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Abstract Deterministic chaos theory offers useful quantitative tools to characterize the non-linear dynamic be-
havior of a fluidized bed and the developed complexity theory presents a new approach to evaluate finite sequences.
In this paper, the non-linear, hydrodynamic behavior of the pressure fluctuation signals in a reactor was discussed
by chaos parameters and complexity measures. Coherent results were achieved by our multi-scale analysis, which
further exposed the behavior in a gas-solid two-phase system.
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1 INTRODUCTION

The pressure fluctuations in a fluidized bed contain
useful information for indexing the quality of fluidiza-
tion and have been widely applied in industrial prac-
tice. Traditionally, in fluidization engineering, time
series of pressure fluctuation are analyzed using sta-
tistical (e.g. averages, standard deviation) or spectral
(e.g. Fourier transform, power spectrum or autocor-
relation function) analysis. Implicitly, these analysis
techniques assume that the fluctuations can be de-
scribed by a linear summation of random variation or
by a linear addition of different periodic waves respec-
tively.

In recent years, some new methods based on frac-
tal and deterministic chaos theories have been used to
analyze time-dependent fluidized bed datalll. How-
ever, little work has been done on the study of the
chaotic behavior in a wide range of operation con-
ditions. Here, the concepts of chaos theory as a
tool to characterize the hydrodynamics quantitatively
are further investigated. Meanwhile, two complexity
measures-fluctuation complexity and algorithm com-
plexity are used to analyze the pressure fluctuation
signals.

2 NON-LINEAR PARAMETERS AND AL-
GORITHM ANALYSIS

The Lyapunov exponents measure the rates at
which system processes or destroys information. A
system with at least one positive Lyapunov exponent
is chaotic. Of several methods available in the litera-
ture for estimating the largest Lyaunov exponent, the
method of Wolf et al.l?! is adopted in this work.
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Several fractal dimensions have been proposed in
the literature including the capacity dimension, infor-
mation dimension and correlation dimension. For time
series analysis, the correlation dimension is generally
used. The most common method, Grassberger and
Procaccia(G-P) algorithm[®!, to determine the corre-
lation dimension is used in this study.

The degree of chaos is quantified by the Kol-
mogorov entropy, which is a measure of the state of
loss of information in the system (expressed in bits
of information per second). The Kolmogorov entropy
algorithm adopted in this paper can be referred to
Grassberger and Procaccial®.

Embedding dimension m and delay time 7 are two
basic parameters in the process of reconstruction of
phase space. Theoretically, perfect reconstruction re-
sult can be achieved if only m is large enough. How-
ever, too large value will cause unnecessary algorithm
efficiency loss. Thus the problem is to get the mini-
mum embedding dimension, satisfying the reconstruc-
tion condition. Two rules to choose a practical value
of embedding dimension in G-P algorithm and Wolf
algorithm are discussed as follows.

Generally, D(m) can be considered as the correla-
tion dimension of system attractors when D(m) does
not change with m. As illustrated in Fig.1, D(m)
changes with the increase of m and achieves relative
saturation when m is 30, which is selected as the em-
bedding dimension in G-P algorithm.

To evaluate the Lyapunov exponent, the dimension
of the embedding state space should be large enough
to encompass the complete reconstructed attractor.
It means that enough degrees of freedom should be
taken into account to ensure that the attractor is fully
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unfolded in the state space without crossing orbits.
Takens!® has shown that embeddings with m > 2d+1
are sufficient to ensure a faithful, complete evolution
of the attractor in the reconstructed state space in
such a way that the dynamics of the attractor is char-
acterized by the same value of its invariant as the at-
tractor in the true state space. However, in a practical
case we never know before hand what the value of d
is. Thus in practice we could start with some small
values of d (e.g. d = 3} and increase it subsequently
until saturation is observed in the estimated value of
the Kolmogorov entropy.
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Figure 1 Correlation dimension vs.

embedding dimension
[polyethylene (PE) particles, d, = 280 pum,
H, = 630mm, v = 0.412m-=s~}, Hp = 320 mm]

To constitute a state vector from the data in the
time series, we have to choose appropriate delay time
between the consecutive elements of the vector. The
delay time should not be too long, otherwise succes-
sive elements will become uncorrelated. However, it
should be large enough so that successive elements are
strongly connected. Takens’s(®] theorem does not give
any clue to what the “best” delay time is in a prac-
tical case. In the literature various rules are given to
choose a practical value of the delay time. It is sug-
gested to base it upon the first zero crossing or the first
minimum of the autocorrelation function or upon the
first minimum of the mutual information function!®.
Fraser!” has suggested that mutual information func-
tion be far superior to choosing a zero of the autocor-
relation function. As illustrated in Fig. 2, the mutual
information function first reaches its minimum when
7 = 0.075 s considering most calculation results of our
experimental data.

One problem arises from the fact that the recon-
struction theory is based on “infinitely” long time se-
ries. It is known from the formula of G-P algorithm
that m*N(N — 1)/2 times calculation must be done
in one calculation of the correlation dimension, there-
fore the number of points must be selected properly to
ensure not only a algorithm precision but also a high
operation efficiency. In the literature it is generally
stated that a number of points of the order of 107--

10° should be taken into account®. In our study,
12000 points are selected considering both the algo-
rithm precision and operation efficiency.
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Figure 2 Mutual information function vs. delay time
[PE particles, dp = 280 pm,
H, = 630 mm, u = 0.0905 m-s~", H;, = 320 mm)]

An important way to characterize the complexity
of a dynamic system is based on the information gain
Gi;. It represents the information required to select a
state A; if its preceding state A; is given.

Gi-j = —lgR—)J (1)

The mean information gain < G > is defined as

N N
<G >= Z PG = - Z PijlgPi

ij=1 ij=1
N N

=— ) PjlgP;+ Y PlgP, (2)
i,j=1 i=1

The mean information loss < L > is defined as the
average of information loss L;; over all possible tran-
sition 7 —» j. L;; determines the information that a
system has lost between a preceding state A; and the
successive state A;.

N N
< L>= Z Pj_jL,"J' = - Z P;_J'lgpi N (3)

i,j=1 ig=1

The net information gain of a systemn is then ex-
pressed by
P

P

Lij=Gij = Lij = 1g (4)
During the evolution of a system, I;; may fluctuate
about its mean value and therefore may have a non-
vanishing mean-square deviation 2, which can be un-
derstood as fluctuations in net information gain. It
has been introduced as a complexity measure by Bates
and Shepared(®).
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Fluctuation complexity Cf is a dynamic complex-
ity measure since its definition includes both state
probabilities and transition probabilities explicitly
and irreducibly.

Algorithmic complexity is defined as the number
of bits of the shortest algorithm (e.g., computer pro-
gram) which is capable of reproducing a given symbol
sequence. A practical realization of this theoretical
approach has been proposed by Ziv and Lempel'9.
From the study, for nearly all z € [0,1], the complex-
ity ¢(n) tends to be a constant value.

Jim c(n) =b(n) = log, n (6)
And the relative algorithm complexity is given
_¢n) _ e(n)logyn
C(n) - b(n) - n (7)

The algorithm complexity of a time series is calcu-
lated by Eq.(7). From the definition, it can be seen
that C(n) of a white noise series tends to be 1 and
C(n) of a periodic series tends to be 0.

3 FACILITIES AND PROCEDURE

A diagram of the experimental facilities is shown
in Fig.3. The fluidized-bed is associated with a bed
column, a distributor and a plenum chamber. The
bed is 0.250m in diameter and 5m in height. The
properties of particles we used are listed in Table 1.
The fluidizing gas is air. The holes on the distributor
are 2mm in diameter and have a fractional open area
of 3%. Pressure probes are installed on the wall of
the bed column at four different heights. The outside
opening of each pressure probes is connected to one of
the two input channels of a differential pressure trans-
ducer, which produces an output voltage proportional
to the pressure difference between the two channels.
The remaining channel is exposed to the atmosphere.
The working capacity of the transducer is £5kPa, and
the relative accuracy error is +0.5%. The sensitivity
of the measuring system is 1 V-kPa~1.

Table 1 Particle properties of FCC (fluid catalytic
cracking) and PE

Particle density, kgem=  dp, pm U, mes™!
FCC 1480 85 0.0013
PE 962 280 0.02

The range of experimental conditions is listed in
Table 2. The sampling frequency is 200 Hz and data
length under the same operating condition is 60000
points.

Table 2 Experimental operating conditions

Experimental variables Test range
ration of static bed height to

bed diameter, Hs/Ds 2.0—3.4
distance above distributor, m 0.17—0.77

June, 2002

Figure 3 Experimental system
1—fan; 2-—cushion pot; 3—rotameter;
4—pressure probes; 5—pressure transducers;
6—A /D board; 7-—computer; 8—fluidized bed;
9-—first vortex separator;
10—second vortex separator; 11—hop-pocket

4 RESULTS AND DISCUSSION

The flow regime or contacting mode varies widely,
depending on the particle size, particle density and
particlé geometry, gas density, gas viscosity, gas ve-
locity and column configuration. In this paper, the
effect of gas velocity is mainly discussed. As illus-
trated in Fig. 4, with the increase of the gas velocity,
the fluidization state of the reactors experiences four
flow regimes.

The fluidization state in the reactor is at the tran-
sition state before the bubbling fluidization when the
gas velocity is barely above the minimum fluidization
velocity. The rotation of particles and expansion of
bed floor can be seen from the wall while the obvious
bubbles and fluctuation could not be detected. The
phenomenon is consistent to the particulate fluidiza-
tion (Group A powders of the Geldart classification
only). When the gas velocity exceeds 0.016 m-s™?,
a mass of fine bubbles are generated and a small
quantity of large bubbles pass through the bed syn-
chronously. It corresponds to the bubbling fluidiza-
tion, at which state the fluctuation is vehement and
bubbling is abundant while the interface between the
dense phase and sparse phase is clear. Then when
the gas velocity is larger than 0.396 m-s™!, the bed
reaches the turbulent fluidization (slugging fluidiza-
tion does not appear in our experiment because it oc-
curs in small vessels only). Now, the surface of bed
floor becomes blurred and the break of bubbles quick-
ens. A great deal of particles are caught by the first
cyclone segregator. Finally, when the gas is above
0.747m-s™}, the difference between the dense phase
region of the lower bed and the sparse phase of the
upper bed diminishes or even disappears. Thus the
fast fluidization is realized.
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Figure 4 Non-linear invariants vs. superficial gas
velocity (m-s™!)
Hy, mm: W 70; ® 170; A 320; ¥ 470

From the trend of non-linear parameters vs. gas
velocity, we may give explanation as follows.

(1) In the transition region, the Lyapunov expo-
nent fluctuates slightly around zero. At the same
time, the correlation dimension and Komogorov en-
tropy are relatively large. Larger values of Komogorov
entropy and correlation dimension indicate higher free
degree and irregularity. There are probably two rea-
sons, one is that there are no obvious bubbles in the
bed and the pressure fluctuation signals are mainly
due to the vibration of particles caused by the gas ejec-
tion. These signals reflect the whole hydrodynamic
behavior, which is close to the random signal. On
the other hand, the fluctuation is relatively small and

the noise may conceal the useful signals. As shown in
Fig. 4, similar to the chaos characteristic parameters,
in the region where gas velocity just exceeds the ini-
tial fluidization, the tendency of complexity measure
indicates that there exists transition region in the flu-
idized bed where no distinct bubbles are observed. In
this region, fluctuation complexity value is relatively
lower, which implies the simplicity of motion state
while the computational complexity value is close to
1, which is a measure of the complexity of random
motion. Therefore, the complexity of motion state in
fluidized bed is contrary to each other in terms of the
definitions of two complexity measures. In a word,
the pressure pulse resulting from the combination of
spraying flow and particulate perturbation is close to
random signal, which is consistent with speculation
obtained by chaos analysis.

(2) A turning point from the transition region to
the bubbling region can be observed clearly in Fig. 4.
The point is corresponding to the jump of Lyapunov
exponent, and the drop of the correlation dimension
and Komogorov entropy. In the bubbling regimes, the
fluctuation of bubbles is the dominant source of the
pressure signals. The signals of bubbles are much more
regular than the rotation of particles, which are some
low frequency signals. The jump of Lyapunov expo-
nent foreruns the chaos state of the reactor. Simulta-
neously, it can be seen that the three chaos parame-
ters behave differently. When the Lyapunov exponent
is small, the other two are relatively large. When the
Lyapunov exponent becomes large, the other two be-
come small. We can infer from the phenomena that
the Lyapunov exponent is consistent with larger scale
signal (the bubble phase signals) and the other two pa-
rameters correspond to the smaller scale signals, the
dense phase signals. It is the different sensitivity in
disparate scales between the chaos parameters that
cause the phenomena mentioned above. Fluctuation
complexity arises and algorithmic complexity plump
drastically with the increase of gas velocity at the be-
ginning of obvious bubbling. Meanwhile, the rise of
fluctuation complexity and the plump of algorithmic
complexity suggest that the gas-solid phase motion is
in intermediate state, chaotic state, in-between the or-
der and stochastic. It reconfirms that certain amount
of bubbles play important roles in the shift of unitary
motion to chaotic state.

(3) With the increase of gas velocity, the fluidiza-
tion regime becomes turbulent fluidization. However,
it can be hardly seen from Fig. 4. It is mainly because
that the hydrodynamic characteristics of chaos do not
change too much during the transition from bubbling
to turbulent fluidization. There is no distinct change
with respect to the two complexity parameters either.
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(4) Finally, the state of the reactor becomes the
fast fluidization. The whole bed is in a sparse phase.
The pressure signals are generally caused by the col-
lision of particles suspended in the air and pressure
wave formed by gas surge. Due to the lack of bubbles,
the signals are smaller scale signals and thus the Lya-
punov exponent begins to increase and the other two
parameters decline. Both fluctuation complexity and
algorithmic complexity slightly slide down when the
fluidized bed comes to the state of rapid fluidization.

Various complexity measures are adopted in the
research the first time so as to analyze systematically
the dynamic complexity under various operating con-
ditions. The results of complexity analysis are com-
pared with that of chaos analysis. Experimental data
indicate that these two analytical results coincide well
and both satisfy reflections of movement in fluidized
beds. However, the coincidence should not be consid-
ered as being accidental instead of being certain. As
far as the large quantity of experimental data are con-
cerned, the plot of five parameters does not matched
so well without essential similarities between the chaos
analysis and the complexity analysis. On the other
hand, the two complexity theories provide us a new
point of view in the time series analysis and the hydro-
dynamic character analysis in the fluidized bed. Since
complexity analysis has simple but effective algorithm
with a few changeable parameters, it reduces the un-
certainty and subjectivity in the computation so that
it is more valuable in implementation. It is shown
by our experiments that chaos analysis and complex-
ity analysis provide consistent results in a wide regime
scales and the result could be important in the dimen-
sionless scaling of chaotic systems.

NOMENCLATURE
C(n})
cf fluctuation complexity

June, 2002

algorithmic complexity (n the length of symbol series)

D(m) correlation dimension of system attractors when
D(m) does not change with m

Dy bed diameter, mm

D2 correlation dimension

d limit capacity

dp particulate diameter, pm

Hp pressure probe height, mm

H, static bed height, mm

I the value calculated from the mutual information
function of two time series

K Komogorov entropy (bit-s~1)

LE1 largest Lyapunov exponent

m embedding dimension

N number of data

u superficial gas velocity, m-s~!

Upnf minimum fluidized velocity, m-s—?

T delay time, s
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