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SUMMARY: In the framework of the axial symmetry and spheroidal geometry
one looks for the interpretation of the de Vaucouleurs empirical formulae (describing
the coordinate dependence of the surface density) for the discs and halos of spiral
galaxies (also for the main bodies of elliptical galaxies). Using the general formula

of the form p(q) = A[qb(a + q)c]fl (p is volume density), where A, a, b and ¢ are

constants (the exponents b and c are positive real numbers), one obtains satisfactory
approximations for the solutions emanating from the empirical formulae describing

the surface density.

1. INTRODUCTION

Gerard de Vaucouleurs, the distinguished
American astronomer of French origin who recently
passed away, studied intensively the images of exter-
nal galaxies. Among others he examined the light
distribution over the discs and halos of spiral galax-
ies and the "main bodies” of elliptical galaxies. The
case of the exponential empirical laws describing the
surface- brightness distribution in the main plane of
the discs and in the tangential one, when the halos
and elliptical galaxies are concerned, is well known.

One of the two exponential empirical laws -
that concerning the "round” systems (halos of spiral
galaxies and main bodies of ellipticals) - was dis-
covered almost fifty years ago through the studying
of elliptical galaxies (de Vaucouleurs, 1948). This
formula was subjected to further tests by de Vau-
couleurs himself, (e. g. de Vaucouleurs, 1977 and
the references therein). As for the other exponential
empirical law - that concerning the discs of S galaxies
- though its form is due to de Vaucouleurs, indeed, (e.
g. de Vaucouleurs, 1958), its extension and moderne
application are in fact due to Freeman (1970). This

law has in the meantime become generally accepted
as a correct representation of the real situation (e.
g. Binney and Tremaine, 1987 - p. 21). However,
these two authors ascribe the empirical exponential
law concerning the discs also to de Vaucouleurs by
referring to the well-known Milky-Way model by de
Vaucouleurs and Pence (1978).

The other exponential empirical law (concern-
ing the round systems) has been also frequently as-
sumed in the studies of various astronomers. How-
ever, though very simple in their mathematical ex-
pression, these two empirical laws are, nevertheless,
not without difficulties, for example their transfor-
mation aimed at obtaining the corresponding formu-
lae for the space density. In both cases there is no
analytical solution. The experience of the recent 10-
15 years in studying similar problems (Jaffe, 1983;
Hernquist, 1990; Tremaine et al., 1994) indicates the
way which should be followed.

In the present paper a further generalisation
of the family proposed by Tremaine et al. (1994)
is carried out. In this manner one can find analyt-
ical formulae fitting the numerical solutions for the
spatial density which result from the de Vaucouleurs
formulae.
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2. THEORETICAL BASE

The empirical formula describing the mass dis-
tributions within the discs, though later historically,
will be written here before the other one due to its
simplicity. It reads

o(R) =o(0)exp(—R/Rg) , Rq=const (1)

where o is the surface density, whereas R is the dis-
tance to the rotation axis or distance to the centre
in the main plane (plane of symmetry).

In the case of a spheroidal system, where ¢ is
the semiaxis major of the equidensit spheroid and
the x axis runs along the line of sight, we shall have

o(§) = o(0)exp[—(§/Rn)"/*], Rn =const, (2)

0=+ (/]2 q= (" +3)2.

Formula (2) is the de Vaucouleurs formula applied
to the spheroidal systems (halos of spiral galaxies
and main bodies of ellipticals); € is the axial ratio, a
constant as a matter of course.

Both formulae integrated to infinity, as easily
seen, yield finite total masses.

In the present paper the spheroidal geometry
is assumed also for the discs, however in this case
the axial ratio is very small (e &~ 0). By introducing
the reduced spatial density p*, p* = ep the cases
of both (1) and (2) can be treated mathematically

oo
1 do

@(RQ — ) V2R . (3)

p(q) =—m
q
As easily seen, this case treats the projecting to the
main plane, but the formula has the same form also
for a plane perpendicular to the main one (formula
(2) in the present paper) which is an advantage of
introducing the reduced density.

It is well known that equation (3) for the cases
of (1) and (2) admits no analytical solution. For
example, Young (1976) published the tables corre-
sponding to formula (2) and a plot of the obtained
space density can be found in a paper of de Vau-
couleurs, himself, (1977).

3. THE RESULTS

In the present paper equation (3) for both
cases ((1) and (2)) is solved numerically. Among
others, in both cases there are singularities at the
centre. These singularities will be considered in more
details below. The next step contains an attempt to
find a formula fitting reasonably well the numerical
solutions.

Recently Tremaine et al. (1994) considered
a case of a model family. Their general formula is
rewritten here in application to the spheroidal ge-
ometry, that is

in the same way. The integral equation solving the 1
problem of finding the corresponding spatial density p(a) ¢(a+q)r (4)
from the given surface one is
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Fig. 1. Agreement between numerical solution corresponding to (1) (circles) and formula (4) (solid line) -
parameters: A = 333.867 (units see the text), a = 2.8Rg4, b = 0.21, ¢ = 5.05.
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Fig. 2. Agreement between numerical solution corresponding to (2) (circles) and formula (4) (solid line) -
parameters: A = 938.093 (units see the text), a = 28.0Ry,, b =10.9, ¢ = 2.6.

a, b and c are, of course, constants. They fulfil the
following conditions: 0 < b < 1,¢>0,b+c > 3.
The condition b > 0 enables to obtain a singularity
at the centre (required by the numerical solutions as
said above), the one b < 1 prevents to obtain anal-
ogous singularities in the resulting surface densities;
as clearly seen formulae (1) and (2) contain no such
singularities. Finally b 4+ ¢ should be greater than
3 in order to have a finite total mass. These con-
ditions are somewhat different from those from the
paper of Tremaine et al. (1994). Namely, they in-
clude the marginal case (b = 0) with no singularity
and require the sum b 4 ¢ to be always four. The
latter circumstance is due to the fact that their for-
mula was obtained by generalising the ones proposed

earlier by Jaffe (1983) (b = 2) and Hernquist (1990)
(b =1). Thus Tremaine et al. (1994) do not require
for b to be less than 1.

Therefore, formula (4) is assumed as a fit-
ting one. What kind of fits is here obtained can be
seen from Figures. Fig. 1 presents the case of the
discs. The curve representing the space-density de-
pendence is obtained with following parameters A =
333.867, a = 2.8R4, b = 0.21, ¢ = 5.05. The unit
for the constant A corresponds to the density unit
of 0(0)/(mRq). Fig. 2 presents the case of the halos
(or main bodies of ellipticals). This time the val-
ues of the parameters are: A = 938.093, a = 28.0Ry,,
b = 0.9, ¢ = 2.6; the unit for A, just as in the previous
case, corresponds to a density unit of 0(0)/(7Ry,). As
a general conclusion it may be said that the agree-
ment in the far periphery (¢ >> a), in both cases,
is less satisfactory. However, these parts of the sys-
tem are unimportant since they contain only a tiny
fraction of the total mass.

4. DISCUSSION AND CONCLUSIONS

The fits yield satisfactory agreements.

However, when speaking about the discs, one
should say that their geometry need not be sphe-
roidal, or more precisely, in stellar statistics their
equidensit surfaces have not been always assumed to
be spheroidal. In this connection there are many ex-
amples (e. g. Freeman, 1992). This circumstance
is important. Namely, the spheroidal geometry does
implicate the singularity in the space density which
corresponds to (1). It is very easy to demonstrate
that, for example, for the case of conic equidensit
surfaces one obtains a surface-density function pro-
jected to the main plane identical to (1) assuming
a space-density one of the form exp[—a(R + |z|/¢€)]
where both « and € are constants. As clearly seen,
this function has no singularity at the centre.

Therefore, we have the following question. Are
spheroidal equidensit surfaces realistic indeed for the
S-galaxies discs? This question is difficult to be an-
swered because the concept of regular (mathemat-
ical) equidensit surfaces itself is, certainly, an ap-
proximation only. On the other hand, the spheroidal
equidensit surfaces have been used, not once, for the
purpose of describing such discs. The example of
Schmidt’s (1956) model for our own Galaxy is very
well known.

Furthermore, in his own paper Hernquist
(1990) claims that the formula proposed there yields
a good approximation in the volume-density case for
(2). However, the fact that his value of b (see (4))
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is 1, exactly, gives rise, as already said above, to a
singularity at R = 0 in the resulting surface density.
Besides, the decrease of ¢=* type in the outer parts
predicted by his formula (again b+ c is 4 there) seems
too strong in comparison with the numerical solution
corresponding to (2). Therefore, one may conclude
that the values for b and ¢ used by him should be
both corrected downwards in order to achieve a bet-
ter agreement with the numerical solution. This is
exactly what is obtained here. On the other hand,
some empirical laws concerning the spatial distribu-
tion within the halos of (spiral) galaxies do suggest
that their space density in the outer parts decreases
following ¢—3-° rather than ¢=* (e. g. Harris, 1976;
Zinn, 1985).
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JEIHO TYMAUYEILE ITE BORYJIEPOBUX EMIIMPNJCKNX $0OPMYJIA

C. Hunxkosuh

Acmponomcra oncepeamopuja, Boazunwa 7, 11000 Beoepad, Jyzocaasuja

YIIK 524.7-82/856
Opuzurasty HayuHy pao

Tymaueme me BokyimepoBUx eMIupujCKUx
dopmyna (Koje ommcyjy 3aBUCHOCT MOBPIIUHCKE
CyCTHHE OJ KOODAVHATA) 38 MUCKOBE U XAJOE CIU-
panHux ranakcuja (Takohe 3a riaBHA Tesa eIUI-
TUYHUX TajlakCuja) ce Tpasku y OKBUDPY OOpTHE
cumerpuje u chepounre reomerpuje. RKopucrehn
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ommry popuyy o6mka p(q) = Alg*(a+q)9 " (p
je 3anpeMuHCKa TycTuHa), vae ¢y A, a, b u ¢ Kon-
cranTe (M3JIOKUONM b U ¢ Cy NO3UTUBHU DEAJHU
OpojeBn), nobujajy ce 3amoBobasajyhie anpokcu-
Mallje 3a pelema Koja TPOUCTUUY U3 eMIUPU-
jCEKuX popmyIia KOje OMUCYjy MOBPIIMHCKY I'yCTU-
HY.



