and obtain
0.334021 and O respectively. This approximate so-
lution is represented in Figure 2., together with a

numerical solution. In this case the maximum error
is 0.0012780.
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Fig. 2. The poloidal magnetic field for the polytropic index n=1; the crosses are for numerical results and

the dots for the analytical ones.

5. CONCLUSION

The approximate solution for the Lane-Em-
den equation enables us to write the general solution
of (26) for certain polytropic indices. This is a very
easy way to obtain a good approximate distribution
of the poloidal magnetic field with the depth inside
the star. We focus our discussion on complete poly-
tropes, i.e. in whole star the polytropic index is con-
stant. This analytic solution could be used to con-
sider composite polytropes. So far, we referred only
to the magnetostatics. But, this result could also be
useful if we are interested in small oscillations of the
magnetic polytropes around the equilibrium.
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Opuzunasty HayuHy pao

Y O0BOM UJaHKy C€ IpOydYaBa DPaBHOTEKA
[OJIUTPOINA y MOJOUITHOM MAarHEeTHOM moJspy. Mar-
HETHO IOJbE Ce Haja3u Kao pememe jeaue Ojie-
pOBe jenHauUMHE 3a KOjy je Moryhie moburtu ommre
pememe. Omno 3asucu on Jleju-Emmenose ¢yH-
kmuje. OBIe ce KOPUCTU TPUOIMKHO AHAJIUTUUKO

pemene Jleju-EmneHoBe jennauwbe kKoje je mpe-
nnoxuo Jluy na Ou ce oHa Hamucalia €KCIJINI-
UTHO. 3a MOJUTPOICKE UHIEKCce n = 1,2 anpokrcu-
Maluja je Beoma moOpa, MaKCUMaJHa TPEIKa je

< 0.5%.



