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Abstract In studying the diffusion-controlled adsorption kinetics of aqueous surfactant solutions at the
air/solution surface by means of the maximal bubble pressure method, Fick’s diffusion equation for a sphere should
be used. In this paper the equation was solved by means of Laplace transformation under different initial and
boundary conditions. The dynamic surface adsorption I'(t) for a surfactant solution, which was used to describe
the diffusion-controlled adsorption kinetics at the solution surface, was derived. Different from the planar surface
adsorption, the dynamic surface adsorption I'(t) for the short time consists of two terms: one is the same as Ward-
Tordai equation and the other reflects the geometric effect caused by the spherical bubble surface. This effect should
not be neglected for the very small radius of the capillary. The equilibrium surface tension 7eq and the dynamic
surface tension v(t) of aqueous CioEg [CH3(CHz)e(OCH2CHz)sOH] solution at temperature 25°C were measured

by means of Wilhelmy plate method and maximal bubble pressure method respectively. As ¢t — 0, the theoretical
r

analysis is in good agreement with experimental results and the dependence of v(t) on (\/E + \—/__—05) is linear.
.
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1 INTRODUCTION

Diffusion-controlled adsorption was discussed in
many papers!='®),  In studying such diffusion-
controlled kinetics, dynamic surface tensions were
measured. One of the methods to measure dynamic
surface tensions is the maximum bubble pressure
method(6=1%], According to the basic principle of this
method, the geometric effect of the bubble should be
considered. However, this kind of effect has been sim-
ply neglected in the literatures and the diffusion equa-
tion for the planar surface has always been used. This
paper will be focused on this point and a general equa-
tion of dynamic surface adsorption for the maximum
bubble pressure method will be derived and discussed.

2 THEORY

In measuring the surface tensions of aqueous so-
lutions by means of the maximum bubble pressure
method, the gas bubbles are formed in the solution
at the end of the capillary. The surface tension ~
can be calculated through measuring the maximum
pressure (pmax) in the bubbles. If during the mea-
surement the equilibrium state is established slowly,
the measured maximum pressure will be a function
of time ¢[pmax(t)) and the calculated surface tension
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will correspond to the dynamic surface tension (t).
This time dependence is caused by the diffusion of
surfactant molecules from the bulk phase to the sub-
surface phase. Here the diffusion profile is not a plane
(Fig.1). The diffusion is in radial direction and the
adsorption is at air/solution surface r = ry, where rg
is the radius of the capillary. This is different from
the planar modell!). It is assumed that the solution is
initially of uniform concentration (cp), and at a cer-
tain time a half-spherical solution/air surface is devel-
oped (Fig.1). The diffusion in the r-direction (point-
ing to the center of the bubble) is considered. The
time derivative of c(r,t) at a given position follows
from mass conservation. The starting point for the
theoretical analysis is the diffusion equation (Fick’s
second law) in spherical coordinates

de(r, t) d%c(r,t) 2D Be(r,t)
o P % T e (1)

where ¢(r,t) is the concentration for r > ry and D is
the diffusion coefficient. The initial condition is

c(r,0) = ¢ (2)

¢g is the bulk concentration. This initial condition
means that the concentration in the solution is the
same everywhere before the surface is created.
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Figure 1 Schematics of a gas bubble in solution

To solve Eq. (1) by means of Laplace transforma-
tion, two boundary conditions are necessary except
the initial condition. The first one is

rl_1+n910 c(r,t) = co (3)
The second boundary condition is the so-called
subsurface concentration ¢(rg,t), which corresponds
to two cases: adsorption without and with back-
diffusion. = The first case is the short-time ap-
proximation, where the back-diffusion is neglected.
The second one takes the back-diffusion into consid-
eration.
2.1 Adsorption without back-diffusion—short
time limit
In the early stage of diffusion, the backward move-
ment of solute can be neglected, because the surface is
sufficiently empty to take up solute molecules as soon
as they arrive. Hence the second boundary condition
is
c(ro,t) =0 (4)

Solving the diffusion Eq. (1) under the initial condition
[Eq. (2)] and the two boundary conditions [Egs.(3)
and (4)] by means of Laplace transformation, we have

To 2¢q o Vbt

e(r,t) =cy— u—c(} exp (—u?)du (5)
Vrr

At any time, surface adsorption I'(t) is related to
the concentration in the solution adjacent to the sur-
face. Surface adsorption formally is a function of time
t and radial distance r. If this function is considered
only at the surface r = rg, a function I'(¢) results.
During adsorption, I'(t) increases at a rate determined
by the diffusion flux corresponding to Fick’s first law

dr(t)
at

_ dc(r,t)

o (6)

T=rn T=rg
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Insertion of Eq.(5) into Eq.(6) and integration at

r = 7rq yields
Dt
e ™

The dynamic adsorption for the spherical model
consists of two terms. The second term is the same as
the Ward and Tordai equation(!!, while the first one
reflects the geometric effect on adsorption. By set-
ting ro — oo, the first term is zero, Ward and Tordai
equation is obtained.

In contrast to the short adsorption time range, the
adsorption behavior during longer time is influenced
by back-diffusion. The next part of the paper will deal
with this phenomenon.

2.2 Adsorption with back-diffusion

As soon as the concentration near the surface is
considerably different from zero, back-diffusion of sur-
factant molecules from the surface to the bulk may
take place. Experimental data indicate that for the
long time range c(rp,t) should be a function of time.
This leads to the following boundary condition

c(ro,t) = (t) (8)

The solution of Eq.(1) under the initial condition
[Eq.(2)] and the boundary conditions [Egs. (3) and

(8)) is

() = 290 4 o
To

2[(!0 - ¢(0)] T‘D
) e

/Ggybgexp( zz)dz—\/z?.;?;?/ ¢'(u

- ¢(t)] +

c(ryt) =¢o — T;_E[CO

(9)

Substitution of Eq. (9) into Eq. (6) and integration at
r = rp leads to

F(t)— z-—f é(u)du+

QJ; [cm/f _/o 2:2(%)_udu

This solution is our general diffusion-controlled
equation for spherical surface adsorption. The dif-
ference between Eq. (10) and the result of Ward and
Tordal [Eq. (22) in Ref.[1]] for adsorption with back-
diffusion is reflected in the two terms which are func-
tions of rg. They reflect the geometric effect of the
spherical surface on the adsorption. For the limiting
case 1y — 0o, they approach 0 and the result reduces

b
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to that for the planar surface, Ward and Tordai equa-
tion. Thus Ward and Tordai equation is only a par-
ticular result of our equation as rg — oc.

In contrast to the result of adsorption without
back-diffusion [Eg. (7)], the two terms with ¢(t), which
are always negative because ¢(t) > 0, are the flow of
the back diffusion. By setting ¢(t) = 0 (neglecting
back-diffusion), Eq. (10) reduces to Eq. (7).

2.3 The relationship between ~(t) and I'(t)

For a diffusion-controlled adsorption mechanism,
an equilibrium adsorption isotherm, such as the Lang-
muir isotherm, can be applied as a relation between
the dynamic surface tension ¥(t) and the dynamic ad-
sorption I'(t)[15)

¥(t) =y + RTIIn[l — I'(t)/ ] (11)
where I',, is the saturation adsorption, v, the surface
tension of the solvent (water), T is the temperature,
and R the ideal gas constant. Expanding the loga-
rithm in Eq. (11) into a power series and breaking off
after the first term, we have the following approxima-
tion

+(t) = 70 - RTT(2) (12)
Applying Eqgs. (7) and (10) to Eq. (12) yields
for the short time limit (adsorption without back-
diffusion)

¥(t) = ~o — RTD"‘“ - 2RT¢U\/% (13)

and for the whole time range (adsorption with back-
diffusion)

v(t) =% - RT{%t - —/ o(u)du+

2 \/? {cm/f— fot zﬁﬂdu] } (14)

3 EXPERIMENTAL

The equilibrium surface tension was measured
with Wilhelmy plate tensiometer (K12 from the Com-
pany Kriiss GmbH Hamburg, Germany). The dy-
namic surface tension was determined by means of a
maximum bubble pressure tensiometer (BP-2 made by
Kriiss GmbH Hamburg, Germany). The capillary ra-
dius was ryp = 0.132mm. C,;pEg was purchased from
SIGMA-ALDRICH Chemie, Fluka, Swiss, with pu-
rity for gas chromatography. The surfactant was used

without any further purification. Three aqueous sur-
factant solutions, below the CMC (critical micelle con-
centration), were prepared using distilled water. All
measurements of dynamic surface tension were per-
formed at (25 £ 0.1)°C.

4 RESULTS AND DISCUSSION

The equilibrium surface tensions of aqueous CpEg
solutions are shown in Fig.2. The CMC at 25°C is
0.68 mol'm™3. In the adsorption kinetics studies, the
concentration should be below CMC so that the effect
of micelle on adsorption does not exist.
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Figure 2 The equilibrium surface tensions
® experimental data

Figure 3 shows the experimental dynamic surface
tensions of aqueous C;gEg solutions. Here one can see
that the initial value of the surface tension equals that
of pure water, which means that the solute is not ad-
sorbed at the surface and the surface is empty at the
beginning. This is the reason why the boundary condi-
tion [Eq. (4)] was used for the case of adsorption with-
out back-diffusion. It is a reasonable approximation
in the short-time range. For the short time range, the
diffusion coefficient according to Eq.(13) can be cal-
culated from the measured dynamic surface tensions.
Eq. (13) shows a non-linear relationship between ~(t)
and v/Z, while it is linear for the planar surface adsorp-

“tion. To overcome this difficulty and obtain diffusion

coefficient D, Eq.(13) is rearranged in the following
form

ro(vo —(t) | 5 _ o
\/—"_RTCO + - —\/T)ﬂﬁ

. ro(0 — (1))
With F = 4| ——+—
‘ \/ RTc
linear relationship between F and /%, as shown in
Fig.4. From the slope, the diffusion coefficient D is

calculated, 2.6 x 109 m2.s~1,

Tﬂ , Eq. (15) indicates a
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Figure 3 The dynamic surface tensions
co, mol-m~3: W 0.058; O 0.211; A 0.399
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Figure 4 The linear relation between F and V't for
the adsorption in the short time range
co, mol-m~3: W 0.058; O 0.211; A 0.399;
linear fit of data

To check the calculated coefficient, one can also
rearrange Eq. (13) in the following form

RTD

To

Y(t) = —-

2
co (\/i+ J?B) + R:'"“'co (16)

It means that for the short-time adsorption, there
should be a linear relation between the dynamic ten-
To

2
sion y(t) and (\/E-}- \/_D) , as shown in Fig.5. It
m

can be seen that the experimental data are in good
agreement with the theoretical analysis.
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Figure 5 The linear relation between «(t) and
(vt 4+ ro/VmD)? for the adsorption in the
short time range
co, mol-m~3: W 0.058; O 0.211; A 0.399;

linear fit of data
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The two parts of Eq. (7) were plotted in Fig. 6. The
first term reflects the geometric effect. It should de-
pend on the diffusion coefficient D, the radius of the
capillary 7y and time ¢. For most of surfactants the
diffusion coefficient D are about 10~10—10=9 m?.s~1,
so that the contribution of D to the first term is much
smaller than that of VD to the second term. How-
ever, for very small radius of the capillary rg, the first
term plays an important role in I'(t), so the geometric
effect on adsorption must be considered.
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Figure 8 The geometric effect on the adsorption
(D =26x10"2m?s™1)
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t
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m
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To
NOMENCLATURE
<o bulk concentration, mol-m~3
¢(r,t)  concentration, mol.m=3
D diffusion coefficient, m?-s~!
F defined function in Eq. (15)
[rol(vo = ¥(t)] | 73
F=y{y—————=+—)m
( RTep T )
Pmax maximum pressure, Pa
R ideal gas constant, J-mol~1.K~1!
r distance in radial direction, m
70 capillary radius, m
T temperature, K
t times, s
r(t) dynamic surface adsorption, mol-m=?
I saturation adsorption, mol-m~2
Yo surface tension of the solvent (water), mN-m™!
Yeq equilibrium surface tension, mN-m~1!
¥(t) dynamic surface tension, mN-m™!
@(t) subsurface concentration, mol-m™=3
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