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UNIT ROOT MODEL SELECTION*

Peter C. B. Phillips**

Some limit properties for information based model selection criteria are given in
the context of unit root evaluation and various assumptions about initial conditions.
Allowing for a nonparametric short memory component, standard information criteria
are shown to be weakly consistent for a unit root provided the penalty coefficient
Cn → ∞ and Cn/n → 0 as n → ∞. Strong consistency holds when Cn/(log logn)3 →
∞ under conventional assumptions on initial conditions and under a slightly stronger
condition when initial conditions are infinitely distant in the unit root model. The
limit distribution of the AIC criterion is obtained.

Key words and phrases: AIC, consistency, model selection, nonparametric, unit
root.

1. Introduction

Following Akaike (1969, 1973, 1977), information criteria have been system-
atically explored for order selection purposes, often in the context of time series
models like autoregressions. The methods have been studied in both stationary
and nonstationary models (Tsay (1984), Pötscher (1989), Wei (1992), Nielsen
(2006)) and are widely used in practical work.

A commonly occuring problem in modern time series, particularly economet-
rics, is model evaluation that involves testing for a unit root and cointegration.
Again, order selection methods have been considered in this context (Phillips and
Ploberger (1996), Phillips (1996), Kim (1998)). If the focus is on these particular
features of a time series then it is not necessary to build a complete model and it
is often desirable to perform the evaluation in a semiparametric context allowing
for a general short memory component in the series.

The present note looks at the specific issue of unit root evaluation by infor-
mation criteria. We seek to distinguish processes with a unit root (UR) from
stationary series (SS). The UR model has the autoregressive form

Xt = ρXt−1 + ut, ρ = 1, t ∈ {1, . . . , n},(1.1)

where ut is a weakly dependent stationary time series with zero mean and con-
tinuous spectral density fu(λ). The series Xt is initialized at t = 0 by some
(possibly random) quantity X0. The SS model has the form Xt = ut, so that
ρ = 0 in (1.1). We aim to treat (1.1) semiparametrically with regard to ut and
in this context ρ = 0 is effectively equivalent to |ρ| < 1 in (1.1).
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Standard order selection criteria may be used to evaluate whether ρ = 1 or
ρ = 0 in (1.1). The criteria have the following form

IC k = log σ̂2
k +

kCn

n
(1.2)

with coefficient Cn = log n, log log n, 2 corresponding to the BIC (Schwarz (1978),
Akaike (1977), Rissanen (1978)), Hannan and Quinn (1979), and Akaike (1973)
penalties, respectively. Sample information-based versions of the coefficient Cn

may also be employed, such as those in Wei’s (1992) FIC criterion and Phillips
and Ploberger’s (1996) PIC criterion.

In the unit root (UR) autoregression, ρ = 1 and there is no unknown au-
toregressive parameter to estimate, so in this case we set the parameter count to
k = 0 in (1.2). In the stationary model (SS), a parametric autoregressive model
may still be fitted by least squares regression with

ρ̂ =
n∑

t=1

XtXt−1

/
n∑

t=1

X2
t−1 =

n∑
t=1

utut−1

/
n∑

t=1

u2
t−1,

and so in this case the parameter count is set to k = 1. The residual variance
estimates in (1.2) for the two models are formed in the usual manner, viz.,

σ̂2
0 = n−1

n∑
t=1

(∆Xt)
2, σ̂2

1 = n−1
n∑

t=1

(Xt − ρ̂Xt−1)
2.

Model evaluation based on IC k then leads to the selection criterion k̂ =
arg mink∈{0,1} IC k.

As shown below, the information criterion IC k is weakly consistent for testing
a unit root provided the penalty term in (1.2) satisfies the weak requirements that
Cn → ∞ and Cn/n → 0 as n → ∞. No specific expansion rate Cn is required.
Strong consistency also holds provided Cn → ∞ faster than (log logn)3 under
commonly used assumptions about initial conditions.

2. Results

The following assumptions make specific the semiparametric and initializa-
tion components of (1.1), the second being important when ρ = 1. Assumption
LP is a standard linear process condition of the type that is convenient in devel-
oping partial sum limit theory (c.f., Phillips and Solo (1992)). Assumption IN
gives, for the unit root case, a partial sum structure to the initial observation X0

in terms of past innovations, making X0 analogous to later observations Xt of
the series which take the form of partial sums measured from X0. The sequence
κn in (2.2) determines how many past innovations are included in the initializa-
tion, with larger values of κn associated with the more distant past. This type
of initial condition has been used in other recent limit theory in econometrics
(Phillips and Magdalinos (2007)).
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Assumption LP. Let d(L) =
∑∞

j=0 djL
j , with d0 = 1 and d(1) �= 0, and

let us have Wold representation

us = d(L)εs =
∞∑
j=0

djεs−j , with
∞∑
j=0

j1/2|dj | < ∞,(2.1)

where εt is iid(0, σ2
ε). Define λ =

∑∞
h=1 E(utut−h), ω

2 =
∑∞

h=−∞E(utut−h), and
σ2 = E{u2

t }.

Assumption IN. The initialization of (1.1) when ρ = 1 has the general
form

X0(n) =
κn∑
j=0

u−j(2.2)

with u−j satisfying Assumption LP and κn an integer valued sequence satisfying
κn → ∞ and

κn
n

→ τ ∈ [0,∞] as n → ∞.(2.3)

The following cases are distinguished:
(i) If τ = 0, X0(n) is said to be a recent past initialization.
(ii) If τ ∈ (0,∞), X0(n) is said to be a distant past initialization.
(iii) If τ = ∞, X0(n) is said to be an infinite past initialization.

Theorem 1.
(a) Under Assumptions LP and IN, the criterion IC k is weakly consistent for

distinguishing unit root and stationary time series provided Cn → ∞ and
Cn/n → 0 as n → ∞.

(b) The asymptotic distribution of the AIC criterion (IC k with coefficient Cn =
2) is given by

lim
n→∞

P{k̂AIC = 0 | k = 1} = 0, lim
n→∞

P{k̂AIC = 1 | k = 1} = 1,

lim
n→∞

P{k̂AIC = 0 | k = 0} = P{ξ2 < 2}

lim
n→∞

P{k̂AIC = 1 | k = 0} = 1 − P{ξ2 < 2},

where

ξ2 =



(∫ 1

0
dBB + λ

)2 / (
σ2
∫ 1

0
B2
)

under IN(i)(∫ 1

0
dBBτ + λ

)2 / (
σ2
∫ 1

0
B2

τ

)
under IN(ii)

B(1)2/σ2 under IN(iii)

,

B is Brownian motion with variance ω2,

Bτ (s) = B(s) +
√
τB0(1),(2.4)

and B0 is an independent Brownian motion with variance ω2.



68 PETER C. B. PHILLIPS

Remarks.
(1) The weak consistency results in part (a) of Theorem 1 show that informa-

tion criteria can be used, essentially in their present form, for distinguishing
unit root and stationary time series. This approach allows for a nonpara-
metric treatment of the short memory component in both the stationary
and nonstationary models. The simple conditions on the penalty coefficient
Cn that Cn → ∞ and Cn/n → 0 as n → ∞ are minimal. Evidently, BIC
and the Hannan-Quinn criterion are both consistent. Similar arguments
show that the FIC (Wei (1992)) and PIC (Phillips and Ploberger (1996))
criteria are also consistent.

(2) The AIC criterion (with fixed Cn = 2) is inconsistent and the limit distri-
bution of k̂ is seen in part (b) of the theorem to depend on the asymptotic
distribution of the squared unit root t statistic ξ2. This distribution involves
nuisance parameters. The limit variate ξ2 has a unit root limit distribu-
tion under IN(i) and IN(ii) that depends on ω2, σ2 and λ, and a scaled
chi-squared distribution under IN(iii) that depends on ω2 and σ2.

Theorem 2. Under Assumptions LP and IN, the criterion IC k is strongly
consistent for distinguishing unit root and stationary time series provided

Cn

(log log n)3
→ ∞ under IN(i) and IN(ii)

Cn
κn
n

(log log n)2 log log κn
→ ∞ under IN(iii)

(2.5)

and Cn/n → 0 as n → ∞.

Remarks.
(3) The rate condition (2.5) implies that BIC is strongly consistent in distin-

guishing unit root and stationary models under IN(i) and IN(ii) and strongly
consistent under IN(iii) provided κn does not increase too fast relative to n.
The results complement those of Wei (1992), who proved strong consistency
of the BIC and FIC criteria in order selection for parametric autoregressions
allowing for nonstationarity.

(4) The proof of Theorem 2 depends on the asymptotic behavior of the
quadratic form u′P−1u, which involves the projection matrix P−1 =
X−1(X

′
−1X−1)

−1X ′
−1, where X−1 = (X0, X1, . . . , Xn−1)

′, and u = (u1, . . . ,
un)′. The asymptotic properties of projections of this type arising in
stochastic regression models were studied by Lai and Wei (1982a) for mar-
tingale differences ut in a general regression setting. Their Lemma 2(ii)
and Theorem 3 (see, in particular, equation (2.18)) give the following order
for u′P−1u when Xt is generated by the unit root model UR and ut is a
martingale difference with uniform 2 + η moments with η > 0:

u′P−1u = Oa.s.

(
log

(
n∑
1

X2
t−1

))
= Oa.s.(log n).(2.6)
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(See also Lemma 2(iii) and equation (3.25) in Lai and Wei (1982b).) In
parametric stochastic regression models that include nonstationary autore-
gressions, Pötscher (1989) used (2.6) to establish strong consistency of in-
formation criteria of the form IC k under an expansion rate for the penalty
coefficient Cn that requires Cn/ log n → ∞, thereby excluding BIC. In the
proof of Theorem 2, we make explicit use of the fact that Xt−1 = St−1 +X0,
where St is a partial sum of the uj , to establish that in this case

u′P−1u =


Oa.s.((log logn)3) under IN(i) and IN(ii)

Oa.s.

(
κn
n

(log logn)2 log log κn

)
under IN(iii)

,(2.7)

giving a sharper result than (2.6). In proving (2.6), Lai and Wei (1982a,
Lemma 2) consider the sample covariance of a martingale difference with
a general random sequence that is not necessarily a partial sum process of
the innovations. In view of the unit root structure, we can make use of the
following explicit decomposition of the sample covariance

n∑
t=1

St−1ut =
1

2

{
S2
n −

n∑
t=1

u2
t

}
= Oa.s.(n log logn),

which, in conjunction with a lower bound result for
∑n

t=1 S
2
t−1, leads directly

to (2.7) under the commonly used initial conditions IN(i) and IN(ii).

3. Proofs

Proof of Theorem 1.
Part (a) Suppose the true model is a UR model with ρ = 1 in (1.1). Then

IC 0 = log σ̂2
0 = log

{
u′u
n

}
.

Define P−1 = X−1(X
′
−1X−1)

−1X ′
−1, X−1 = (X0, X1, . . . , Xn−1)

′, and u =
(u1, . . . , un)′. The behavior of IC 1 depends on u′P−1u, which we now investigate
under the various initializations.

Under IN(i), we have (Phillips (1987))

u′P−1u ⇒
(∫ 1

0
dBB + λ

)2 / ∫ 1

0
B2, as n → ∞,(3.1)

where λ =
∑∞

h=1 E(utut−h), and B is Brownian motion with variance ω2. Under
IN(ii) we have (e.g., Phillips and Magdalinos (2007))

u′P−1u ⇒
(∫ 1

0
dBBτ + λ

)2 / ∫ 1

0
B2

τ ,(3.2)
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where Bτ (s) = B(s) +
√
τB0(1), τ ∈ (0,∞), and B0 is a Brownian motion with

variance ω2 that is independent of B. Under IC(iii) Phillips and Magdalinos
(2007, Theorem 2) show that

u′P−1u =

(
1√
κnn

∑n
t=1 Xt−1ut

)2

1

κnn

∑n
t=1 X

2
t−1

⇒ B(1)2.(3.3)

Thus, whether the initialization is recent, distant or infinitely distant, we have
u′P−1u = Op(1).

It follows that

IC 1 = log σ̂2
1 +

Cn

n
= log

{
n−1

n∑
t=1

(Xt − ρ̂Xt−1)
2

}
+

Cn

n

= log

{
1

n
(u′u− u′P−1u)

}
+

Cn

n

= log
u′u
n

+ log

[
1 − u′P−1u

u′u

]
+

Cn

n

= log
u′u
n

+ log

[
1 − u′P−1u

nσ2{1 + oa.s.(1)}

]
+

Cn

n

= log
u′u
n

+
Cn

n
− u′P−1u

nσ2
{1 + oa.s.(1)}.

Hence,

IC 0 − IC 1 = −Cn

n
+

u′P−1u

nσ2
{1 + oa.s.(1)}

= −Cn

n

{
1 − u′P−1u

Cnσ2
+ oa.s.

(
1

Cn

)}
(3.4)

< 0

when Cn → ∞ as n → ∞ because u′P−1u
Cnσ2 = Op(C

−1
n ). Thus, criterion IC k

correctly selects the unit root model in favor of the stationary model when ρ = 1.
This is the case irrespective of the initial condition and holds provided Cn → ∞.

Next suppose the true model is stationary and Xt = ut. Then we have

ρ̂ =
n∑

t=1

XtXt−1

/
n∑

t=1

X2
t−1 =

n∑
t=1

utut−1

/
n∑

t=1

u2
t−1 →a.s. ρ =

E(utut−1)

E(u2
t−1)

:=
γ1

γ0
,

where γh = E{utut−h}. Observe that in this case by the strong law of large
numbers

IC 0 = log σ̂2
0 = log

{
1

n
(u− u−1)

′(u− u−1)

}
= log

{
u′u
n

− 2
u′u−1

n
+

u′−1u−1

n

}
= log{2γ0 − 2γ1 + oa.s.(1)}

= log{2γ0(1 − ρ)} + oa.s.(1).
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Also, n−1u′P−1u = (n−1u′u−1)
2/(n−1u′−1u−1) →

a.s.
γ2

1/γ0, and then

IC 1 = log

{
1

n
(u′u− u′P−1u)

}
+

Cn

n

= log

{(
u′u
n

)(
1 − n−1u′P−1u

n−1u′u

)}
+

Cn

n

= log

{
γ0

(
1 − γ2

1

γ2
0

)
+ oa.s.(1)

}
+

Cn

n

= log{γ0(1 − ρ2)} +
Cn

n
+ oa.s.(1).

It follows that

IC 0 − IC 1 = log{2γ0(1 − ρ)} − log{γ0(1 − ρ2)} − Cn

n
+ oa.s.(1)(3.5)

= log
2

1 + ρ
− Cn

n
+ oa.s.(1) > 0, a.s.

as n → ∞ provided Cn
n → 0. Hence, the criterion IC k correctly selects the

stationary model a.s. as n → ∞ for both fixed Cn and Cn → ∞ at a slower rate
than n.

Part (b) We seek to find the limit distribution of the AIC criterion (i.e.,
IC k in (1.2) with Ck = 2). Note from the above that AIC makes the correct
choice when the model is stationary as (3.5) holds when Cn is fixed as n → ∞.
Then

lim
n→∞

P{k̂AIC = 0 | k = 1} = 0, lim
n→∞

P{k̂AIC = 1 | k = 1} = 1,(3.6)

as stated. On the other hand, when the model has a unit root, we have from
(3.4) and (3.1)–(3.3)

n(IC 0 − IC 1) = −2 +
u′P−1u

σ2
{1 + oa.s.(1)}

⇒ −2 + ξ2,

where

ξ2 =



(∫ 1

0
dBB + λ

)2 / (
σ2
∫ 1

0
B2
)

under IN(i)(∫ 1

0
dBBτ + λ

)2 / (
σ2
∫ 1

0
B2

τ

)
under IN(ii)

B(1)2/σ2 under IN(iii)

.

It follows that

lim
n→∞

P{k̂AIC = 0 | k = 0} = lim
n→∞

P{n(IC 0 − IC 1) < 0} = P{ξ2 < 2}

lim
n→∞

P{k̂AIC = 1 | k = 0} = 1 − P{ξ2 < 2}.
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Combining this with (3.6) gives the required limit distribution.

Proof of Theorem 2. In view of (3.5), when the stationary model is
true the criterion IC k correctly selects the stationary model a.s. as n → ∞ for
fixed Cn and for Cn → ∞ provided Cn/n → 0. To establish strong consistency
we therefore need only consider the limit behavior under the unit root model.
From (3.4) we have

IC 0 − IC 1 = −Cn

n

{
1 − u′P−1u

Cnσ2
+ oa.s.

(
1

Cn

)}
,

and so we need to examine the limit behavior of

u′P−1u

Cn
=

(u′X−1)
2

Cn(X ′
−1X−1)

.

By a result of Donsker and Varadhan (1977, equation (4.6) on p. 751)—see also
equation (3.29) of Lai and Wei (1982a)—we have under IN(i)

lim inf
n→∞

log log n

n2

n∑
t=1

X2
t−1 > 0, a.s.,(3.7)

which gives a lower limit of Oa.s.(
n2

log logn) to the fluctuations of the sample in-

formation
∑n

t=1 X
2
t−1. In this case, n−1/2Xt behaves in the limit like a Brow-

nian motion and the lower limit (3.7) is obtained in Donsker and Varadhan
(1977, p. 751) by way of the lower limit of the corresponding limiting quan-
tity log logn

n2

∫ n
0 B(s)2ds. Result (3.7) may also be shown to hold under IN(ii) and

IN(iii). In particular, note that in both these cases we can write Xt = St+X0(n),
where St =

∑t
1 uj . Then

n∑
1

X2
t−1 ≥

n∑
t=1

(Xt−1 − X̄−1)
2 =

n∑
t=1

(St−1 − S̄−1)
2,

where X̄−1 = n−1∑n
t=1 Xt−1 and S̄−1 = n−1∑n

t=1 St−1, so that

lim inf
n→∞

log log n

n2

n∑
t=1

X2
t−1 ≥ lim inf

n→∞
log logn

n2

n∑
t=1

(St−1 − S̄−1)
2.(3.8)

The lower bound (3.8) is the same as

lim inf
n→∞

log log n

n2

∫ n

0

(
B(s) − n−1

∫ n

0
B(s)ds

)2

ds(3.9)

= lim inf
n→∞

∫ 1

0

(
Bn(p) −

∫ 1

0
Bn

)2

dp,

where

Bn(p) =

(
log log n

n

)1/2

B(pn) for 0 ≤ p ≤ 1
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is Brownian motion over [0, 1] with variance (log logn)ω2 → ∞. The lower limit
of the variation (3.9) therefore satisfies

lim inf
n→∞

∫ 1

0

(
Bn(p) −

∫ 1

0
Bn

)2

dp > 0 a.s.

by virtue of the properties of Brownian motion. Otherwise Bn(p) would necessar-
ily be constant with positive probability as n → ∞. It follows that under IN(ii)

and IN(iii) the same lower bound of order Oa.s.(
n2

log logn) applies for
∑n

1 X
2
t−1.

Next note that

n∑
t=1

utXt−1 =
n∑

t=1

utSt−1 + X0

n∑
t=1

ut(3.10)

=
1

2

{
S2
n −

n∑
t=1

u2
t

}
+ X0

n∑
t=1

ut

= Oa.s.(n(log log n)) + Oa.s.(X0(n)
√
n log log n),

by virtue of the law of the iterated logarithm (e.g., Phillips and Solo (1992)) for
Sn. It follows that under IN(i) and IN(ii) and in view of a further application of
the law of the iterated logarithm to X0(n) and using (3.7) we find that

u′P−1u = Oa.s.

(
n2(log logn)2

n2/ log logn

)
= Oa.s.((log logn)3).

We deduce that

IC 0 − IC 1 = −Cn

n

{
1 − u′P−1u

Cnσ2
+ oa.s.

(
1

Cn

)}
< 0,

whenever

Cn

(log log n)3
→ ∞,(3.11)

as n → ∞ for then u′P−1u
Cnσ2 = oa.s.(1) and IC 0 < IC 1 a.s. as n → ∞. This proves

strong consistency under the rate condition (3.11) and initial conditions IN(i)
and IN(ii).

When IN(iii) applies, (3.10) holds and we have

n∑
t=1

utXt−1 = Oa.s.(n(log logn)) + Oa.s.(X0(n)
√
n log log n)

= Oa.s.(
√
κn log log κn

√
n log logn),

by the law of the iterated logarithm for X0(n). Then, using (3.7), we have

u′P−1u = Oa.s.

(
nκn log log n log log κn

n2/ log log n

)
= Oa.s.

(
κn
n

(log logn)2 log log κn

)
,
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and deduce that

IC 0 − IC 1 = −Cn

n

{
1 − u′P−1u

Cnσ2
+ oa.s.

(
1

Cn

)}
< 0

whenever

Cn
κn
n

(log log n)2 log log κn
→ ∞.(3.12)

This proves strong consistency under the rate condition (3.12) and the initial
condition IN(iii).
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