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Introduction

In principle, proton (1H) NMR can detect any metabolite con-
taining hydrogen. With superconducting magnets operating at
frequencies of 400 MHz or above the 1H NMR spectra of bio-
logical fluids or tissue extracts are a rich source of qualitative
and quantitative information on the compounds present, cov-
ering compounds of all chemical classes. NMR has there-
fore been considered as one of the techniques that 
can contribute to the emerging field of metabolomics.
Metabolomics can be defined as the quantitative measurement
of all low molecular weight metabolites in an organism’s cells
at a specified time under specific environmental conditions.

The object of these measurements, the metabolome, is
made up of many hundreds of metabolites. The plant
metabolome is particularly diverse because of the extraordi-
nary variety of secondary metabolites. Estimates for single
plants are put at 5,000–10,000 metabolites with a total of
maybe 200,000 different structures across the plant king-
dom.1) Simultaneous measurement of all components of the
metabolome by a single high throughput parallel method anal-
ogous to those available in transcriptomics and proteomics is
complicated by the range of chemical and physical properties

of the metabolites and the enormous range of concentrations
(pM to mM) at which they occur. Recent reviews are available
on the analytical technologies that have been employed in
metabolomics2) (principally GC/MS and LC/MS in addition
to NMR), of applications across the whole field3) (including,
but not limited to plants) and of NMR in relation to plant
metabolomics.4)

NMR has both advantages and limitations as a technique
for metabolomics. Sample preparation is usually simple and
rapid, measurement times are short and readily automated and
advanced data analysis methods are available. As well as
known compounds (e.g. identified from a database) the NMR
spectra of complex mixtures may provide sufficient informa-
tion for the structures of unknown components to be deduced,
either from the NMR spectrum of the mixture itself, or after
purification. NMR sensitivity is low in comparison with MS
so that only compounds to the upper end of the concentration
range are detected (typically in the mM to mM range in the
NMR tube). The 1H NMR spectra of plant extracts are in-
evitably crowded because there is a large number of contribut-
ing compounds, and most give multiple signals. Each chemi-
cally distinct hydrogen atom, or group of hydrogens, has its
own chemical shift which gives rise to the dispersion of sig-
nals across the spectrum. 1H spectra are also complicated by
spin–spin couplings which add to signal multiplicity, although
they too are an important source of structural information.

Other important NMR-active nuclei present in biomole-
cules are 13C, 15N, and 31P. They have greater chemical shift
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ranges than 1H and the major spin–spin couplings (to 1H) are
readily removed giving simpler spectra with fewer overlap-
ping signals. However 13C and 15N have low natural abun-
dance and are orders of magnitude less sensitive than 1H, and
31P NMR only detects a relatively small number of com-
pounds. 1H is therefore the preferred nucleus for NMR studies
of plant extracts and high magnetic fields give the best sensi-
tivity and signal dispersion.

Analysis of biological samples as crude extracts without
any separation step is known as ‘fingerprinting’ or ‘profiling.’
Other spectroscopic fingerprinting approaches2) include direct
injection mass spectrometry (DIMS) and Fourier-transform
infrared (FTIR) spectroscopy. Plant extracts are very complex
in composition and, if many samples are examined, it is diffi-
cult to make meaningful comparisons of large numbers of
spectra or chromatograms ‘by eye.’ Multivariate statistical
methods can be extremely useful, as they are able to compress
data into a more easily managed form. This can assist in visu-
alizing how a given sample relates to other samples—for 
example experimental samples relative to controls.

In this article we review applications of the NMR finger-
printing—multivariate analysis approach to plant systems. We
indicate where signal assignments are available for plant
species and cover applications of NMR profiling to classifica-
tion, transgenic plants, effects of environment (including her-
bicide treatments and pathogen interactions), and discuss
some of the recently developed ‘hyphenated’ technologies.
We do not attempt to cover the interesting but rather inde-
pendent areas of ‘in vivo’ NMR or flux measurements.5)

Experimental Design, Sample Preparation and Signal
Assignment

Metabolomics and metabolite profiling experiments involve
quantitative comparisons of the levels of multiple analytes
across two or more groups of samples. Some studies use these
measurements to classify the samples as members of previ-
ously known (or suspected) groups. Other studies aim to de-
tect the effects of a particular treatment applied to one group
of samples but not to an otherwise identical control group. In
the first case, typically applied to samples such as plant based
foods or herbal medicines, the experimental design would aim
to cover variations across the population (different varieties,
growing seasons, regions of origin and so on). This requires
some expert knowledge of the product concerned but may be
subject to practical constraints in terms of the number of sam-
ples it is feasible to collect.

Secondly, plants can be specifically grown for a meta-
bolomics study and the experimental design is then more di-
rectly under control of the investigator. However to establish
whether there are significant differences between the treated
and control plants an adequate number of replicates is essen-
tial. Replicates may be individual plants (common in GC/MS
metabolomics experiments) or pooled material from several
plants (more usual in NMR investigations). Even plants that

are grown under nominally ‘identical’ conditions in a con-
trolled environment chamber show considerable plant to plant
variation in metabolite composition. The biological variability
is increased further when plants grown at different times are
to be compared.

Lewis et al.6) carried out a 1H NMR investigation of Ara-
bidopsis extracts from plants grown in a controlled environ-
ment. They found that extracts from individual plants showed
approximately twice as much variation as pooled extracts
combining material from all 24 plants in a tray. They estab-
lished a protocol where one biological replicate consists of
the combined freeze dried material from a tray of 24 plants
and measure three such replicates for each treatment/ line (see
http://www.metabolomics.bbsrc.ac.uk/techniques.htm for fur-
ther details). Standardisation should be applied wherever pos-
sible to factors such as the development stage and time of day
at which plants are harvested. Other sources of variation that
can be introduced are from the sample preparation procedure
and the analytical measurements. These need to be minimised
but are generally less important than the natural biological
variation.

Different sample preparation procedures have been em-
ployed depending on the type of sample. Leaf material is gen-
erally immersed in liquid nitrogen immediately after harvest-
ing and stored frozen (�80°C) or else freeze dried and stored
until required for extraction.6,7) Potato tubers may be stored
(10°C) in the dark for two weeks after harvest and then a spe-
cial sampling procedure is recommended to minimise varia-
tions from metabolic concentration gradients within the
tuber.8) Fruit samples may also be examined as juices by stan-
dard high resolution NMR or as pulps (by 1H high resolution
spinning NMR, HRMAS9)).

Various solvents and solvent combinations have been used
for extraction of plant tissues, depending on whether the main
interest lies in the polar or non-polar constituents or in both.
The NMR technique itself requires the presence of some
deuterated solvent to provide a field-frequency lock signal and
a signal on which resolution adjustment can be carried out for
each sample. It is advisable to buffer aqueous or part-aqueous
solvents because the chemical shifts of many compounds are
sensitive to pH and if the resulting inter-sample differences
are not minimised it will lead to difficulties when multivariate
analyses are attempted. Phosphate buffers are most commonly
used as they do not give any additional 1H signals in the spec-
trum. Otherwise the pH of all samples can be adjusted to a
common value by adding small volumes of hydrochloric acid
or sodium hydroxide to the solutions but this is necessarily a
slower procedure.10)

A weighed amount of sample (often 15–30 mg for freeze
dried powders) is extracted into a deuterated solvent (�1 mL)
with stirring, vortexing or sonication. After centrifugation, a
measured amount of supernatant (400–750 mL) is transferred
to an NMR tube and spectra may be obtained immediately,
making this one of the simplest of all metabolomics prepara-
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tion procedures. Solvents that have been used include 400
mM D2O phosphate buffer11); 70% d4-methanol/ 30% D2O
(with 100 mM phosphate buffer)12); 20% d4-methanol/ 80%
D2O

13) for polar extractions. Lewis et al.6) used two heating
steps (50°/10 min and 90°/2 min), the second step being in-
cluded to ensure enzyme inactivation but this does not appear
to be necessary with 70% methanol and the extraction may be
done at room temperature. Chloroform/methanol/water mix-
tures in various proportions followed by phase separation of
organic and aqueous layers have most often been used for
comprehensive extraction of polar and non-polar com-
pounds.14) After solvent removal the organic residue is dis-
solved in d-chloroform for NMR of the non-polar fraction.
Moing et al. have employed more elaborate procedures 
involving repeated extraction and freeze drying steps and 
removal of metal ions because their aim was to develop an
NMR method for the absolute quantification of polar metabo-
lites.15) A procedure using a solid phase extraction step and
elution solvents of increasing hydrophobicity was developed
for fractionation of the aqueous extract of tomato.16) It in-
creased comprehensiveness by enabling NMR detection of
some components in the fractions that would not have been
measurable in the total extract, but the quantitative procedure
is rather lengthy for routine use.

NMR spectra are measured, usually with the simple presat-
uration pulse sequence (low power irradiation at the water sig-
nal frequency during the relaxation delay) for samples in D2O
or the NOESY-presaturation sequence for samples such as
juices with a high proportion of H2O. Acquisition times
(2–3 sec) and relaxation delays (2–3 sec) are commonly set to
give a recycle delay of ~5 sec and total acquisition times of
~15 min. If the aim is absolute quantification of all metabo-
lites within a spectrum a longer relaxation delay (~20 sec)
should be used. The shorter relaxation delays give spectra that
are suitable for comparison of the amounts of the same
metabolite in different spectra. The longer delay should be
used to obtain accurate relative intensities of different
metabolites within the same spectrum.15) Provided that the
measurement conditions are unchanged the NMR spectra ob-
tained with modern instruments are highly repeatable.

Samples are generally run under automation in batches of
up to 60 tubes at a time (more samples can be handled in a
batch by spectrometers equipped with flow injection probes).
The probe is tuned on the first sample of a batch: it can be
tuned on every sample within automation if the probe is fitted
with a suitable accessory. Tuning on the first sample will gen-
erally be sufficient when all samples have similar ionic
strengths. It is convenient to keep the receiver gain at the
same level for all samples but if this is not possible a correc-
tion can be made subsequently. Samples should be run at a
fixed controlled temperature, not at the ambient temperature,
and should be allowed time to equilibrate after being loaded
into the spectrometer. The line-width and line-shape (resolu-
tion) should be identical for all samples. This condition is

usually well met on modern instruments with gradient as-
sisted shimming carried out on each sample.

Many signals can be assigned by comparison with libraries
of reference compounds, or by two-dimensional NMR. Sub-
stantial tables of assignments have been published for a num-
ber of samples of plant origin including apple,17) mango,9)

orange,10) tomato (fruit12,18) and root15)), potato,8) strawberry,15)

Arabidopsis (leaf7)) and lettuce (leaf19)). Most of these assign-
ments were for aqueous samples or polar extracts and many
compounds are common to all samples (e.g. amino acids, or-
ganic acids, simple sugars). Major secondary metabolites, for
example phenylpropanoids and glucosinolates in Arabidopsis,
are readily detected.7)

The study on lettuce19) was particularly comprehensive in
that both polar and non-polar extracts were assigned and a
comprehensive set of 2D NMR experiments (including diffu-
sion ordered spectroscopy, DOSY) was carried out. Metabo-
lites identified in the aqueous extract included inulins
(GlcFrun where n�2–5, the degree of polymerisation being
estimated by DOSY), mono and di-caffeoyl substituted or-
ganic acids including dicaffeoyltartaric acid (chicoric acid)
and chlorogenic acid. Compounds identified in the non-polar
extract included pheophytins (chlorophyll structure),
carotenoids (lutein, b-carotene) and sterols (b-sitosterol and
stigmasterol).

The assignment of remaining compounds was simplified by
isolating an ‘acetone insoluble’ fraction of the non-polar ex-
tract in which galactosylglycerols, sulpholipids, and phospho-
lipids were detected and the percentages of free fatty acids
and di- and poly-unsaturated fatty acid chains were calcu-
lated.

Multivariate Data Analysis

Chemometrics is the area of mathematics and computing in
which data processing tools and multivariate statistical tech-
niques are applied to the high dimensional data produced by
modern analytical techniques.20,21) An NMR spectrum con-
sists of intensities at thousands of data points across the
chemical shift scale. The chemical shift values at which these
intensities are measured are called the variables (or variates).

The variables can be data points taken directly from the
spectrum10) or the number of variables may be reduced by a
so-called bucketing procedure. This involves dividing the
spectrum up into bins of a certain width and summing all the
intensities within each bin.22) The result is that the number of
variables is reduced from say 16,000 to about 250 if a typical
bin width of 0.04 ppm is used. Although bucketing has been
widely adopted (it has advantages and disadvantages) it is not
a computational requirement since desktop PCs can now cope
easily with the full data sets. It is also possible (but not so
straightforward) to work with variables that are related di-
rectly to concentrations of individual compounds15) by using
integrated peak intensities or line shape fits.

Spectra are then assembled in a table (data matrix) in which
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the rows correspond to the samples (observations) and the
columns to the chemical shift values (variables). Values in
each column are usually ‘mean-centred’ (the mean of the 
column is calculated and subtracted from each value).
Columns may also be ‘autoscaled’ (the mean is subtracted
and the values are divided by the standard deviation for that
column; each column then has a mean of zero and variance of
unity). The covariance matrix is obtained by multiplying the
transpose of the mean-centred matrix by the mean-centred
matrix itself. In the case of autoscaling the same operation
gives the correlation matrix.20)

Metabolomics experiments often have the aim of classify-
ing samples into different groups (e.g. genotypes or treat-
ments). Both univariate and multivariate statistical methods
have a role in distinguishing between groups and in determin-
ing where in the profiles the differences lie. Univariate statis-
tical tests (t-test, ANOVA) can be carried out on one variable
(column) at a time but many tests are required. With multi-
variate methods all variables are considered simultaneously.
The multivariate data for each sample (row) constitutes a vec-
tor. Samples can be pictured conceptually as points in multidi-
mensional space with each variable as an axis; the location of
the sample is determined by the intensities which are the co-
ordinates on each axis. This leads to the idea of using the dis-
tances between samples as a basis for their classification into
groups.20)

Principal component analysis (PCA) is a multivariate
method that can drastically reduce the number of variables
needed to describe the variance in the data set.20,21) Mathemat-
ically, PCA involves determining the eigenvectors of the co-
variance (or correlation) matrix. In graphical terms PCA gen-
erates a rotated set of axes using linear combinations of the
original axes. The new axes are calculated so that the first
principal component, PC1, defines the direction of maximum
spread (variance) in the data. The second (orthogonal) axis,
PC2, defines the direction of greatest remaining spread and so
on. The scores are the co-ordinates of the samples in the new
axis system defined by the PCs (mathematically the scores are
obtained by multiplying the data matrix by the eigenvectors).
The most important PCs are the first ones to be calculated in
the sense that they account for the greatest amount of variance
(typically the first two or three PCs may account for over half
the total variance in the data set). This property means that we
can replace the hundreds or thousands of original variables
with a new set of variables (typically �20), the principal
components, without loss of information. When groups of
samples have systematic differences in the concentrations of
major compounds then scores plots (e.g. PC1 vs. PC2, PC3
vs. PC4. . .) on one or more principal components show spatial
clustering.

The PC loadings (another term for the eigenvectors) show
the contribution of the original variables to each PC. Load-
ings plots identify the data points with high loadings and,
since the loadings closely resemble the original NMR spectra

(at least with the covariance method) the compounds that are
responsible for the differences between groups can be identi-
fied. The decomposition of the data matrix into scores and
loadings matrices and the appearance of the associated plots
are shown schematically in Fig. 1.

The correlation matrix method is useful when the classifi-
cation relies more on differences between compounds present
in low concentrations than on the major compounds. Au-
toscaling increases the influence of weaker signals but the
loadings are not readily interpretable; Pareto scaling23) (divi-
sion of each column by the square root of the standard devia-
tion) is an intermediate pre-processing method that has been
much used with NMR data because it gives some emphasis to
weaker signals but still provides interpretable loadings.

PCA is an exploratory or unsupervised method, so-called
because the experimental data alone is analysed. Supervised
classification methods may be appropriate when biological
variation is more prominent than systematic differences be-
tween groups. In that case the group separation may not be
easily visualised from two-dimensional scores plots of the
first few pairs of PCs. In a supervised method the experimen-
tal data and group membership are supplied together as sepa-
rate tables and the group information influences calculation of
the scores. One of the most popular supervised methods is
Partial Least Squares—Discriminant Analysis (PLS-DA)
which, like PCA, relies on a rotation of axes.20,23) However the
axis directions are calculated so that the resulting sample
scores give the optimal discrimination between groups rather
than being based solely on the spread in the experimental
data. Scores and loading plots from a PLS-DA carried out on
NMR spectra of transgenic and control tomato fruits at three
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Fig. 1. Schematic depiction of data compression by PCA. An n�d
data matrix (n spectra, each with d data points or bins) is replaced by
an n�p scores matrix where p��d (p is the number of principal com-
ponents retained). The original spectra and the scores are related to
each other by the loadings which give the contribution of each of the
d data points to each PC. Values in one column of the scores matrix
may be plotted versus values in another column (e.g. PC1 vs. PC2) to
visualise any sample clustering. The group of samples with negative
scores on PC1 (filled circles) will have higher average levels of com-
pounds with negative signals on the PC1 loadings plot shown whilst
the group with positive scores (open circles) will have higher levels
of compounds giving positive loading signals.



different stages of ripening are shown in Fig. 2.
Many of the applications of multivariate analysis described

in this review have stopped with an examination of two-di-
mensional scores plots and the associated loadings. However
it is also possible to establish a PC or PLS model by deciding
how many principal components or PLS factors to retain. The
number of factors is chosen by analysing a set of samples of
known origin and determining how many factors are needed
to get a high (preferably 100%) classification success rate.
Samples may be classified with a distance-based method such
as Linear Discriminant Analysis (LDA) with the PC scores
as the inputs.20) SIMCA is a PCA based classification method
in which only one group of samples is modelled at a time and
statistical tests are then applied to determine whether further
samples should be included in the group or not.20) If there are
a number of groups present a different PCA model is con-
structed for each group.

An application of Artificial Neural Networks (ANNs) to
classification of NMR profiles is described below. With super-
vised methods (PLS-DA, SIMCA, ANN) it is important to
check that the data are not ‘over-fit’: overfitting is most likely

to occur when experiments are under-determined i.e. when
there is an extremely large number of variates (as in the case
of NMR) and a small number of samples. An ‘over-fit’ model
is one that appears to classify correctly all the samples on
which it is based but which does no better than random
guesses when presented with new samples to predict. The an-
swer to this problem is to use only a proportion of the total
samples available to build the model and then to test and vali-
date it using the remaining samples.20) The procedure is de-
scribed for the example of ANNs in the section on ‘Chemical
treatments, environmental influences and pathogens,’ al-
though it can be applied equally to other supervised methods.
Further confidence is gained when interpretation of the load-
ings plots leads to a plausible biochemical explanation of the
differences between samples.

Classification and Taxonomy

NMR spectroscopy in combination with multivariate analysis
has been applied to a number of classification problems in-
cluding species and cultivar discrimination and quality assess-
ment of foods and herbal medicines (food authenticity appli-
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Fig. 2. (A) PLS scores (first two axes) of NMR data set from extracts of high flavonoid transgenic tomatoes and azygous controls. Open and
filled symbols represent transgenic and control tomatoes respectively. Squares, triangles and circles represent green, turning and red ripe toma-
toes. (B) PLS loading 1 (lower trace) and mean spectrum for red ripe transgenics (upper trace). For simplicity only the low-field part of the spec-
trum is displayed although calculations were based on the full spectrum. Key: trig, trigonelline; phe, phenylalanine. Together the scores and
loadings plots indicate (for example) increased levels of flavonoid glycosides and trig but a decreased level of phe in the transgenics. Adapted
with permission from J. Agric. Food Chem. 51, 2447. Copyright (2003) American Chemical Society.



cations have been reviewed24)).
Leaves of Ilex paraguariensis (Yerba mate) are the source

of mate, a tea like drink consumed in S. America. NMR pro-
filing has been carried out to discriminate between I.
paraguariensis and 10 other Ilex species.14) Four samples
were analysed for each species, grown from seeds collected in
different years and locations. A methanol/water/chloroform
extraction was carried out on dried leaves and both organic
and aqueous fractions were examined. The organic fraction of
I. paraguariensis contained caffeine and theobromine but
these were not present in any of the other Ilex species. Signals
of fatty acids and a triterpene, probably ursolic acid, were
identified in all samples. PCA of the organic fraction NMR
data readily separated I. paraguariensis samples from other
Ilex species by virtue of the caffeine content, and partly sepa-
rated other species from each other after removal of I.
paraguariensis samples. Prominent secondary metabolites in
the aqueous fraction were phenylpropanoids and, in some
species, arbutin (hydroquinone-b-glucoside) which had not
previously been associated with Ilex species. PCA of aqueous
fraction data separated I. paraguariensis and three other
species using the first 3 PC axes and the loadings plots
showed that differences in levels of phenylpropanoids, arbutin
and sucrose were mainly responsible for the separation.
SIMCA models based on 4–7 PCs were constructed for each
species from separate treatments of organic and aqueous frac-
tion data. A successful model (no confusion between the
modelled species and other samples) could be established for
every species in the case of the aqueous fraction but three of
the species were confused when organic fraction data was
used. A similar approach was used to discriminate between
Strychnos species,25) small trees that are a source of strych-
nine and other alkaloids. Methanol extracts (three species, but
with different plant tissues giving 8 groups in all) were exam-
ined by 1H NMR. In addition to carbohydrates and fatty acids
the compounds identified were alkaloids (including strych-
nine and brucine), caffeic acid esters and (in seeds) loganin.
Signals of alkaloids (not strychnine), fatty acids and loganin
were important for discrimination between the groups.

In another study of this type NMR fingerprinting was ap-
plied to discrimination of three Ephedra species,26) including
Ephedra sinica, the main source of ephedrine and pseu-
doephedrine alkaloids. Nine commercial samples of Ephedra
medicinal herbs were also included. The organic fraction was
dominated by ephedrine and pseudoephedrine signals. The
three species were easily separated by PCA thanks to their
different mean levels of these compounds but little other
chemical information was available from this fraction. The
aromatic region of the NMR spectrum was quite different for
the three species in the aqueous extracts. Compounds identi-
fied included a ‘benzoic acid analogue,’ phenylalanine and
phenypropanoids. All three species were separated by PCA
(on PC1). One commercial sample appeared close to E. inter-
media whilst another was apparently a mixture of E. interme-

dia and E. sinica. The remaining commercial samples were
separated from all three authenticated species on PC1 and ac-
cording to the PC1 loading had higher levels of the benzoic
acid analogue than any of the individual species.

In a novel application NMR profiling was carried out on
two Senecio (ragwort) species and their F1 hybrids27) (aqueous
methanolic extracts from aerial tissue of 8 individual plants
each of S. aquaticus (SA), S. jacobaea (SJ) and the F1 hybrids
(H)). The aim was to determine whether levels of existing
metabolites were significantly altered in the hybrids and even
whether any completely new metabolites were introduced.
PCA was not carried out on the standard one-dimensional
NMR spectra but on the projections from two-dimensional J-
resolved spectra which have a recording time of about 15 min
per spectrum. The projection on the chemical shift axis is
simplified in comparison with a conventional 1H spectrum in
that the J-coupling is removed, and this in turn should sim-
plify interpretation of the PC loadings plots.

The three groups of samples showed clustering in a scores
plot (PC1 vs. PC3) with SJ separated from SA and H on PC1
and H from SA on PC3. Examination of corresponding load-
ings suggested a variety of common and less familiar metabo-
lites were responsible for the separation including Ala,
chlorogenic acid, flavonoids, fumaric, malic and succinic
acids, Glc, Suc, jacaranone analogues and pyrrolizidine alka-
loids (PA). Statistical analysis of individual signals for the
above compounds showed that mean levels of metabolites in
the hybrids were either intermediate between species or lower
than both. Several compounds picked out from the loadings
did not show significant differences when examined by
ANOVA (based on SA, SJ and hybrid groups). No novel
metabolites were revealed in the hybrids but this might be be-
cause of the sensitivity limitations of the technique or because
only partial structural information is available (e.g. PAs were
identified by a characteristic signal from the core structure but
individual variants, known to be present were not distin-
guished).

NMR profiling showed some ability to distinguish green
teas (70% methanol extracts) by country of origin but the
sample collection was biased towards Chinese teas with rela-
tively few examples from each of the other countries.28) More
convincing was the discrimination of Chinese Longjing teas
(high quality) from teas of lower grade. Principal component
loadings indicated that compounds including theanine,
theogallin, gallic acid, caffeine and various catechins were
present in higher amounts in the Longjing teas. ANOVA was
used to confirm the conclusions for individual compounds.
The feasibility of using NMR for quality control of phy-
tomedicines has been explored. An examination of 14 com-
mercial feverfew preparations29) (aqueous and organic ex-
tracts from the commercial tablets) showed that two of them
had a very different composition from the other 12. The re-
maining 12 samples could mostly be distinguished from one
another although the differences were smaller and some
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groups of 2 or 3 samples were apparent. Different batch num-
bers of a product from the same supplier could be distin-
guished. NMR and PCA could distinguish chamomile flower
samples30) from three countries as well as readily distinguish-
ing between extracts from flowers alone and mixtures with
added stalk. Different extraction methods were tested includ-
ing a boiling water infusion, a high pressure extraction with
water or aqueous ethanol and NMR samples were prepared
with and without an intermediate drying step. Compounds
identified included amino acids, chlorogenic acid and a-bis-
abolol. PCA also showed differences in extraction efficiency
between water (which favoured sugars) and aqueous ethanol
(favoured amino and organic acids). Drying the aqueous ex-
tract reduced the intensity of several signals including acetate.
Apart from this case, systematic comparisons of sample
preparation protocols for NMR profiling have not been widely
reported.

Genetically Modified Plants

Metabolomics methods, including NMR, have been suggested
as a means of extending current substantial equivalence pro-
cedures for the safety testing of transgenic food crops.31) The
purpose of substantial equivalence testing is to check that no
unintended changes in composition have occurred as a result
of the genetic modification.32) It is based on the statistical
comparison of the concentrations of a pre-selected set of com-
pounds in the GM line and in appropriate non-GM controls
that are regarded as safe. The selection of compounds in-
cludes important nutrients and known natural toxicants for the
crop in question and is intended to be a sufficient basis for a
pragmatic conclusion to be drawn about the equivalence or
non-equivalence of GM and conventional crops. It has been
criticised on the grounds that it can never detect unexpected
changes that fall outside the core group of analysed metabo-
lites.33) Since metabolomics does not involve any pre-selec-
tion of compounds for analysis it has been proposed that its
use could add to the comprehensiveness of testing and enable
detection of unexpected changes, should they occur. Several
publications have explored the possibility of using NMR pro-
filing in this context.

In an early application of the method NMR was used to de-
termine differences between GM lines and controls in two se-
ries of modified tomatoes.16) Both aqueous and organic ex-
tracts were prepared from relatively large amounts (50 g and
20 g fresh weight, respectively) of tomato fruit. In an attempt
to increase the range of compounds detected the aqueous ex-
tract was separated into four fractions containing compounds
of different hydrophobicity by solid phase extraction. This
separated compounds such as the abundant sugars, amino and
organic acids from less concentrated metabolites such as gly-
coalkaloids. Using customised peak picking and data align-
ment software it was possible to list some 2500–3000 signals
(over the five fractions) for each sample. Note that the number
of compounds is likely to be less than one-tenth of this total

although no attempt was made to identify the compounds.
Signal amplitudes were measured and systematic statistical
testing was carried out to test for significant differences be-
tween various groups of samples.

One of the modifications (in which the Cry1Ab5 protein
from Bacillus thuringiensis was expressed) was not expected
to cause changes in the tomato fruit composition. A relatively
large number of significant differences (100–200 signals with
p�0.01) was detected between these Bt-tomatoes and con-
trols in each of the three years that the crops were grown, but
no significant differences at all were obtained when the data
from all three years were combined. This means that the dif-
ferences detected within each year’s crop, mostly no more
than two-fold changes of the mean, were not consistently
present and could be a reflection of environmental perturba-
tions or simply a statistical consequence of making a very
large number of comparisons.16)

A delayed ripening GM line, which might have been ex-
pected to show greater changes than the Bt-tomatoes was also
examined.16) It too showed a marked diminution in the num-
ber of signals showing significant differences (from 249 to
26) as the number of control batches was increased from one
to three. It would appear unwise to base decisions about
equivalence purely on ‘fingerprinting’ and statistics without
considering the origin of the significant differences and their
possible biological origin and relevance.

In many cases it is necessary to use NMR in conjunction
with other techniques. Genetic modification of tomato by si-
multaneous overexpression of two transcription factors from
maize greatly enhanced the content of flavonoid glycosides in
the tomato fruit flesh. 1H NMR profiling was carried out on
the GM tomatoes and matched azygous controls (grown hy-
droponically in a greenhouse under the same conditions) in
order to detect compositional changes affecting both
flavonoids and other types of compound.12) GM and control
fruits were analysed at different ripening stages (green, turn-
ing, red ripe) by 1H NMR of 70% methanol extracts. PCA and
PLS scores plots (Fig. 2A) from the resulting spectra showed
separation of samples into groups according to whether they
were GM or control (seen on PLS factor 1) and according to
ripening stage (PLS factor 2). The separation of GM and con-
trol groups increased through the three ripening stages. Spec-
tra of representative samples were assigned as far as possible
and examination of the PLS loadings (Fig. 2B) together with
comparison of mean spectra for the different groups was then
used to determine which compounds were responsible for the
discrimination seen in the scores plot.

The increased level of flavonoid glycosides in the GM
tomatoes was largely responsible for the discrimination 
between transgenics and controls. Many of the flavonoids
were detected as novel signals in the GM samples. ANOVA
on selected peaks of about 20 non-flavonoid compounds iden-
tified from the loadings (e.g. sucrose, phenylalanine and
trigonelline) also showed statistically significant differences
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between GM and control groups in the red tomatoes. In con-
trast to the flavonoids however none of these compounds
showed changes in mean levels that were greater than two- or
three-fold. Such changes were considered small in relation to
the background of natural variability and confirmed that the
effects of the modification were essentially confined to the
targeted pathway.12)

The flavonoid signals themselves could only be partly as-
signed from the 1H NMR spectra of the unfractionated ex-
tracts. A fuller characterisation was achieved using a combi-
nation of LC/NMR, LC/MS and LC/UV experiments34) from
which nine major flavonoids were identified in the GM toma-
toes, mostly kaempferol glycosides that were known previ-
ously in other plants but not in tomato. Only three of the nine
compounds could be detected in control tomatoes.

Metabolite profiling has also been used to assess composi-
tional changes occurring in potato tubers after genetic modifi-
cations had been made to different metabolic pathways.8) The
techniques used were 1H NMR and LC/UV. Results were
largely complementary since only a few compounds (aromatic
amino acids, chlorogenic acid) were detected by both meth-
ods. The samples came from 4 groups with modifications to
primary carbon metabolism (cv. Record), starch synthesis,
glycoprotein processing or polyamine/ethylene metabolism
(all cv. Desirée). Each group was represented by several inde-
pendent lines with wild-type, empty vector or tissue culture
controls, all grown together under containment (polytunnel).
Differences in composition were sought at the level of whole
profiles (by PCA) or individual compounds (by ANOVA).

Unlike the high-flavonoid tomatoes no single compound or
class of compounds was dramatically enhanced (or reduced)
by these modifications. The most significant differences be-
tween GM and control tubers were found in two of the four
Desirée lines with modified polyamine metabolism. Com-
pounds affected included proline, trigonelline and several
phenolics. However that modification produced an abnormal
phenotype and the changes observed were most likely associ-
ated with a stress response. Certain lines from the other
groups had several compounds present in significantly higher
or lower amounts than the controls, but the differences in
mean values never amounted to more than a 2–3 fold change.
Against the background of variability in the whole data set
such changes were not deemed important: the differences 
between the two cvs. Record and Desirée were greater than
differences found between GM and controls for either culti-
var.8)

NMR profiling with multivariate analysis has also been
used in an attempt to detect unintended effects of GM in
transgenic peas35) (samples were aqueous extracts from com-
bined leaf material of individual plants). Six independent 
T-DNA insertion lines (with one to four insertions per line)
were compared with each other and with wild type and null
segregant controls. In an initial experiment PCA-linear dis-
criminant analysis successfully separated one transgenic line

(T3 generation) from WT controls. With a larger data set (T4

generation) on plants from all six lines and two controls PCA-
LDA was not successful in separating transgenics and con-
trols. Also an ANOVA type procedure based on the 86 highest
variance standardised points in the NMR spectra found no
significant differences between the group of (all) T4 transgen-
ics and the group of (all) controls. It was possible to discrimi-
nate any individual insertion line from either type of control
by PLS-LDA when pair-wise comparisons were made, but the
differences cannot be consistent across the lines. The authors
argued that the main difference between the metabolic profiles
of the transgenics and the WT was a reduced variability in the
transgenics, but that this variability was gradually restored as
successive generations became removed from the original
transformation.

Two bacterial genes encoding enzymes involved in the sali-
cylic acid biosynthetic pathway were introduced into tobacco
to give constitutive salicylic acid producing (CSA) plants.
NMR profiles of the leaves and veins of CSA and WT plants
have been obtained.36) Both types of plant were inoculated
with tobacco mosaic virus as salicylic acid is a signalling
molecule involved in the systemic acquired resistance of
plants to TMV. After 10 days samples were prepared from
leaves and veins using both the inoculated leaves and the (sys-
temic) leaves directly above the inoculated ones. PCA of
NMR spectra from all samples showed four groups separated
by their PC1 and PC2 scores. The separation on PC1 was be-
tween leaf and vein tissues and that on PC2 between WT and
CSA samples. The WT samples were more dispersed than
CSA regarding both the differences between non-inoculated,
inoculated and systemic leaves and the variation between
plant replicates. This is probably because the CSA plants have
increased resistance to the viral infection and their profiles are
less perturbed. The loadings identified decreased levels of
Suc, Glc and chlorogenic acid and increased malic acid and
alanine in CSA as compared with WT plants. In the WT
chlorogenic acid was reduced in inoculated leaves compared
with non-inoculated and systemic leaves. Possible reasons for
these differences were proposed.

Other examples of the application of NMR profiling and
multivariate analysis to various tissues of transgenic plants in-
clude Bt-maize (seeds),37) Arabidopsis transformed with an
antisense chalcone synthase gene7) (leaves), tomato overex-
pressing an Arabidopsis hexokinase gene15) (roots) and Ara-
bidopsis transformed with a Sorghum phosphoenolpyruvate
carboxylase gene but showing decreased PEPC activity15)

(leaves). One of the great promises of metabolomics is that it
will come to play an important role in functional genomics:
the two examples mentioned above15) represent the first 
attempt to use NMR profiling of plants for this purpose.

Chemical Treatments, Environmental Influences and
Pathogens

A number of studies have used NMR profiling to investigate
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effects of various environmental treatments on metabolite
composition including application of herbicides; effects of
metal ions; treatment with signalling compounds associated
with stress response; and infection with pathogens.

In two proof of concept papers it was shown that NMR pro-
files of plant extracts from maize seedlings treated with dif-
ferent herbicides could be distinguished according to the
mode of action (MOA) of the herbicide.38,39) This holds prom-
ise for screening of novel compounds if the MOA of the novel
compound is the same as that of a known compound already
investigated. The potential utility of such an approach is 
directly related to the comprehensiveness of the reference
data base available.

In a much more extensive follow-up study by one of the
groups an attempt was made to build such a data-base.40)

Maize seedlings were treated with one of 27 herbicides repre-
senting 19 known MOAs (some MOAs were represented by
several compounds). In this large-scale study emphasis was
placed on having a large number of biological replicates, on
achieving good repeatability through growth of the seedlings
in a liquid medium in a controlled environment chamber, and
on developing a highly controlled sample preparation and
NMR measurement procedure. Altogether over 400 samples,
including controls, were analysed as aqueous acidic extracts
of meristematic tissue.

Between 10 and 20 artificial neural networks were con-
structed for classification of samples according to MOA with
additional categories for controls and unknowns, the last cate-
gory allowing for the possibility that the MOA of a novel
compound might not correspond to any of those used to cre-
ate the network. Input to the network consisted of the NMR
intensities from individual samples reduced to 1080 data
points (from 16 K in the original spectra) with total intensity
of each spectrum normalised to unity. Each network was con-
structed from a different random allocation of samples be-
tween three roughly equivalent sized sets, the training, valida-
tion and test sets. Test set samples were never actually used
for construction of the network, only to test the quality of the
predictions. Classification success rates for the test samples
were then reported as averages for all the networks con-
structed. The result could be ‘correct,’ ‘incorrect’ or ‘un-
known.’

The first overall model to be examined used all the data
available covering all MOAs in the design. In the sense used
here ‘model’ refers to which groups or MOAs are included/
excluded for the calculation of the ANNs. Overall results for
the all-inclusive model were 64% correct, 6% incorrect, 30%
unknown. About 5 groups were extremely well predicted with
over 90% correct. The well identified groups were removed
from a second round of modelling which proceeded as before
but included only those groups with more than one-third of
samples classified as unknown or mis-assigned. Limiting the
model in this way improved the classification success rate for
the ‘difficult’ groups compared with the all-inclusive model

but of equal interest was the summarising of the results in the
form of a confusion matrix which splits up the incorrect as-
signments to show exactly how the mis-assignments are allo-
cated. This is an economical way of summarising the findings
when many groups are involved and can suggest which path-
ways are most closely related (at least in terms of eventual
metabolite profiles) and which are unrelated.

The authors also subjected their models to various ‘leave
one out’ tests that aimed to reproduce situations likely to arise
in the screening of real unknown compounds. For example all
replicates for a particular compound were excluded when
training either the inclusive or the more limited model. This
included the case where the excluded compound was one of
several with the same MOA as well as the case where that
compound was the only member of its class. In the first case
one would expect the assignment to be correct but in the sec-
ond case ‘unknown.’ The authors discuss the extent to which
these expectations are met and suggest possible reasons why
the assignments are not always as expected. There are many
lessons to be learned from this paper40) on the organisation
and data analysis of complex metabolic profiling studies with
multiple classification groups and large numbers of samples.

In an attempt to apply the same method a phytotoxin
(pyrenophorol) isolated from a pathogen with host specificity
for Avena sterilis (wild oat) was applied to seedlings of A.
sterilis and the NMR profile compared with those from con-
trols and seedlings treated with six herbicides with different
MOAs.41) However multivariate analysis (by PCA, PLS-DA
and SIMCA) showed that although pyrenophorol treated sam-
ples were clearly differentiated from controls, they did not co-
classify with any of the selected herbicide treatments.

NMR and GC/MS profiling has allowed components of
barley root exudates to be characterised and measured, includ-
ing several derivatives of mugineic acid (phytosiderophores or
specialised iron-complexing ligands). Plants were grown in
nutrient solutions subject to increasing levels of iron defi-
ciency which resulted in increased production of exudate
compounds with a high proportion of phytosiderophore.42)

Further studies of barley and wheat exudates showed that iron
deficiency increased production of malate and mugineic acids
and resulted in increased uptake of some metals (Cu, Mn,
Zn), but not cadmium.43) The species Silenus cucubalus is 
tolerant to uptake of Cd2� which is chelated by a family of
peptide ligands in the plant. Overall metabolic effects of Cd
treatment were studied44) by NMR profiling of S. cucubalus
cell extracts from cell cultures grown in media with and with-
out added Cd. Uptake of Cd decreased levels of glutamine
and branched chain amino acids but increased, among others,
malic acid, acetate and glucose.

Treatment of Arabidopsis and Brassica rapa (turnip) with
methyl jasmonate has been used to stimulate plant defence 
responses and the resulting NMR profiles have been exam-
ined. In B. rapa the emphasis was on the identification and
NMR assignment of phenylpropanoids such as caffeoyl-,
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coumaroyl-, sinapoyl-malate etc. which are produced in re-
sponse to the jasmonate treatment.45) In Arabidopsis (Col-0
ecotype) major phenolic metabolites, mainly kaempferol and
quercetin glycosides and sinapoyl-malate, were identified
after concentration and fractionation.46) Changes in metabolite
composition with time (0–168 hr) after methyl jasmonate
treatment were then followed by NMR, using two-dimen-
sional J-resolved spectra of extracts in aqueous methanol.
Projection of the 2D spectrum onto the chemical shift axis
gives a pseudo ‘proton-decoupled’ 1H spectrum as described
before.27) Projected spectra from samples taken at different
time points were assembled and analysed by PCA in the usual
way.

PCA of all samples together gave a rather complicated tra-
jectory in the PC1/PC2 plane but analysis of samples at each
time point together with the zero time controls gave in most
cases a separation on PC1 which could be simply inter-
preted.46) Relative to controls a consistent increase was seen
in treated plants at most time points for flavonoid glycosides,
sinigrin, Val, Thr, Ala and a consistent decrease of malic acid,
carbohydrates (Glc and Suc) and Gln. Other compounds (fu-
maric acid, sinapoyl-malate) apparently showed an initial 
increase followed by a decline. Although the results from this
type of study are largely descriptive and neither comprehen-
sive nor quantitative enough for detailed correlation with 
results of microarray or proteomics experiments the NMR
technique does have the benefit of giving an overall picture of
the changes occurring, not confined to one class of metabo-
lites.

Two studies have employed NMR profiling to study
changes in the Catharanthus roseus (periwinkle) leaf
metabolome following infection with phytoplasma. In the first
of these papers C. roseus was infected with 10 types of phyto-
plasma.47) Plant material was extracted with a methanol/water/
chloroform mixture and then divided into organic and aque-
ous fractions. The major signals identified in the chloroform
fraction for both healthy and infected plants were from the 
alkaloid vindoline. The aqueous fraction gave richer spectra
and showed greater differences between healthy and infected
leaves. PCA and measurement of the intensities of signals
shown to be significant in the PC loadings indicated that there
were increased levels in infected leaves of vindoline, loganic
acid and secologanin (the last two compounds, identified in
the aq. extract are precursors of vindoline), chlorogenic acid
and other polyphenols, Glc and Suc.

The second paper used 1H NMR to measure mono- and dis-
accharides (mainly Glc, Fru and Suc) and acids (lactic, malic)
in C. roseus leaves following infection with Spiroplasma citri
phytoplasma.48) Plants inoculated with S. citri wild type and a
mutant unable to take up Glc suffered impaired growth. They
were analysed 5 weeks after infection and showed increased
Glc and Suc accumulation in C. roseus leaves with increased
Fru in the case of the mutant. A second mutant, unable to take
up Fru, was non-pathogenic and showed the same pattern of

sugar composition as healthy plants. The results showed that
S. citri utilises Fru preferentially over Glc and allowed a
model to be proposed of how the balance of sugar concentra-
tions in the mature leaf is perturbed by the phytoplasma.

Metabolic changes in Nicotania tabacum (tobacco) leaves
following infection with tobacco mosaic virus have been in-
vestigated using 1H NMR.49) Changes were followed with
time (1, 3, 7, 10 days post-inoculation) for both locally in-
fected leaves and ‘systemically acquired resistance’ (SAR)
leaves in the same plants. A complex picture emerged with
some changes common to both inoculated and SAR leaves
and others observed only for one type (e.g. decrease of inosi-
tol in inoculated leaves only: accumulation of cembranoids
and related compounds in SAR leaves). Changes discussed in
some detail include increases in levels of 5-O-caffeoyl quinic
acid and compounds containing a-linolenic acid chains and
the decrease of inositol.

New Technologies and Hyphenated Techniques

Two main goals driving innovations in NMR technology have
always been the improvement of sensitivity and the reduction
of signal overlap. Two types of application can be distin-
guished: analysis of complex mixtures where the goal is to in-
crease the number of quantifiable compounds without a prior
separation step; and the high throughput acquisition of NMR
and other data needed for structure determination of un-
knowns using the smallest possible amount of purified com-
pound after an on-line or off-line chromatographic separation.

In a proof of principle paper50) it was shown that 2D HSQC
spectra (1H–13C or 1H–15N correlation) could be obtained in a
reasonable time from Arabidopsis seedling extracts or even
‘in vivo’ from hydrated seeds following universal 13C or 15N
labelling. One advantage of the method is that the much
greater dispersion of 13C (or 15N) chemical shifts in compari-
son with 1H means that more metabolites can potentially be
cleanly quantified via cross-peak intensities than is the case
with conventional 1D 1H spectra. This is not yet a routine
high throughput method since, apart from the plant growth re-
quirements, each 2D experiment would take about 200�

longer than a conventional 1D experiment. However the au-
thors calculate that with a system currently under construction
(900 MHz spectrometer equipped with a cryoprobe) the ac-
quisition time could be reduced to 5 min from the current 5 hr
(on a 500 MHz spectrometer with no cryoprobe) and further-
more that the number of metabolites detected could be 
increased from the current 100–200 to 500–1000.

Screening of plant extracts for natural products with bio-
logical activity is one of the most actively pursued routes to
novel drug discovery. There is also much interest in ‘non-nu-
trient’ but biologically active components of plant-based
foods. Complete characterisation of the often complex struc-
tures of plant secondary metabolites can usually not be
achieved with MS data alone but needs 1D and 2D NMR data
as well. The development of methods for ‘on-line’ LC/NMR
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as a complement to LC/MS has seen great progress over the
last 20 years or so.51) Much of it has been devoted to over-
coming the limitations of real time ‘on-line’ NMR through
the development of probes with high sensitivity flow cells (ac-
tive volume 60–120 mL), loop storage systems that permit ex-
tended NMR accumulation times following transfer of the
‘peak’ to the measurement cell, special solvent suppression
and decoupling strategies, and automation of the whole chro-
matography/peak selection/NMR data acquisition sequence.

In one of the first plant related experiments that used an in-
tegrated LC/UV/NMR/MS system a number of quercetin and
phloretin glycosides from apple peel extracts were selected on
the basis of their UV or MS data, then each peak was trans-
ferred from a loop storage system under automation for meas-
urement of conventional 1H NMR and 1D TOCSY spectra.52)

It was possible to determine the types of sugar ring present in
each compound (in some cases where the MS was ambigu-
ous) and to determine the linkage position of the sugars to the
aglycone.

More recently automated solid phase extraction (SPE) units
have been introduced to trap compounds as they elute from
the HPLC column.53) Provided that the compound is effi-
ciently trapped by the SPE cartridge this system offers several
advantages over the previous ‘passive’ loop storage method.
After drying of the mixed (protonated) organic/aqueous sol-
vent phase the compound is eluted from the cartridge and into
the NMR probe with a pure deuterated solvent (e.g. CD3CN
or CD3OD) using a volume of solvent (typically 30 mL) that
matches the volume of the flow cell. This serves both to con-
centrate the compound and to standardise and simplify the
solvent suppression requirements in comparison with the loop
storage method. The SPE unit also allows for multiple trap-
ping through repeat chromatography runs if necessary, e.g. in
order to collect enough material for 2D heteronuclear spec-
troscopy. A further sensitivity gain (up to 4�) may be ob-
tained by using a flow probe in which both the NMR coil and
the preamplifier are cryo-cooled.

Use of a complete system of this type was first illustrated
for identification of diverse compounds (flavonoids, phenolic
acids, a monoterpene) present in an oregano extract.53) There
have been several subsequent reports on the use of similar
systems to characterise natural products of interest in medici-
nal plants,54,55) usually applying the SPE-NMR method as a
final stage after a series of prior fractionation/concentration
stages. Some of the potential of the SPE method can be seen
from a comprehensive investigation of phenolic compounds
present in polar extracts of virgin olive oils.56) These samples
gave complex chromatograms (UV detection) from which 27
compounds could be trapped by SPE. The NMR spectra ob-
tained were of high enough quality to allow all these com-
pounds to be identified, including several that had not been
previously recognised in olive oil.

A somewhat different technological approach has been
taken to high throughput screening of plant extracts and

building of natural product libraries.57) It employs a sequence
of fractionation (fractions contain up to 5 compounds), bio-
logical activity screening to identify active fractions, further
chromatography and screening to identify active compounds
and characterisation of those compounds by MS and NMR.
Compounds of interest are isolated (5–50 mg) and NMR spec-
tra obtained by syringe infusion into an NMR probe fitted
with a capillary microcoil (compound dissolved in 3 mL
CD3OD, active volume of the coil is 1.5 mL) that gives opti-
mal sensitivity for mass limited samples and minimises inter-
ference from solvent and associated impurity signals. On a
600 MHz instrument 5 mg of compound is enough to carry out
1D and COSY 1H NMR experiments and 50 mg is sufficient
for 2D heteronuclear studies.

It is now also possible to measure very small volume sam-
ples (such as those obtained by elution from SPE cartridges)
in tubes with outside diameter down to 1 mm. High sensitivity
is obtained by using a probe fitted with a coil which matches
the tube diameter. Although LC/NMR is still much less
widely used than LC/MS the cumulative improvements in
sensitivity achieved through the above modifications make it
much more attractive than previously. The availability of high
throughput LC/NMR strategies is particularly important in
metabolomics since ‘non-targeted’ profiling studies, espe-
cially those that use LC/MS are revealing the existence of
many unknown compounds and NMR data will be essential
for a full characterisation of these unknowns.

Conclusions

Routine treatment of NMR data sets with multivariate statis-
tics has now become accessible to all practitioners with the
wide availability of software packages from instrument manu-
facturers and specialist companies. Probably the most trouble-
some remaining problem in the area of data analysis is caused
by changes of chemical shift that result from inter-sample dif-
ferences in pH and ionic composition.58) Although there are
continuing effects to resolve this data registration problem59)

there is no readily available general solution yet.
Some newly developed statistical methods that have been

applied to NMR of biofluids will no doubt have an impact in
plant metabolomics also. These include methods that simplify
the interpretation of loadings plots (OPLS-DA60)), the identifi-
cation of unknowns from NMR data alone (statistical total
correlation spectroscopy, STOCSY61)) or NMR and LC/MS
data combined (statistical heterospectroscopy, SHY62)). Su-
pervised methods such as genetic programming63) and genetic
algorithms64) are able to pick out small groups of chemical
shift values that are most effective for differentiating between
samples from different groups and may identify minor signals
that would be difficult to locate from standard PCA or PLS
loadings plots.

Confirming the chemical origin of unknown signals arising
from loadings plots or feature selection can be very time con-
suming, even though there is a high probability that the 
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required information is already to be found somewhere in the
literature. There are now a number of freely available search-
able electronic data bases, such as HMDB for human metabo-
lites and SDBS for general organic chemicals that include 
assigned NMR spectra. Although the task would be a huge
one (and would have to be collaborative, possibly with contri-
butions from experts in particular classes of compound) there
is no doubt that a similar NMR data base of plant derived
compounds would be beneficial to the progress of plant
metabolomics.

The advantages and limitations of NMR for metabolomics
(especially in comparison with mass spectrometry) were men-
tioned in the Introduction. It does not provide an explicit
quantity for each individual compound in the mixture (as the
MS methods do) which makes it less useful than MS for some
of the more theoretical treatments of metabolomics data.
However new technology has led to notable improvements in
NMR sensitivity and from the practical point of view modern
equipment makes NMR profiling highly robust and quantita-
tively reliable. For these reasons it will probably find its great-
est use in future in a high throughput screening and diagnostic
role, allowing large numbers of samples to be surveyed and
pointing the way towards more detailed investigations by
complementary methods.
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