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ON REGULAR AND SINGULAR ESTIMATION FOR
ERGODIC DIFFUSION

Yury A. Kutoyants*

The asymptotic properties of the maximum likelihood and bayesian estimators
of finite dimensional parameters of any statistical model depend strongly on the
regularity conditions. It is well-known that if these conditions are fulfilled then the
estimators are consistent, asymptotically normal and asymptotically efficient. These
regularity conditions are of the following type: the model is sufficiently smooth w.r.t.
the unknown parameter, the Fisher information is a positive continuous function,
the model is correct and identifiable and the unknown parameter is an interior point
of the parameter set. In this work we present a review of the properties of these
estimators in the situations when these regularity conditions are not fulfilled. The
presented results allow us to better understand the role of regularity conditions. As
the model of observations we consider the one-dimensional ergodic diffusion process.

Key words and phrases: Asymptotic properties, maximum likelihood estimators,
misspecified, misspecified models, non identifiable model, regularity conditions, sin-
gular estimation problem.

1. Introduction

This work is devoted to the clarification of the role of the set of regular-
ity conditions in the problems of parameter estimation. Particularly, we are
interested by the following question: how will the asymptotic properties of the
classical estimators (maximum likelihood and bayesian) change if we change one
of these conditions? The exposition is illustrated on the model of the ergodic
diffusion process, but we will have similar effects if we take any other well-known
model of observations. First, we review the regularity conditions and properties
of estimators in the i.i.d. case, and then we consider the model of the ergodic
diffusion process in detail.

Let X1, . . . , Xn be independently and identically distributed random vari-
ables with the density function f(ϑ, x). The parameter ϑ ∈ Θ = (α, β) is sup-
posed to be unknown and we have to estimate it and to describe the properties
of estimators in the asymptotic of large samples (n→ ∞). Let us introduce the
likelihood function Ln(ϑ,Xn), the maximum likelihood estimator (MLE) ϑ̂n and
the bayesian estimator (BE) ϑ̃n (for quadratic loss function and density a priori
p(·))

Ln(ϑ̂n, X
n) = sup

ϑ∈Θ
Ln(ϑ,Xn), ϑ̃n =

∫ β
α θp(θ)Ln(ϑ,Xn)dθ∫ β
α p(θ)Ln(ϑ,Xn)dθ

.

It is well-known that if the conditions of regularity are fulfilled then these esti-
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mators are consistent, asymptotically normal

√
n(ϑ̂n − ϑ) ⇒ N (0, I(ϑ)−1),

√
n(ϑ̃n − ϑ) ⇒ N (0, I(ϑ)−1),(1.1)

and asymptotically efficient. Here I(ϑ) is the Fisher information. The proofs are
found in any book on asymptotical statistics, e.g., Cramér (1946), Ibragimov and
Khasminskii (1981), van der Vaart (1998) etc. These regularity conditions can
be roughly described as follows

• The density f(x) of the observed r.v.’s belongs to the prescribed parametric
family, i.e., there exists a value ϑ0 ∈ Θ such that f(x) = f(ϑ0, x).

• The function f(ϑ, x) is one or more times differentiable w.r.t. ϑ with certain
majoration of the derivatives.

• The Fisher information I(ϑ) is a positive function.
• The Fisher information I(ϑ) is a continuous function.
• The model is identifiable, i.e., f(ϑ1, x) 
= f(ϑ2, x) if ϑ1 
= ϑ2.
• The true value ϑ0 is an interior point of the set Θ, i.e., ϑ0 
= α and ϑ0 
= β.
• The observed variables are indeed independent.
Note that if at least one of these conditions is not fulfilled, then we have no

more asymptotic normality (1.1). The behavior of the estimators in the situations
without regularity conditions (more precisely, with different conditions) always
attracted the attention of statisticians. There is a huge literature concerning the
properties of estimators in non regular situations, but usually these conditions
are studied separately. Here we treat all of them together.

In the present work we describe in detail the properties of the MLE and
BE of a one-dimensional parameter in the situations when the similar regularity
conditions are rejected one by one. This approach, by our mind allows a better
understanding of the particular role of each of these conditions. As a model of
observations, we take the one-dimensional ergodic diffusion process

dXt = S(ϑ,Xt)dt+ σ(Xt)dWt, X0, 0 ≤ t ≤ T,

and we want to see how the properties of the MLE and BE depend on the
properties of the function S(ϑ, x). Surely, the properties of the same estimators,
but for the different statistical models, will be quite close to the case mentioned
here for ergodic diffusion. The regularity conditions in parameter estimation
problems for a wide class of stochastic processes (with discrete and continuous
time) can be found in Taniguchi and Kakizawa (2000).

2. Regular case

Let us suppose that we observe in continuous time a trajectory XT =
{Xt, 0 ≤ t ≤ T} of a diffusion process

dXt = S∗(Xt)dt+ σ∗(Xt)dWt, X0, 0 ≤ t ≤ T,(2.1)

where Wt, 0 ≤ t ≤ T is the standard Wiener process, S∗(x) and σ∗(x)2 are
the trend and diffusion coefficients and X0 is the initial value. Statistician can
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suppose that the diffusion coefficient is a known function, because σ∗(x)2 can be
estimated without error by continuous time observations, and in a wide class of
problems it can be supposed as well that the trend coefficient belongs to some
parametric class of functions, i.e., S∗(x) = S(ϑ, x) where S(ϑ, x) is a known
function depending on the unknown parameter ϑ ∈ Θ.

Therefore we obtain the problem of estimation of the parameter ϑ by the
observations XT of the stochastic process

dXt = S(ϑ,Xt)dt+ σ(Xt)dWt, X0, 0 ≤ t ≤ T.(2.2)

We suppose that equation (2.2) has a unique weak solution and the measures

{P (T )
ϑ , ϑ ∈ Θ} are equivalent (see the conditions in Liptser and Shiryayev (2001)).

Here P
(T )
ϑ is the measure induced by the process (2.2) in the measurable space

(CT ,BT ) of continuous on [0, T ] functions (space of its realizations). We suppose
that

lim
|x|→∞

sgn(x)
S(ϑ, x)

σ(x)2
≤ −γ, inf

x
σ(x)2 ≥ κ(2.3)

where γ > 0, κ > 0 do not depend on ϑ. By this condition the process (2.2) is
positive recurrent and has ergodic properties with invariant density function

f(ϑ, x) =
1

G(ϑ)σ(x)2
exp

{
2

∫ x

0

S(ϑ, y)

σ(y)2
dy

}
,

i.e., for any integrable function h(x) the law of large numbers holds: with prob-
ability 1

1

T

∫ T

0
h(Xt)dt→ Eϑh(ξ) =

∫
R
h(x)f(ϑ, x)dx.

Here G(ϑ) is the normalizing constant and ξ is the random variable with the
stationary density function f(ϑ, x).

The likelihood ratio function is

L(ϑ,XT ) = exp

{∫ T

0

S(ϑ,Xt)

σ(Xt)2
dXt −

1

2

∫ T

0

S(ϑ,Xt)
2

σ(Xt)2
dt

}

and the MLE ϑ̂T and BE ϑ̃T for quadratic loss function and prior density p(θ),
θ ∈ Θ are

L(ϑ̂T , X
T ) = sup

θ∈Θ
L(θ,XT ), ϑ̃T =

∫ β

α
θp(θ | XT )dθ,

where p(ϑ | XT ) is density a posteriori calculated as usual by the formula

p(ϑ | XT ) =
p(ϑ)L(ϑ,XT )∫ β

α p(θ)L(θ,XT )dθ
.

Below we suppose that the prior density p(θ) is positive on Θ continuous function.
Let us introduce the following
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Regularity Conditions.
(i) The trend coefficient S∗(x) of the observed process (2.1) indeed belongs to

the parametric family {S(ϑ, x), ϑ ∈ Θ}, i.e., there exists ϑ0 ∈ Θ (true value)
such that S∗(x) = S(ϑ0, x) and σ(x) = σ∗(x).

(ii) The following condition of identifiability is fulfilled: for any ν > 0

inf
|θ−ϑ0|>ν

Eϑ0

(
S(θ, ξ) − S(ϑ0, ξ)

σ(ξ)

)2

> 0.(2.4)

(iii) The Fisher information is

I(ϑ) = Eϑ

(
Ṡ(ϑ, ξ)

σ(ξ)

)2

> 0,

where Ṡ(ϑ, ξ) is differentiated w.r.t. ϑ.
(iv) The function S(ϑ, x) has two continuous bounded (in ϑ and x) derivatives

w.r.t. ϑ and σ(x) is bounded.
(v) The parameter ϑ0 is an interior point of the set Θ = (α, β).
(vi) The observed diffusion process is ergodic (recurrent positive), i.e., it has

finite unique invariant measure.

Note that by the condition (iv), the Fisher information I(ϑ) is a continuous
function of ϑ.

These regularity conditions allow us to describe the asymptotic (T → ∞)
properties of estimators.

Theorem 1. Let the conditions of regularity be fulfilled , then the MLE and
BE are consistent , asymptotically normal

√
T (ϑ̂T − ϑ0) ⇒ N (0, I(ϑ0)

−1),
√
T (ϑ̃T − ϑ0) ⇒ N (0, I(ϑ0)

−1),

and the moments of these estimators converge and they are asymptotically effi-
cient.

The proof can be found in Kutoyants (2004). It is based on the general
result by Ibragimov and Khasminskii (1981). The regularity conditions allow us
to check the conditions of the Theorems 3.1.1 (MLE) and 3.2.1 (BE) in Ibragimov
and Khasminskii (1981) and therefore to provide the mentioned properties of the
MLE and BE. Here we recall the main steps of the proofs. Let us denote the
normalized likelihood ratio process by ZT (u) and the limit process by Z(u):

ZT (u) =

L

(
ϑ0 +

u√
T
,XT

)
L(ϑ0, XT )

, Z(u) = exp

{
uζ(ϑ0) −

u2

2
I(ϑ0)

}
(2.5)

where ζ(ϑ0) ∼ N (0, I(ϑ0)). Suppose that we already proved the weak conver-
gence of the stochastic process

ZT (·) ⇒ Z(·)(2.6)
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in the space of continuous on R functions vanishing to infinity. Then the asymp-
totic normality of the MLE can be obtained in the following way.

Pϑ0{
√
T (ϑ̂T − ϑ0) < x}

= Pϑ0


 sup√

T (θ−ϑ0)<x

L(ϑ,XT ) > sup√
T (θ−ϑ0)≥x

L(ϑ,XT )




= Pϑ0

{
sup
u<x

ZT (u) > sup
u≥x

ZT (u)

}
→ Pϑ0

{
sup
u<x

Z(u) > sup
u≥x

Z(u)

}

= Pϑ0

(
ζ(ϑ0)

I(ϑ0)
< x

)
, i.e.

√
T (ϑ̂T − ϑ0) ⇒ N (0, I(ϑ0)

−1).(2.7)

For the bayesian estimators we first change the variable θ = ϑ0 + u/
√
T ≡ ϑu in

the integrals below

ϑ̃T =

∫ β
α θp(θ)L(θ,XT )dθ∫ β
α p(θ)L(θ,XT )dθ

= ϑ0 +
1√
T

∫
UT
up(ϑu)L(ϑu, X

T )du∫
UT
p(ϑu)L(ϑu, XT )du

,

where UT = (
√
T (α − ϑ0),

√
T (β − ϑ0)). Then using the convergence p(ϑu) →

p(ϑ0) and (2.3) and the notation ZT (u) = L(ϑu, X
T )/L(ϑ0, X

T ) we can write

Pϑ0{
√
T (ϑ̃T − ϑ0) < x} = Pϑ0

{∫
UT
up(ϑu)ZT (u)du∫

UT
p(ϑu)ZT (u)du

< x

}

→ Pϑ0

{∫
R uZ(u)du∫
R Z(u)du

< x

}
= Pϑ0

(
ζ(ϑ0)

I(ϑ0)
< x

)
(2.8)

and elementary calculus yields the equality

∫
R
uZ(u)du =

∫
R
ueuζ(ϑ0)−(u2/2)I(ϑ0)du =

ζ(ϑ0)

I(ϑ0)

∫
R
Z(u)du.

We do not discuss here the technical details of the proof of the convergence (2.7),
(2.8). The reader can find it in Ibragimov and Khasminskii (1981). We mention
here their method because we use it below in almost all non regular estimation
problems by proving the corresponding convergence of the likelihood ratio process
ZT (·) to the limit Z(·) which is different in each problem.

3. Misspecified model

Suppose now that the parametric model {S(ϑ, x), σ(x)} does not correspond
to the observed process (1.1), but the statistician nevertheless uses this model to
estimate the parameter ϑ (no true model). Note that in any applied problem the
mathematical model and the real model of data never coincide. Sometimes this
difference is small but in some situations this difference can become important
and we have to see what happens with the estimators. Therefore we are in
the situation when the condition (i) is not fulfilled and we suppose that the
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other conditions of regularity are fulfilled with corresponding modification of the
notation. It can be shown that the MLE and BE converge to the value

ϑ∗ = arg inf
θ∈Θ

E∗

(
S(θ, ξ∗) − S∗(ξ∗)

σ(ξ∗)

)2

,

where ξ∗ has an invariant distribution of the ergodic diffusion (1.1). Moreover
they are asymptotically normal

√
T (ϑ̂T − ϑ∗) ⇒ N (0, D2

∗),
√
T (ϑ̃T − ϑ∗) ⇒ N (0, D2

∗).

As usual in classical statistics, the MLE and BE converge to the value ϑ∗ which
minimizes the Kullback-Leibler distance. Here this corresponds to the best mean
square choice of the parametric model. It is interesting to note that if S∗(x) =
S(ϑ0, x) and σ∗(x) 
= σ(x), then nevertheless ϑ∗ = ϑ0, i.e., both estimators are
consistent, but not asymptotically efficient, D2

∗ 
= I(ϑ0)
−1 (see McKeague (1984),

Yoshida (1990) or Kutoyants (2004) Section 2.6.1). Otherwise, these estimators
are not consistent because the true value does not exist. The process (1.1) can
be written as a contaminated version of (2.1), i.e.,

dXt = S(ϑ0, Xt)dt+ h(Xt)dt+ σ∗(Xt)dWt, X0, 0 ≤ t ≤ T,(3.1)

where h(x) is an unknown function. Hence

ϑ∗ = arg inf
θ∈Θ

E∗

(
S(θ, ξ∗) − S(ϑ0, ξ∗) − h(ξ∗)

σ(ξ∗)

)2

.

There exists a class of parameter estimation problems with contamination which
nevertheless make it possible to have a consistent MLE and BE. We discuss here
two possibilities. The first one is applied if we know the support A of the function
h(x) and we know as well that the model is identifiable in the following sense:

ϑ0 = arg inf
θ∈Θ

E∗

(
S(θ, ξ∗) − S(ϑ0, ξ∗)

σ(ξ∗)

)2

1{ξ∗∈Ac}.

Then we modify the likelihood ratio as follows

lnL(ϑ,XT ) =

∫ T

0

S(ϑ,Xt)

σ(Xt)2
1{Xt∈Ac}dXt −

1

2

∫ T

0

S(ϑ,Xt)
2

σ(Xt)2
1{Xt∈Ac}dt

and using this pseudo likelihood we construct the MLE and BE. It can be
shown that these estimators are consistent and asymptotically normal, but not
asymptotically efficient.

Another possibility to have a consistent MLE and BE is to consider discon-
tinuous trends. Suppose that the trend coefficient S(ϑ, x) = S(x−ϑ) is a discon-
tinuous function, i.e., there exists a point x∗ such that S(x∗+)−S(x∗−) 
= 0, then
for a wide class of functions h(x) it is possible to have the equality ϑ∗ = ϑ0 and
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therefore the MLE and BE are consistent. Moreover, T (ϑ̂T −ϑ0) and T (ϑ̃T −ϑ0)
have non degenerate limits. For example, suppose that

dXt = −sgn(Xt − ϑ0)dt+ h(Xt)dt+ dWt, X0, 0 ≤ t ≤ T.(3.2)

The MLE and BE we construct on the base of the model (3.2) with h(x) ≡ 0,
and then we substitute the observations (3.2) (containing h(x)). Then if we
suppose that supx |h(x)| < 1, then ϑ∗ = ϑ0 and these estimators are consistent
(see Kutoyants (2004) Section 3.4). Note that if we allow h(x) to take the values
±1 then the situation with Xt = X0 +Wt is not excluded (h(x) = sgn(x − θ0))
and the consistent estimation is impossible. We see that the MLE and BE in
singular estimation problems can be much more robust than in the regular case.

4. Non identifiable model

Suppose that we have the same model for the different values of the param-
eter, i.e., S(ϑ1, x) = S(ϑl, x), l = 2, . . . , k, where ϑl 
= ϑi, l 
= i and ϑl, ϑi ∈ Θ
(too many true models). It is well-known that the MLE converges to the set
{ϑ1, . . . , ϑk} of all true values, e.g., see Bagchi and Borkar (1984). It is possible
to study this convergence as follows. Introduce a partition Θ = ∪k

l=1Θl such that
ϑl ∈ Θl and Θl ∩ Θi = ∅. The identifiability conditions (in each set Θl) are: for
any (small) ν > 0

inf
θ∈Θl,|θ−ϑl|>ν

Eϑ1

(
S(θ, ξ) − S(ϑl, ξ)

σ(ξ)

)2

> 0, l = 1, 2, . . . , k.

Let us introduce the Gaussian vector ζ = (ζ1, . . . , ζk) with zero mean and covari-
ance matrix ' = ('li)

'li = E(ζlζi) = (I(ϑl)I(ϑi))
−1/2Eϑ1

(
Ṡ(ϑl, ξ)Ṡ(ϑi, ξ)

σ(ξ)2

)

where the Fisher informations I(ϑl) = Eϑ1(
Ṡ(ϑl,ξ)
σ(ξ) )2 > 0, l = 1, 2, . . . , k. Define

two random variables: discrete and continuous ϑ̂ =
∑k

l=1 ϑl1{Hl}, ϑ̃ =
∑k

l=1 ϑlQl,
where

Hl =

{
ω : |ζl| > max

i�=l
|ζi|
}
, Ql =

p(ϑl)I(ϑl)
−1/2eζ

2
l /2∑k

i=1 p(ϑi)I(ϑi)
−1/2eζ

2
l
/2
.

It can be shown that the MLE and BE have the following limits: ϑ̂T ⇒ ϑ̂ and
ϑ̃T ⇒ ϑ̃. Moreover

√
T (ϑ̂T − ϑ̂) ⇒ ζ̂,

√
T (ϑ̃T − ϑ̂) ⇒ ζ̃,(4.1)

where ζ̂ =
∑k

l=1 ζlI(ϑl)
−1/21{Hl}. The random variable ζ̃ can be calculated too,

but its expression is too cumbersome. Note that the random variables ϑ̂ and
ϑ̃ are not defined on the same (as the estimators) probability space and the
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exact expression describing the limit distributions of the estimators is a bit more
complicated, than (4.1) (see details in Kutoyants (2004) Section 2.6.2).

The proof is based on the weak convergence of the vector of processes

ZT (u) = (Z
(1)
T (u1), . . . , Z

(k)
T (uk)), Z

(l)
T (ul) =

L

(
ϑl +

ul√
T
,XT

)
L(ϑl, XT )

to the limit process Z (u) = (Z(1)(u1), . . . , Z
(k)(uk)), where

Z(l)(ul) = exp

{
ulζlI(ϑl)

1/2 − u2
l

2
I(ϑl)

}
, l = 1, . . . , k.

5. Null Fisher information

Suppose that I(ϑ0) = 0. This means that at one point ϑ0 (true value) the
function Ṡ(ϑ0, x) = 0 for all x ∈ R. Moreover, we consider a more general case
and suppose that the function S(ϑ, x) is k + 1 times continuously differentiable
w.r.t. ϑ with bounded derivatives S(l)(ϑ, x), l = 1, . . . , k satisfying the equalities
S(l)(ϑ0, x) = 0, l = 1, . . . , k − 1 and

Ik(ϑ0) = Eϑ0

(
S(k)(ϑ0, ξ)

k!σ(ξ)

)2

> 0.

Introduce the random variable ζk ∼ N (0, Ik(ϑ0)
−1). Then we have two cases: if

k is odd then
T 1/2k(ϑ̂T − ϑ0) ⇒ (ζk)

1/k,

and if k is even, we then suppose that the function S(ϑ, x) at the point ϑ0 has
different derivatives from the left and from the right Ṡ(ϑ±0 , x), ζ

+
k and ζ−k denote

the corresponding Gaussian variables and put ζ+
k = max(0, ζ+

k , ζ
−
k ). We have

T 1/2k(ϑ̂T − ϑ0) ⇒ (ζ+
k )1/k.

The proofs can be found in Kutoyants (2004), Section 2.6.3. A similar statement
in the problems of parameter estimation in the asymptotics of small noise was
considered in Kutoyants (1994), Theorems 2.9 and 2.10. The limit expressions
for the Bayesian estimators are more complicated.

Example. Let

dXt = [(ϑ− a)3X2
t −X3

t ]dt+ dWt

then Il(a) = 0, l = 1, 2 and I3(a) = Eaξ
4 > 0. Hence we have T 1/6(ϑ̂T−a) ⇒ ζ

1/3
3 .
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6. Discontinuous Fisher information

Suppose that the function S(ϑ, x) has at the point ϑ0 two different deriva-
tives, from the left Ṡ(ϑ−0 , x) and from the right Ṡ(ϑ+

0 , x) such that I(ϑ−0 ) 
= I(ϑ+
0 )

and all the other conditions of regularity are fulfilled. Then the MLE is con-
sistent, but it is no longer asymptotically normal. Let us introduce a Gaussian
vector ζ = (ζ−, ζ+) with mean zero, Eζ2

− = Eζ2
+ = 1 and the covariance

E(ζ−ζ+) = (I(ϑ−0 )I(ϑ+
0 ))−1/2Eϑ0

(
Ṡ(ϑ−0 , ξ)Ṡ(ϑ+

0 , ξ)

σ(ξ)2

)
.

Then it can be shown that the MLE ϑ̂T is consistent, and
√
T (ϑ̂T −ϑ0) ⇒ ζ̂, but

its limit distribution is a mixture of three random variables:
• ζ̂ = ζ−I(ϑ−0 )−1/2 if ζ− < 0, ζ+ < 0 or ζ− < 0, ζ+ > 0 and |ζ−| > |ζ+|;
• ζ̂ = 0 if ζ− > 0, ζ+ < 0;
• ζ̂ = ζ+I(ϑ+

0 )−1/2 if ζ− > 0, ζ+ > 0 or ζ− < 0, ζ+ > 0 and |ζ−| < |ζ+|.
These properties follow from the form of the limit likelihood ratio process

Z(u) =




exp

{
uζ−I(ϑ−0 )1/2 − u2

2
I(ϑ−0 )

}
, u ≤ 0

exp

{
uζ+I(ϑ+

0 )1/2 − u2

2
I(ϑ+

0 )

}
, u > 0.

We see that there is an atom at the point 0. The proof can be carried out in
a maner similar to Kutoyants (2004), Section 2.6.3. The BE ϑ̃T has a different
limit distribution √

T (ϑ̃T − ϑ0) ⇒ ζ̃ =

∫
R uZ(u)du∫
R Z(u)du

.

Example. Suppose that

dXt = (ϑ− a)[Xt1{ϑ<a} −X3
t 1{ϑ≥a}]dt+ dWt,

then I(a−) = Eaξ
2 and I(a+) = Eaξ

6 and the MLE has the above mentioned
limit distribution.

7. Border of the parameter set

If the true value ϑ0 is on the border of the parameter set Θ = (α, β), say,
ϑ0 = α, then the MLE is consistent, but

√
T (ϑ̂T − α) ⇒ ζ

I(α)
1{ζ≥0}, ζ ∼ N (0, I(α)).

Of course, here I(α) = I(α+). The estimator is asymptotically half-normal with
an atom at 0, i.e., with probability 0, 5 it takes the value 0. This follows from
the form of the limit likelihood ratio:

Z(u) = exp

{
uζ − u2

2
I(α)

}
, u ≥ 0.
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Let us denote

Ψ(ζ) =

∫ ∞

0
euζ−(u2/2)I(α)du

then the limit ζ̃ of the BE:
√
T (ϑ̃T − α) ⇒ ζ̃ can be written as ζ̃ = [ln Ψ(ζ)]′ζ .

The direct calculation provides

ζ̃ =
1√
I(α)

(
ζ∗ +

(∫ ∞

−ζ∗
e−(1/2)(u2−ζ2

∗)du

)−1
)
, ζ∗ ∼ N (0, 1).

If the true value ϑ0 is out of the set Θ (wrong choice of the set Θ), then the
properties of the estimators correspond to the situation described in Section 3,
but the value ϑ∗ can be on the border of the set Θ.

8. Cusp type singularity

Let us suppose that the observed process is

dXt = [a|Xt − ϑ|κ −Xt]dt+ dWt, X0, 0 ≤ t ≤ T

where κ ∈ (0, 1
2). Then the trend coefficient is not differentiable at one point

x = ϑ and the Fisher information I(ϑ) = ∞. To describe the properties of the
MLE and BE we introduce the limit likelihood ratio process

Z(u) = exp

{
WH(u) − |u|2H

2

}

where WH(·) is a double sided fractional Brownian motion and two random
variables ζ̂ and ζ̃ as follows

Z(ζ̂) = sup
u
Z(u), ζ̃ =

∫
R uZ(u)du∫
R Z(u)du

.(8.1)

Here H = κ+ 1
2 (the Hurst parameter). Put γϑ = Γ

1/H
ϑ where

Γ2
ϑ =

a2 sin2(2πκ)

G(ϑ)

Γ(1 + κ)Γ

(
1

2
− κ

)
22(κ−1)

√
π(2κ+ 1)

.

We show that

T 1/2H(ϑ̂T − ϑ) ⇒ ζ̂

γϑ
, T 1/2H(ϑ̃T − ϑ) ⇒ ζ̃

γϑ

and the BE are asymptotically efficient. The proof can be found in Dachian and
Kutoyants (2003) or in Kutoyants (2004), Section 3.2. The i.i.d. r.v.’s model was
considered by Prakasa Rao (1968). The wide class of singular estimation prob-
lems (including cusp type) was studied by Ibragimov and Khasminskii (1981),
Chapter VI.
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9. Discontinuous trend coefficient

Let us suppose that the observed process is

dXt = −sgn(Xt − ϑ)dt+ dWt, X0, 0 ≤ t ≤ T.

Then the limit likelihood ratio is

Z(u) = exp

{
W (u) − |u|

2

}
.

If we denote by ζ̂ and ζ̃ the random variables defined by the equations (8.1) but
with this limit process, then the MLE and BE have the following limits

T (ϑ̂T − ϑ) ⇒ ζ̂

4
, T (ϑ̃T − ϑ) ⇒ ζ̃

4
(9.1)

and bayesian estimators are asymptotically efficient. We see that the rate of
convergence is much better than in all other cases considered above. The proof
you can find in Kutoyants (2004), Section 3.4, where the more general case of
discontinuous trend coefficients is also discussed.

It is interesting to note that the same rate and the same limit distributions
we obtain in the problem of delay estimation by the observations of Itô process

dXt = −γXt−ϑdt+ dWt, X0, 0 ≤ t ≤ T,

where ϑ ∈ (0, π
2γ ). This process has ergodic properties and for the estimators we

obtain the convergence similar to (9.1)

T (ϑ̂T − ϑ) ⇒ ζ̂

γ2
, T (ϑ̃T − ϑ) ⇒ ζ̃

γ2
.

For the proof see Küchler and Kutoyants (2000) and Kutoyants (2004), Section
3.3. Note as well that the values E ζ̂2 = 26 and E ζ̃2 = 16ζ(3) ∼ 19, 3 were
calculated by Terent’ye (1968) and Rubin and Song (1995) respectively. Here
ζ(s) is the Rieman zeta function: ζ(s) =

∑∞
k=1 k

−s.
Remind that the problem of delay estimation of the same stochastic process

dXt = −γXt−ϑdt+ εdWt, X0, 0 ≤ t ≤ T,

but in the asymptotics of small noise (ε→ 0) became regular and both estimators
are consistent, asymptotycaly normal (with regular rate of convergence) and
asymptotically efficient (see Kutoyants (2007) for details).

10. Null-recurrent diffusion

Suppose that the condition (2.3) is not fulfilled and we consider an example
of a null-recurrent diffusion process

dXt = −ϑ Xt

1 +X2
t

dt+ σdWt, X0, 0 ≤ t ≤ T.
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The MLE can be explicitly written as

ϑ̂T = −
(∫ T

0

X2
t

(1 +X2
t )

2
dt

)−1 ∫ T

0

Xt

1 +X2
t

dXt.

Then if 2ϑ
σ2 > 1, then the process is ergodic and ϑ̂T is

√
T -asymptotically normal,

but if −1 < 2ϑ
σ2 < 1 then the diffusion process is null-recurrent and

T γ/2(ϑ̂T − ϑ) ⇒ ζηγ/2

J∗(ϑ)1/2
,

where γ = 1/2 + ϑ/σ2, ζ ∼ N (0, 1) and η is independent of ζ stable r.v. with
Laplace transform Ee−pη = e−pγ . The constant J∗(ϑ) and proof of this result
can be found in Höpfner and Kutoyants (2003) (see as well Kutoyants (2004)
Section 3.5.1).

11. Conclusion

We presented here a collection of results which allow a better understanding
of the role of each of the regularity conditions in the asymptotic properties of the
MLE and BE. We see that these conditions are mainly independent and have to
be verified for any particular statistical model. For example, if we have no global
identifiability condition like (2.4) and say that in the vicinity of the true value
there exists a solution of the maximum likelihood equation which converges to
the true value, then this solution is not a consistent MLE, because the situation
described in Section 4 above is not excluded, and in the vicinity of each value
ϑl we have similar solutions, which converge to ϑl. Another interesting point is
the “robustness” of the MLE in the case of the misspecified singular estimation
problem illustrated by the model (3.2).
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