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SUMMARY: In this article we study the equilibrium of polytropes in poloidal
magnetic field. The magnetic field is the solution of a nonhomogeneous Euler equa-
tion for which we are able to give the general solution. It depends on the Lane–
Emden function. We use the approximate analytic solution of the Lane–Emden
equation proposed by Liu, to write it explicitly. For the polytropic indices n = 1, 2
the approximation is very good, the maximum error is < 0.5%.

1. INTRODUCTION

The detection of the magnetic field at the stel-
lar surface (see Babcock, 1958) raised the question of
its role in the equilibrium of the star. Earlier, Chan-
drasekhar and Fermi (1953), using the virial theo-
rem, found the maximum value for the magnetic field
above which the equilibrium is lost. The measured
values were below it, so the stars are in equilibrium.
The problem of the magnetic field distribution in the
star gives rise to a complicated mathematical prob-
lem. An analytical solution of the problem could be
found only if we would make some supplementary
hypotheses. We shall presume, based on the pho-
tometric observations (Borra and Landstreet, 1980),
that at the stellar surface the magnetic field can be
approximated by a dipole with the center in the cen-
ter of the star and so the field has an axial symmetry.
We suppose that the field is weak. We also consider
that the star is a polytrope with a given polytropic
index n. In this case to obtain the distribution of the

magnetic field in the star we have to solve a singular
Sturm-Liouville problem (see Roxburgh, 1966). In
the particular case of the poloidal magnetic field (see
the decomposition proposed by Lüst and Schlüter,
1954), the problem can be easily solved, because it
yields a nonhomogeneous Euler equation. Its general
solution will depend on the Lane–Emden function.

The equilibrium of a polytrope in a magnetic
poloidal field was studied by Monaghan (1965). He
found the differential equation that provides the ma-
gnetic field, solved it numerically for different poly-
tropic indices and discussed the influence of the poly-
tropic index n on the distribution of the magnetic
field. Further, we will show that Monaghan’s dif-
ferential equation for the poloidal magnetic field is
equivalent to an Euler equation and write its general
solution. The Lane–Emden function present in this
general solution will be substituted by the approx-
imate analytic form proposed by Liu (1995), a fact
that permits us a comparison between this solution
and a numerical one.
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2. BASIC EQUATION

To describe the equilibrium in a poloidal mag-
netic field we will use the equation of the hydromag-
netic equilibrium, the Poisson equation, the Ampere
law, the magnetic monopole equation and the poly-
tropic relation, respectively:

∇P

ρ
= −∇φ +

�j × �H

cρ
, (1)

∇2φ = 4πGρ, (2)

curl �H =
4π

c
�j, (3)

div �H = 0, (4)

P = Kρ1+ 1
n , (5)

in which the notations are usual. Supposing that
the star has axial symmetry and using the spheri-
cal coordinates (r, θ, φ) with r = 0 in the center of
the star and θ = 0 the symmetry axis, we obtain
that ∂

∂φ = 0. Having in mind the representation of
the general solution of (4) (see Chandrasekhar, 1961)
and the simplifications due to the hypotheses of axial
symmetry and poloidal magnetic field we will obtain
that �H = (Hr, Hθ, 0), with :

Hr =
1

r2 sin θ

∂S

∂θ
, Hθ = − 1

r sin θ

∂S

∂r
(6)

Taking curl of equation (1) and using (3) we will
obtain :

curl

(
�H × curl �H

ρ

)
= 0, (7)

Written in spherical coordinates it provides:

∂

∂r

{
1

ρr sin θ

[
1

r sin θ

∂2S

∂r2
+

1
r3

∂

∂θ

(
1

sin θ

∂S

∂θ

)]

∂S

∂θ

}
− ∂

∂θ

{
1

ρr sin θ

∂S

∂r

[
1

r sin θ

∂2S

∂r2
+

1
r3

∂S

∂θ(
1

sin θ

∂S

∂θ

)]}
= 0 (8)

relation that will be used further to express the de-
pendence of the magnetic field on radius. We shall
assume, in the first approximation, that the magnetic
field is weak, so that its presence will not modify the
mass density distribution in the star. So, ρ = ρ0(r),
where ρ0 is known from the equilibrium of an unper-
turbed polytrope.

We will consider that the exterior magnetic
field is dipolar and in the interior it is expressed by:

S(r, θ) = A(r) sin2(θ). (9)

In this situation the equation (8) becomes:

A
d

dr

[
1

ρr2

(
2A

r2
− A′′

)]
= 0 (10)

which can be integrated and gives:

2A

r2
− A′′ = Dρr2 (11)

where D is an arbitrary constant of integration.
To facilitate the evaluation of the magnetic

field we introduce the following transformations (Ro-
xburgh,1966):

r = aξ, ρ0 = ρcθ
n
n , A = Dρca

4γn, (12)

a =
K(n + 1)ρ

1
n−1
c

4πG

in which we recognize the Emden variables (ξ, θn)
and introduce a new dimensionless function γn(ξ)
proportional to the magnetic field. This substitution
allows us to build the dimensionless form of (10).
Using (6), (9) and (12) in (11) we get the following
nonhomogeneous second order differential equation:

∂2γn

∂ξ2
− 2γn

ξ2
= −θn

nξ2, (13)

where θn is the Lane–Emden function of index n, i.e.
the solution of the Lane–Emden equation of order n:

1
ξ2

d

dξ

(
ξ2 dθn

dξ

)
= −θn

n, (14)

The boundary conditions for the equation (13) are :

γn(0) = γ′
n(0) = 0,

(
ξ
dγn

dξ
+ γn

)∣∣∣∣
ξ=ξ1

= 0 (15)

The first condition says that the magnetic field
must be finite in the center of the star and the second
in ξ = ξ1 (with ξ1 the polytropic radius, i.e. the first
zero of the Lane–Emden function) reflects that at
the surface of the star there is no discontinuity in
the magnetic field.

3. THE GENERAL SOLUTION OF THE
NONHOMOGENEOUS EQUATION

The equation (13) is a nonhomogeneous Euler
equation. The unknown is function γn(ξ) = −B∗

0 (ξ)
2

where B∗
0(ξ) is the unknown function from the equa-

tion (27) in the Monaghan’s (1965) paper. With the
transformation ξ = et it becomes an equation with
constant coefficients:

d2γ̃n

dt2
− dγ̃n

dt
− 2γ̃n = −θ̃n

n
e4t, (16)

where γ̃n(t) = γn(et), θ̃n(t) = θn(et). The funda-
mental system of solutions for (16) is:{

e−t, e2t
}

, (17)
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so the general solution is:

γ̃n(t) = c1(t)e−t + c2(t)e2t, (18)

where the functions c1(t) and c2(t) are determined
from the following conditions:

c′1(t)e
−t + c′2(t)e

2t = 0, (19)

−c′1(t)e
−t + 2c′2(t)e

2t = −θ̃n
n
(t)e4t

Solving the system (19) and substituting in
(18) we find that the general solution is:

γ̃n(t) = −1
3
e2t

∫
e2tθ̃n

n(t)dt +
1
3
e−t

∫
e5tθ̃n

n(t)dt

+ K1e
2t + K2e

−t (20)

where the constants K1 and K2, are determined us-
ing the boundary conditions (15).

Going back from the variable t to ξ we find
the following expression for γn(ξ) :

γn(ξ) = −1
3
ξ2

∫
ξθn

n(ξ)dξ +
1
3

1
ξ

∫
ξ4θn

n(ξ)dξ+

K1ξ
2 +

K2

ξ
. (21)

Replacing in the integrands from (21) θn
n(ξ) with the

left–hand member of the Lane–Emden equation and
using the formula for integration by parts we found
the following form for (21):

γn(ξ) = ξ2θn(ξ)− 2
ξ

∫
ξ2θn(ξ)dξ +K1ξ

2 +
K2

ξ
(22)

where the constants K1 and K2 are determined using
(25):

K1 = −ξ1

3
dθn(ξ1)

dξ
, K2 =

[
12
∫

ξ2θn(ξ)dξ

]∣∣∣∣
ξ=0

(23)
We note that (21) and (23) involve the Lane-Emden
function of index n. But as we know there are only
three cases (n ∈ {0, 1, 5}) in which its exact form
could be written (see Chandrasekhar, 1939). Further
we will use an approximate form of it to be able
to compare our results with the numerical results
obtained using a routine of Runge–Kutta type.

4. CERTAIN SOLUTIONS FOR THE NON-
HOMOGENEOUS EQUATION

If we substitute in (21) the exact solution of
the Lane–Emden equation for n = 0, 1 we get two ex-
act solutions for (13). For n = 0, i.e. incompressible
medium: θ(ξ) = 1 − 1

6ξ2 and we obtain the solution
found by Ferraro (1954):

γ0(ξ) = ξ2 − ξ4

10
(24)

For n = 1: θ(ξ) = sin(ξ)
ξ we get the solution found by

Monaghan (1965) multiplied by (−2) as we showed
before:

γ1(ξ) = ξ sin ξ + 2 cos ξ − 2 sin ξ

ξ
+

1
3
ξ2 (25)

Table 1. The expressions of the functions fi and Fi where i ∈ {1, 2} and n ∈ { 3
2 , 2, 3}

n f1(ξ, c, n) f2(ξ, c, n) F1(ξ, c, n) F2(ξ, c, n)
3
2

ξ2

(1+cξ2)2
ξ4

(1+cξ2)3 − 1
2

ξ
c(1+cξ2) + 1

2c
√

c
arctan

√
cξ ξ

4c2(1+cξ2)2 − 5ξ
8c2(1+cξ2)

3 arctan
√

cξ
8c2

√
c

2 ξ2

1+cξ2
ξ4

(1+cξ2)2
ξ
c − arctan

√
cξ

c
√

c
ξ
c2 + ξ

2c2(1+cξ2) − 3
2

3 ξ2√
1+cξ2

ξ4√
(1+cξ2)3

1
2

ξ
√

1+cξ2

c − 1
2

1
c
√

c
arg sinh

√
cξ ξ

2c2
3+cξ2√
1+cξ2

− 3
2

arg sinh
√

cξ
c2

√
c

Table 2. The values of the parameters that appear in γn for certain polytropic indices

n α An Bn β Cn Dn ξ1 K1 K2
3
2 0.481 1

12 1.1725 10−3 1.9821 4.6184 10−4 1.1 10−3 3.3538 0.2471 0
2 0.512 1

6 2.5332 10−3 2.0043 8.3218 10−4 2.56 10−2 4.3529 0.1421 0
3 0.53 1

3 4.648 10−3 2.1992 5.5622 10−4 2.745 10−2 6.8969 0.097 0
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For other values of n we will use the approx-
imate solution for (14) proposed by Liu (1995), i.e.
for 0 ≤ n ≤ 5, n �= 1:

θn(ξ) = −α(1 + Bnξ2)
1

1−n + (1 + α)(1 + Anξ2)
1

1−n

+
α

6
ξ2(1 + Anξ2)

n
1−n +

Cnξ2β−1

(1 + Dnξβ)2
(26)

where the constants An, Bn, β are defined by the fol-
lowing relations:

An =
n − 1

6
, Bn =

n(n − 1)
(n − 1)2

6
5

(
4α

4 + 5α

)4

(27)

β = 6.47 − 7.01β1 + 5.53β2
1 − 25.63β2 + 49.42β2

2−
26.88β3

2 ,

β1 =
1

1 + (n − 5)2
, β2 =

1
1 + (n − 3)2

(28)

and α, Cn, Dn are determined in each case such
as the relation (26) approximates the Lane–Emden
function with a maximum error < 1%. We will spec-
ify their values when we use them. Let us substitute
(26) in the general form of the solution (21) and use
the formula for integration by parts. So we find:

γn(ξ) = −αnf1(ξ, Bn, n) + (1 + αn)f1(ξ, An, n) +
α

6

f2(ξ, An, n) +
Cnξ2β+1

(1 + Dnξβ)2
+

2αn

ξ
F1(ξ, Bn, n)

− 2(αn + 1)
ξ

F1(ξ, An, n) − αn

3ξ
F2(ξ, An, n)

+
2Cn

Dnβ

ξβ+1

1 + Dnξβ
− (β + 2)Cn

βD2
n

ξ

+
2Cn(β + 2)

ξβD2
n

F3(ξ, Dn, β) + K1ξ
2 +

K2

ξ
(29)

in which we used the following notations:

f1(ξ, c, n) = ξ2(1 + cξ2)
1

1−n , f2(ξ, c, n) = ξ4(1 + cξ2)
n

1−n ,

f3(ξ, c, β) =
ξ

1 + cξβ
, (30)

F1(ξ, c, n) =
∫

f1(ξ, c, n)dξ, F2(ξ, c, n) =

=
∫

f2(ξ, c, n)dξ, (31)

F3(ξ, c, β) =
∫

ξdξ

1 + cξβ
(32)

Therefore to write the function γn we have to
perform two indefinite integrals of binomial differen-
tial and one rational integral. The result of the in-
tegration of a binomial differential can be expressed

using elementary functions only if the conditions of
the Chebyshev theorem are fulfilled. This means re-
strictions on n, i.e. the polytropic index, so

n ∈ {0, 2,
q − 1

q
,
p − 2

p
, where q, p ∈ Z} (33)

Further we will restrict our discussion to the fol-
lowing values of the polytropic indices which are in
the former set and are also of astrophysical interest
n ∈ { 3

2 , 2, 3}. Let us evaluate the functions fi(ξ, c, n)
and Fi(ξ, c, n) for i ∈ {1, 2}. The results are listed
in table 1.

For F3(ξ, c, β) we will use the following formu-
lae (see Gradshteyn and Ryzhik,1970), for the values
of the parameter β determined using (28) written as
a quotient of two prime integer numbers p

q and where

we use the following substitution x = c
1
p ξ

1
q :

∫
xn−1

1 + x2k
dx =

1
k

k∑
ν=1

arctan
x − cos (2ν−1)π

2k

sin (2ν−1)π
2k

sin
nπ(2ν − 1)

2k
− 1

2k

k∑
ν=1

ln (x2 − 2x cos
(2ν − 1)π

2k
+ 1)

cos
nπ(2ν − 1)

2k
(34)

where n < 2k, i.e. p+1 < q and q is an odd number,
and:

∫
xn−1

1 + x2k+1
dx =

−1
2k + 1

k∑
ν=1

ln(x2−

2x cos
(2ν − 1)π

2k
+ 1) cos

nπ(2ν − 1)
2k + 1

+

2
2k + 1

k∑
ν=1

arctan
x − cos (2ν−1)π

2k+1

sin (2ν−1)π
2k+1

sin
nπ(2ν − 1)

2k + 1
+ (−1)n+1 ln |1 + x|

2k + 1
(35)

when n ≤ 2k, i.e. p + 1 ≤ q − 1, q is an even num-
ber. Table 2. contains the values of the parameters
present in the general solution (29) computed using
(27), (28) or determined by Liu(1995).

So, all the entities from the relation (29) are
now determined. Except the intricate formulae (34)
and (35) all the other things could be easy computed.
We have evaluated γ2(ξ) using (29) and compared
the results with the numerical results. The maximum
error was 0.00404638. We have represented these two
solutions in Figure 1.
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Fig. 1. The poloidal magnetic field for the polytropic index n=2; the crosses are for numerical results and
the dots for the analytical ones.

A case treated separately by Liu (1995) was
the polytrope n = 1. For this case the approximate
solution for Lane–Emden equation is the following:

θ1(ξ) = − αe−
3
10 ( 4α

4+5α )4
ξ2

+ (1 + α)e−
ξ2

6

+
α

6
ξ2e−

ξ2

6 + C1ξ
2β1−1 (36)

where C1 = 1.27746 10−4, α = 0.455 and β1 =
2.71254 evaluated using (28). So, to find out the
γ1(ξ) we have to substitute (36) in (29). We get:

γ1(ξ) = ξ2θ1(ξ) − 2
ξ

(−αF1(α1, ξ) + (1 + α)F1(α2, ξ)

+
α

6
F2(α2, ξ) +

Cnξ2β+2

2β + 2

)
+ K1ξ

2 +
K2

ξ
(37)

where we used the following notations:

F1(c, ξ) =
∫

ξ2e−cξ2
dξ, F2(c, ξ) =

∫
ξ4e−cξ2

dξ,

α1 =
3
10

(
4α

4 + 5α

)4

, α2 =
1
6

(38)

The integrals Fi(c, ξ) with i = 1, 2 should be per-
formed and yield:

F1(c, ξ) = −1
2

ξe−cξ2

c
+

1
4

√
πerf(

√
cξ)

c
√

c

F2(c, ξ) = −1
2

x3e−cξ2

c
− 3

4
ξe−cξ2

c2
+

3
8

√
πerf(

√
cξ)

c2
√

c
(39)

The first zero of the Lane–Emden equation of 1st or-
der, i.e. ξ1, is 3.141593. So, for the constants K1

and K2 we will use the relations (27) and obtain
0.334021 and 0 respectively. This approximate so-
lution is represented in Figure 2., together with a
numerical solution. In this case the maximum error
is 0.0012780.

5



C. BLAGA

Fig. 2. The poloidal magnetic field for the polytropic index n=1; the crosses are for numerical results and
the dots for the analytical ones.

5. CONCLUSION

The approximate solution for the Lane–Em-
den equation enables us to write the general solution
of (26) for certain polytropic indices. This is a very
easy way to obtain a good approximate distribution
of the poloidal magnetic field with the depth inside
the star. We focus our discussion on complete poly-
tropes, i.e. in whole star the polytropic index is con-
stant. This analytic solution could be used to con-
sider composite polytropes. So far, we referred only
to the magnetostatics. But, this result could also be
useful if we are interested in small oscillations of the
magnetic polytropes around the equilibrium.
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RAVNOTE�A POLITROPA U POLOIDNIM MAGNETNIM POǈIMA
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UDK 524.3–1/–16
Originalni nauqni rad

U ovom qlanku se prouqava ravnote�a
politropa u poloidnom magnetnom poǉu. Mag-
netno poǉe se nalazi kao rexeǌe jedne Ojle-
rove jednaqine za koju je mogu�e dobiti opxte
rexeǌe. Ono zavisi od Lejn-Emdenove fun-
kcije. Ovde se koristi pribli�no analitiqko

rexeǌe Lejn-Emdenove jednaqine koje je pre-
dlo�io Liu da bi se ona napisala eksplic-
itno. Za politropske indekse n = 1, 2 aproksi-
macija je veoma dobra, maksimalna grexka je
< 0.5%.
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