东亚季风 95~56 ka BP期间D/O事件年代的精确 测定:以中国神农架山宝洞石笋为例^{*}

夏志锋" 孔兴功"** 汪永进" 姜修洋" 程 海®

(① 南京师范大学地理科学学院,南京 210097; ② Department of Geology and Geophysics, University of Minnesota, MN 55455, USA)

摘要 据中国湖北神农架山宝洞内两根石笋的 23 个 U/Th 年龄和 532 个 δ^{18} O 测试数据, 建立 了末次冰期 95~56 ka BP 时段平均分辨率为 80 a 的石笋 δ^{18} O 时间序列. 该记录可与南京葫芦洞 δ^{18} O 记录作良好拼接,从而完整地揭示 95 ka BP 以来东亚夏季风环流千年尺度气候变化特征, 其变化趋势与 65°N 太阳辐射曲线类似. 与格陵兰冰芯 δ^{18} O 记录的 Dansgaard/Oeschger (D/O)1-22 事件对比表明,东亚夏季风千年尺度气候振荡与高北纬地区海-气快速重组存在遥相关效应. 石 笋记录对 D/O 事件的精确标定有可能进一步校正格陵兰冰芯时标. 研究时段石笋记录的 D/O 事 件与格陵兰 North GRIP 和 GISP2 冰芯时标存在不同程度的差别,其中 D/O19-20 两个事件的年龄 偏差远超出铀系定年误差(±0.6ka). D/O19-20 晚于 North GRIP 时标 1~2 ka, 而早于 GISP2 时标 3~4 ka. 与南半球巴西石笋 δ^{18} O 记录对比表明,南北半球降水的 D/O 事件存在反相位关系,支持千年 尺度海-气耦合的跷跷板("See-saw")模式.

关键词 末次冰期 神农架 石笋 格陵兰冰芯 D/O 事件年代

首先在格陵兰冰芯δ¹⁸O记录中发现的末次冰期 千年尺度的D/O事件¹¹¹是古气候研究的热点问题之一, 随后被证实具有全球意义^[2].格陵兰冰芯由于年龄模 式的不同对D/O事件时标的确定也不一致,这就制约 了D/O事件成因机制的频谱分析.Shackleton等^[3]利用 石笋时标^[4-7]对格陵兰冰芯 40~75 ka BP时段进行了 校正,获得了SFCP2004 时标,藉此可联系海洋沉积 记录的D/O事件、大气Δ¹⁴C记录以及南极冰芯气温记 录. Clemens^[8]根据葫芦洞的δ¹⁸O记录^[4]来校正冰芯 GISP2^[9]关于D/O事件的时标,得出的频谱结构能够 很好地与GRIP(ss09sea 时标^[10]和SFCP时标^[3])的频 谱结构相对比. 由此认为GISP2 δ¹⁸O记录的"1500 年"周期^[11]可能是冰芯年龄模式所造成的假象,千年 尺度的周期可能由百年尺度的太阳活动引起,对D/O

收稿日期: 2005-10-31; 接受日期: 2006-06-07

^{*} 全国优秀博士学位论文作者专项资金(批准号: 200227)和国家杰出青年科学基金(批准号: 40225007)资助

^{**} 联系人, E-mail: kongxinggong@njnu.edu.cn

事件的成因机制提出了新的理解.因此,对更老D/O 事件年龄的精确标定,有助于深入理解末次冰期D/O 事件的动力机制.

末次冰期D/O事件时标的精确标定也有助于南 北半球气候记录对比. Bender等^[12]提取冰芯残存气体 中的O₂,指出D/O事件在南北半球上的联系. Blunier 等^[13,14]通过两极冰芯中甲烷记录证实两极D/O事件 存在气温的"See-saw"^[15]现象,解释了南北半球许多 海洋和陆地气候记录特征 [15~19] 然而, 两极D/O事件 的"See-saw"现象不能在频谱分析中得出^[20].另外. 气泡与周围冰芯之间的相对年龄存在不确定性 [21] 故两极气温的"See-saw"现象需要进一步证实,在高 精度U/Th绝对年龄基础上, Wang等^[22]对巴西东北部 热带半干旱地区的石笋和泉华分析表明,过去 210 ka 记录中的湿润期(即石笋和泉华生长期)一一对应于亚 洲季风的减弱期^[4]、格陵兰冰芯温度记录中的寒冷 期^[23]、北大西洋深海沉积的H事件^[24]和Cariaco海盆 记录中的径流减少期^[25].然而,这种石笋和泉华的 沉积/间断交互记录限制了南北半球古气候记录的连 续对比研究.

本文通过神农架高海拔洞穴石笋ð⁴⁸O的研究, 在高精度U/Th年龄基础上重建了东亚夏季风千年尺 度气候变率.东亚季风区具有代表性的洞穴石笋研 究表明,东亚季风气候和格陵兰冰芯气候记录在千 年尺度气候振荡如YD事件和末次冰期晚期的D/O事 件上具有等时性^[4,26],高精度年龄控制下的石笋ð⁴⁸O 气候记录可以用来校正冰芯D/O事件时标.本文在石 笋记录和冰芯记录具有可比性的基础上,试图提供 95~56 ka BP时段D/O事件的精确时标.进一步在同 一测年手段基础上,通过D/O事件时标的精确标定, 对比了南北半球连续的石笋古气候记录,尝试检验 南北两极气候对比所揭示的气温的"See-saw"模式.

1 研究材料和方法

研究材料来自湖北神农架山宝洞(110°26'E, 31°40'N;海拔 1902 m)的两根石笋(编号: SB22 和 SB25). 洞内实测温度约 9℃(2003 年 10 月测),相对 湿度达 95%. 从地形局势上看,本地区能阻挡北来冷空气的侵入,且有利于东南季风的深入.所处地区属北亚热带季风区,年降水量为 1500~2000 mm,季节分配上夏多冬少、春秋介于其间,常年盛行东南风, 具有典型的东亚季风气候特征^[27].

本文主要研究SB22 距顶 0~380 mm层段和SB25 距顶 17~192 mm层段. 将石笋沿生长中心切开并抛 光,在抛光面上,用直径为 0.9 mm的钻头钻取U/Th 测年样品,在美国明尼苏达大学同位素实验室测试, 分析仪器为ICP-MS,方法参照Shen等^[28],年龄误差 (±2*o*)大部分优于 0.8%.用直径为 0.3 mm的钻头沿 石笋生长中心轴钻取同位素测试样品,平均每1毫米 取1个样,采用碳酸盐自动进样装置与FinniganMAT-253 型质谱仪联机测试,每 9 个样品加测一个标准样 品(NBS-19),结果以PDB标准¹⁾给出,分析误差(±2*o*) 优于 0.06‰,由南京师范大学地理科学学院同位素实 验室测试.

2 结果

2.1 年代模式的建立

SB22和SB25各测试了17个和6个U/Th年代(见表1),分别覆盖了95~56.6和92.6~78.1 ka BP 时段. 年龄控制点内,根据对应δ⁴⁸O 测试点的深度进行线 性内插,以外则适当线性外推.这样SB22 记录推至 56.1 ka BP,而SB25记录则扩展至95.1 ka BP,由此 分别建立了SB22和SB25的δ⁴⁸O时间序列.年龄误 差最大为0.9 ka,最小为0.4 ka.在56~70 ka BP 时段, 年龄误差为0.4~0.6 ka; 70~77 ka BP 时段,误差为 0.4~0.7 ka; 77~95 ka BP 时段,误差为0.5~0.9 ka. SB22在70~59.9和84.4~78.8 ka BP 时段生长速率相 当缓慢,但可以由SB25的记录来补充,这样山宝洞 两根石笋δ¹⁸O记录就能完整地重建神农架地区 95~56 ka BP 时段的气候信息.

2.2 石笋的δ¹⁸O数据

SB22 和 SB25 分别测试了 373 个和 159 个 δ^{18} O 数据,相应的分辨率平均为 104 和 107 a. SB22 和

¹⁾ $\delta^{18}O = [({}^{18}O/{}^{16}O)_{\text{sample}}/({}^{18}O/{}^{16}O)_{\text{PDB}}-1] \times 1000\%$

中国科学 D 辑 地球科学

表1 山宝洞 SB22, SB25 石笋 U, Th 同位素组成及 230 Th 年龄 a)

样品号	深度	²³⁸ U	²³² Th	²³⁰ Th/ ²³² Th	δ^{234} U	δ^{234} U	230Th/238U	年龄/ka BP	年龄/ka BP
	/mm	$(10^{-9}/g \cdot g^{-1})$	$(10^{-12}/g \cdot g^{-1})$	$(10^{-6}/g \cdot g^{-1})$	(测量值)	(初始值)	(活度比)	(未校正年龄)	(校正年龄)
SB22-16	16	439.62	327.49	20114.79	1153.13	1353.34	0.91	56.66 ± 0.48	56.65 ± 0.48
SB22-1	20	428.55	1858.30	3801.77	1347.59	1583.35	1.00	57.09±0.39	57.05±0.39
SB22-34	34	603.99	656.96	13337.59	1067.02	1254.77	0.88	57.36±0.41	57.35±0.41
SB22-77	77	293.97	785.69	6660.69	1434.54	1699.39	1.08	59.97±0.64	59.95±0.64
SB22-107	107	435.44	244.96	30524.12	1093.69	1333.06	1.04	70.03±0.60	70.03±0.60
SB22-146	146	413.40	553.98	12793.01	1059.65	1296.84	1.04	71.48±0.39	71.47±0.39
SB22-172	173	550.91	482.89	19697.97	1047.41	1286.53	1.05	72.77±0.38	72.76±0.38
SB22-2	217	612.77	773.71	13688.15	1010.87	1248.54	1.05	74.73±0.55	74.72±0.55
SB22-237	237	460.18	412.15	20159.55	1050.55	1306.37	1.09	77.12±0.74	77.11±0.74
SB22-258	257	522.75	73.37	122198.08	923.22	1153.58	1.04	78.82±0.79	78.82 ± 0.79
SB22-261	260	504.68	101.63	95634.70	1048.99	1331.57	1.17	84.40±0.71	$84.40{\pm}0.71$
SB22-308	306	734.84	1628.05	8455.58	973.67	1240.81	1.13	85.81±0.72	85.78±0.72
SB22-311	314	448.50	941.09	9311.37	1018.35	1306.14	1.18	88.09 ± 0.48	88.06 ± 0.48
SB22-336	341	523.11	452.48	22468.70	960.72	1243.68	1.18	91.35±0.82	91.34±0.82
SB22-356	356	525.31	765.21	13845.04	1017.09	1320.12	1.22	92.29±0.51	92.27±0.51
SB22-366	366	540.61	293.97	36602.49	967.64	1262.29	1.21	94.06±0.61	94.05±0.61
SB22-380	381	501.48	231.73	42559.96	933.59	1221.00	1.19	94.97±0.78	94.96±0.78
SB25-16	17	393.78	451.36	14620.87	893.22	1113.82	1.02	78.11 ± 0.88	78.09 ± 0.88
SB25-48	48	639.07	230.77	45033.43	822.73	1029.05	0.98	79.18±0.46	79.17±0.46
SB25-88	92	472.13	105.70	75601.39	834.75	1055.16	1.03	82.91 ± 0.48	82.91±0.48
SB25-152	155	400.47	1004.17	7499.98	962.26	1230.50	1.14	87.04 ± 0.58	87.00 ± 0.58
SB25-5	168	363.20	1009.00	7265.00	1043.10	1347.00	1.22	90.50±0.60	90.50±0.60
SB25-177	177	438.90	1039.00	8273.00	957.30	1243.60	1.19	92.61±0.54	92.58±0.54

a) λ₂₃₀=9.1599×10⁻⁶ y⁻¹; λ₂₃₄=2.8263×10⁻⁶ y⁻¹; λ₂₃₈=1.55125×10⁻¹⁰ y⁻¹;²³⁴U=([²³⁴U/²³⁸U] _{新度比}-1)×1000; ²³⁴U _{初始值} 是根据 ²³⁰Th 年龄获得,即 ²³⁴U _{初始值}=²³⁴U _{潮量位}×e^{234×T}; 校正 ²³⁰Th 年龄假设初始的 ²³⁰Th/²³²Th 原子比为(4.4±2.2)×10⁻⁶

SB25 合成的δ¹⁸O记录(下简称SB记录)显示了较大的 变幅(4.3‰),δ¹⁸O值在-11.15‰~-6.559‰范围内波动, 相邻峰谷变幅达 2.4‰~3.4‰. 从图 1 可看出石笋 SB22 和SB25 的δ¹⁸O记录在波形变幅上总体一致,唯 有92~87 ka BP时段SB25 记录比SB22 偏老0.7~1.3 ka. SB记录平均分辨率达 80 年,与葫芦洞δ¹⁸O记录对比 发现,葫芦洞记录中千年尺度夏季风降水的D/O16 和 D/O19 事件与SB记录中对应的同位素事件在起始时 间及波形振荡上相一致,这说明两地记录能良好地 拼接在一起.研究表明^[26],葫芦洞记录与董哥洞记 录在 16~10 ka BP时段具有良好的一致性,两地降水 的同位素组成具有相同的变化历史,石笋δ¹⁸O主要 反映了夏季风降水的变化. 葫芦洞、董哥洞和山宝洞 三地石笋δ¹⁸O记录具有较强的重现性,共同受亚洲 季风环流系统的影响,反映夏季风降水变化. 这与以 往洞穴石笋研究结论一致^[4,26],即夏季风越强盛,则 δ¹⁸O越偏负,反之则越偏正. 然而,由于海拔高度和 海陆位置(地处中国中部)的影响^[29],SB记录整体负偏 葫芦洞记录约 1.5‰.

参照格陵兰冰芯记录D/O事件¹¹起始时间、持续 长短及振荡变幅,在图 1 中标出了相应记录的D/O事 件(D/O16-22).其中D/O18 在山宝洞记录中由于分辨 率低而没有体现.对于D/O22,SB22 记录有 3 个U/Th 年龄控制,记录的时间分辨率较高;而SB25 的记录 仅有一个U/Th年龄控制,记录的分辨率低(图 1).相 对而言,SB22 较可靠地记录了D/O22.从图 1 还可以 看出,葫芦洞和山宝洞合成的约 90 ka长度记录更类 似于 65°N七月中太阳辐射^[30]变化曲线,说明东亚季 风气候变化趋势直接受太阳辐射变化的控制.然而, 叠加其上的千年尺度夏季风降水变化可能与北大西

图 1 神农架石笋 &⁸O 记录、葫芦洞记录和 65°N 七月中太阳辐射对比图 图中曲线分别为SB22 记录(深色点线图)、SB25 记录(浅色点线图)、葫芦洞石笋记录(浅色折线图)^[4]、65°N七月中太阳辐射曲线(深色折线图)^[30]。 误差棒自上而下分别为SB22 和SB25 记录的测年误差(±2*o*).图中数字指示了D/O事件^[1]

洋冰漂碎屑事件等因素有关^[4].

3 讨论

3.1 D/O 事件的 U/Th 年龄

格陵兰冰芯完整地记录了末次冰期 24 个D/O事件. 然而由于冰芯计年方法的不同,不同冰芯关于 D/O事件时标的差异往往超过单一D/O事件所持续的 时间^[31].目前可采用U/Th定年的石笋记录来校正冰 芯D/O事件年龄^[3].中国^[4]、法国^[31]、奥地利^[5]以 及也门^[6,7]的洞穴记录都对D/O事件年代进行了相对 精确的标定. 然而,对老于 70 ka BP的D/O事件仍需 石笋时标加以校正.

SB记录的D/O22 的年龄与冰芯North GRIP^[32]和GISP2 记录在定年误差内相一致. D/O21 则在波形、记录转换和持续时间上与冰芯记录存在较大的差别,但可以确定North GRIP的时标偏老,而GISP2 偏年轻.相对而言,D/O19-20 在波形振荡、记录转换和持续时间上与冰芯记录存在可比性,可以用来校正冰芯时标.D/O19-20 在SB记录共有 4 个U/Th年龄控制,平均误差为±0.5 ka,所跨年代分别为(71.7±0.4)~(70.2±0.6)和(76.3±0.6)~(73±0.4) ka BP(误差据相邻年龄控制点的误差).与格陵兰冰芯North GRIP和GISP2 记录对比表明,SB记录的D/O19-20 的时标介于两者之间.SB

记录中D/O19 的起始年代晚于North GRIP约 1.3 ka, 早于GISP2 约 3~4 ka; D/O20 的起始年代晚于North GRIP约 1~2 ka, 早于GISP2 约 3~3.5 ka. SB记录和格 陵兰冰芯记录中D/O19-20 起始年代的差异超过了 D/O事件U/Th年龄误差,但仍在冰芯时标的年龄误差 范围之内^[33]. 然而, SB记录和冰芯记录在D/O事件的 波形方面还存在一定的差异,冰芯记录的D/O事件是 一个快速增温和缓慢降温的过程,而SB记录的D/O 事件是一个缓慢变湿、长时间湿润和随后迅速变干的 气候过程;这种差异同样体现在YD事件转换过程中 ^[4],反映了极地气温与亚洲季风强度对快速气候事件 的响应方式不同.

Toba火山喷发事件是全球气候地层对比的重要参照标志(图 2). Zielinski等^[34,35]认为格陵兰GISP2 冰芯D/O20 附近异常高的火山喷发硫化物应源于Toba火山喷发. 阿拉伯海钻孔岩芯中Toba火山灰分布在D/O19和D/O20之间^[36,37]. 如果Toba火山灰确定分布于D/O19和D/O20之间,那么SB记录、GISP2和NorthGRIP在指示的最近一次Toba火山喷发年代上存在较大的偏差(图 2), SB记录给出的最近一次Toba火山喷发的U/Th年龄约在(73±0.4) ka BP, 这与基于K/Ar法、⁴⁰Ar/³⁹Ar以及裂变径迹法的最佳估计年代(74±2)ka基本一致^[38,39]

(a) North GRIP ♂⁸O记录^[32]; (b) SB记录, 深色点线图为SB22 记录, 浅色点线图为SB25 记录; (c) GISP2 ♂⁸O记录^[9].为了便于比较, (a)和(c)的♂⁸O 记录用了相同的单位间隔.图中数字编号为相应的D/O事件^[1], 阴影部分的粗折线指示了(a), (b)和(c)记录中最近一次Toba火山爆发相对应的同位素事件的年代.误差棒同图 1

3.2 南北半球气候对比

本文在同一测年手段基础上对比了SB记录和巴西东南部石笋δ⁴⁸O记录^[40](图 3).巴西石笋δ⁴⁸O记录 的变化反映了南美洲夏季风(SASM)和南大西洋辐合带(SACZ)位置变化.即,δ⁴⁸O的偏正指示SASM/ SACZ北移,意味着亚马孙盆地水汽输入的减少和夏季风降水量的减少;反之,δ¹⁸O偏负指示SASM/ SACZ南移,以及夏季风降水量的增加.如前所述, 千年尺度上,SB记录中δ⁴⁸O的偏正反映了东亚夏季风强度的减弱和降水的减少.这表明,两地千年尺度夏 季风降水呈反相位关系(见图 3).这一反相位关系有着高精度U/Th测年基础.首先,在整个研究时段, 两个记录分别有 23 个和 7 个U/Th年龄控制,确定了 两者一级振荡的对应关系.其次,两个记录中持续时 间长的D/O事件有着较好的年龄控制,如D/O20-21, 分别由 8 个和 3 个年龄控制,不可能改变其相位关系; 特别是D/O21 持续时间长达 5 ka左右,远超过U/Th年 龄误差,反相位关系相当确定.南北半球亚热带千年 尺度夏季风降水的反相位关系反映了千年尺度热带辐 合带(ITCZ)平均位置的南北摆动^[22]:当ITCZ平均位置 偏北时,位于东亚大陆的夏季风环流增强,降水量增 多;此时,SASM/SACZ也随之北移,巴西东南部亚热 带夏季风降水减少.反之,当ITCZ偏南时,巴西东南 部夏季风降水减少.反之,当ITCZ偏南时,巴西东南 第9期

图 3 神农架石笋记录与巴西东南部石笋记录对比图 上部为SB记录,同图 2,下部为巴西石笋BT2 δ¹⁸O记录^[40]. 散点图及水平误差棒自上而下分别为SB22, SB25 和 BT2 的年龄控制点及误差棒. 图中箭头指示了季风降水的增加

两地亚热带千年尺度夏季风降水的反相位关系 实际上反映了南北半球千年尺度气温的"See-saw"模 式. 如图 2 所示、千年尺度的东亚夏季风强度与格陵 兰气温呈正相关关系,即,东亚夏季风增强,与北大 西洋温盐环流(THC)增强相关的格陵兰气温也随之升 高^[15]. 而巴西东南部现代研究表明由SASM /SACZ 的南移所带来的降水与南美洲亚热带对流层温度变 化呈正相关 [41]. 因此, 中国中部和巴西东南部的石 笋关于降水的δ¹⁸O记录的反相位关系可以对应为南 北半球温度的反相位关系,这与两极气温的 "See-saw"现象一致^[15],表明南北半球"See-saw"机制 的存在. 这种D/O事件的反相位关系反映了北大西洋 深层水体(NADW)下沉地点及深度的变化:当NADW 在北欧附近洋面生成时, NADW生成的深度很深, THC使北半球普遍处于暖态,而南半球则处于冷态; NADW在北大西洋中部地区生成的时候, NADW生 成的深度变浅,此时南半球处于暖态而北半球为冷 态 [42,43]

SB 记录反映了 95~56 ka BP 东亚夏季风强度的 变化. 千年尺度的夏季风强盛期对应了冰芯记录中 的 D/O 事件,两者关于 D/O 事件的时标存在不同程 度的偏差. SB 记录的 D/O19-20 的起始年代分别为 (71.7±0.4)~(70.2±0.6)和(76.3±0.7)~(73±0.4) ka BP,与 冰芯时标存在千年尺度的偏差,远大于铀系定年的 不确定性. 冰芯 North GRIP 记录的两个事件时标比 石笋时标系统偏老 1~2 ka,而 GISP2 时标比石笋时标 系统偏年轻 3~4 ka.

南北半球亚热带地区石笋记录对比表明,两地 季风降水的D/O事件存在反相位关系,支持千年尺度 海气耦合的"See-saw"模式^[42].北大西洋深层水体 (NADW)下沉地点及深度的变化可能是这一现象的 主要发生机制^[42,43].

参考文献

- Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 1993, 364: 218-220[DOI]
- 2 Sirocko F, Leuschner D, Staubwasser M, et al. Mechanisms of

Global Climate Change at Millennial Time Scales. In: Clark P U, Webb R S, Keigwin L D, eds. Washington DC: American Geophysical Union, 1999, 112: 113-126

- 3 Shackleton N J, Fairbanks R G, Chiu T C, et al. Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ^{14} C. Quat Sci Rev, 2004, 23: 1513–1522[DOI]
- 4 Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science, 2001, 294: 2345-2348[DOI]
- 5 Spötl C, Mangini A. Stalagmite from the Austrian Alps reveals Dansgaard–Oeschger events during isotope stage 3: implications for the absolute chronology of Greenland ice cores. Earth Planet Sci Lett, 2002, 203: 507-518[DOI]
- 6 Burns S J, Fleitmann D, Matter A, et al. Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9–13. Science, 2003, 301: 1365–1367[DOI]
- 7 Burns S J, Fleitmann D, Matter A, et al. Correction: Indian Ocean Climate and an absolute chronology over Dansgaard/Oeschger events 9-13. Science, 2004, 305: 1565
- 8 Clemens S C. Millennial-band climate spectrum resolved and linked to centennial-scale solar cycles. Quat Sci Rev, 2005, 24: 521-531[DOI]
- 9 Grootes P M, Stuiver M, White J W C, et al. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 1993, 366: 552-554[DOI]
- 10 Johnsen S J, Dahl-Jensen D, Gundestrup N, et al. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and North-GRIP. J Quat Sci, 2001, 16: 299-307[DO1]
- Schulz M. On the 1470-year pacing of Dansgaard-Oeschger warm events. Paleoceanography, 2002, 17(4): 1-10
- 12 Bender M, Sowers T, Dickson M L, et al. Climate correlations between Greenland and Antarctica during the past 100000 years. Nature, 1994, 372: 663-666[DOI]
- 13 Blunier T, Chappellaz J, Schwander J, et al. Asynchrony of Antarctica and Greenland climate during the last glacial. Nature, 1998, 394: 739-743[DOI]
- 14 Blunier T, Broook E J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 2001, 291: 109-112[DOI]
- Broecker W S. Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography, 1998, 13: 119-121[DOI]
- 16 Ninnemann U S, Charles C D, Hodell D A. Mechanisms of global climate change at millennial time scales. In: Clark P U, Webb R S, Keigwin L D, eds. Washington DC: Am Geophys Union, 1999, 112: 99-112

- 17 Vidal L, Schneider R R, Marchal O, et al. Link between the North and South Atlantic during the Heinrich events of the last glacial period. Clim Dyn, 1999, 15: 909-919[DOI]
- 18 Stocker T F. Past and future reorganisations in the climate system. Quat Sci Rev, 2000, 19: 301-319[DOI]
- 19 Indermühle A, Monnn E, Stauffer B, et al. Atmospheric CO₂ concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophys Res Lett, 2000, 27: 735-738[DOI]
- 20 Wunsch C. Greenland-Antarctica phase relations and millennial time-scale climate fluctuations in the Greenland ice-cores. Quat Sci Rev, 2003, 22: 1631-1646[DOI]
- 21 Schwander J, Sowers T, Barnola J M, et al. Age scale of the air in the summit ice: Implication for glacial-interglacial temperature change. J Geophys Res, 1997, 102 (D16): 19483-19494[DOI]
- 22 Wang X, Auler A S, Edwards R L, et al. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature, 2004, 432: 740-743[DOI]
- 23 Grootes P M, Stuiver M. Oxygen 18/16 variability in Greenland snow and ice with 10⁻³ to 10⁵ year time resolution. J Geophys Res, 1997, 102: 26455-26470[DOI]
- 24 Bond G, Broecker W, Johnsen S, et al. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 1993, 365: 143-147[DOI]
- 25 Peterson L C, Haug G H, Hughen K A, et al. Rapid changes in the hydrologic cycle of the Tropical Atlantic during the last glacial. Science, 2000, 290: 1947-1951[DOI]
- 26 Yuan D, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon. Science, 2004, 304: 575-578[DOI]
- 27 朱兆泉,宋朝枢.神农架自然保护区科学考察集.北京:中国 林业出版社,1999.38-41
- 28 Shen C C, Edwards R L, Cheng H, et al. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chem Geol, 2002, 185: 165-178[DOI]
- 29 Dansgaard W. Stable isotopes in precipitation. Tellus, 1964, 16(4): 436-468
- 30 Berger A, Loutre M F. Insolation values for the climate of the last 10 million years. Quat Sci Rev, 1991, 10: 297-317[DOI]
- 31 Genty D, Blamart D, Ouahdi R, et al. Precise dating of Dansgaard–Oeschger climate oscillations in Western Europe from stalagmite data. Nature, 2003, 42: 833–837[DOI]
- 32 North Greenland Ice Core Project members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 2004, 431: 147-151[DOI]
- 33 Meese D A, Gow A J, Alley R B, et al. The Greenland ice sheet

project 2 depth-age scale: methods and results. J Geophys Res, 1997, 102: 26411-26423[DOI]

- 34 Zielinski G A, Mayewski P A, Meeker L D, et al. Potential atmospheric impact of the Toba mega-eruption 71000 years ago. Geophys Res Lett, 1996, 23(8): 837-840[DOI]
- 35 Zielinski G A. Use of paleo-records in determining variability within the volcanism-climate system. Quat Sci Rev, 2000, 19: 417-438[DOI]
- 36 Schulz H, von Rad U, Erlenkeuser H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110000 years. Nature, 1998, 393: 54-57
- Schulz H, Emeis K C, Erlenkeuser H, et al. The Toba volcanic event and Interstadial/Stadial climates at the Marine Isotopic Stage 5 to 4 in the Northern Indian Ocean. Quat Res, 2002, 57: 22-31[DOI]

- 38 Ninkovich D, Shackleton N J, Abdel-Monem A A, et al. K-Ar age of the Pleistocene eruption of Toba, north Sumatra. Nature, 1978, 276: 574-577[DOI]
- 39 Chesner C A, Rose W I, Deino A, et al. Eruptive history of Earth's largest Quaternary caldera (Toba, Indonesia) clarified. Geology, 1991, 19: 200-203[DOI]
- 40 Cruz F W Jr, Burns S J, Karmann I, et al. Insolation-driven changes in atmospheric circulation over the past 116000 years in subtropical Brazil. Nature, 2005, 434: 63-66[DOI]
- 41 Zhou J, Lau K M. Does a monsoon climate exist over South America? J Clim, 1998, 11: 1020-1040[DOI]
- 42 Rahmstorf S. Rapid climate transitions in a coupled oceanatmosphere model. Nature, 1994, 372: 82-85[DOI]
- 43 Rahmstorf S. Ocean circulation and climate during the past 120000 years. Nature, 2002, 419: 207-214[DOI]