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ON THE SELECTION OF IRREGULAR, MISSPECIFIED
REGRESSION MODELS: A COMMENT ON FOLKLORE

D. S. Poskitt*

In this paper we will investigate the consequences of applying model selec-
tion methods under regularity conditions that are sufficiently general to encompass
(i) stochastic models involving non-stationary processes and (ii) situations where the
true structure of the process falls outside the class of models under consideration.
The properties of selection criteria that use very general measures of model com-
plexity are considered and the results are used to draw attention to the fallacy of
traditional beliefs concerning commonly employed model selection criteria.

Key words and phrases: Consistency, misspecified models, model selection, regres-
sion.

1. Introduction

Since the introduction of model selection criteria of the type first introduced
by Akaike (Akaike (1974)) an extensive literature has been built up concerning
the empirical and theoretical behaviour of such criteria, see, inter alia, McQuarrie
and Tsai (1998). Much of this literature is concerned with the ability of the
selection criteria to select the true model and in such discussions consistency is
often deemed to be of fundamental importance. Here consistent means that the
frequency of correct model selection converges to one as sample size T increases.
The importance of consistency arises because a set of candidate models R is
available for analysis, there is uncertainty about which model should be used,
and a data-based choice is made from among the models in R. Subsequent
inference is then conducted using the selected model. Employing a consistent
procedure is therefore seen as desirable since, asymptotically at least, the true
model will have been chosen and the inference will be valid.

Basing inference on the selected model as if it were the only one considered
and ignoring model selection uncertainty is clearly a flawed process. Aspects of
this problem are addressed in Potscher (1991) and Shen et al. (2004). Equally
inappropriate is the notion that the chosen model represents the truth. Most
theorists and practitioners would surely agree that models are only approxima-
tions to reality. (“All models are wrong, but some are useful” is a well known
statement accredited to G. E. P. Box.) Classical derivations of consistency typi-
cally assume, nevertheless, that a minimal true model exists, that this true model
is included in R, and when taking the limit in T when deriving the asymptotic
properties of a selection criterion the true model is held fixed. If we drop the
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pretence that a true model exists then the property of consistency in the classical
sense is less relevant, or at least needs reinterpretation. If all models are approx-
imations, then an appropriate model for the analysis of a particular data set
may depend on sample size—models employed with large data sets can be more
highly structured and parameterized compared to those that are used when T is
small, the question of parsimony notwithstanding. Given this latter viewpoint,
what is at issue is whether the data can be characterized by a model that is ei-
ther (a) relatively simple, containing a few large, clearly discernable features, or
(b) more complex, involving several smaller, more subtle interrelated effects.
Thus we may want to consider increasing the number and complexity of the
models in R as T increases and our analysis might be aimed at a moving target.

This paper examines model selection criteria in situations where the data
generating processes under study and the models being used to describe them
are not synonymous, allowing for the possibility that all models under consider-
ation are false. Working in the context of fully specified, but possibly incorrect,
probability models, Nishii (1988) and Vuong (1989) have shown that penalized
log-likelihood and quasi-likelihood ratio test methods will, under appropriate con-
ditions including i.i.d. assumptions, select models that minimize the Kullback-
Liebler divergence, see also Sin and White (1996). The results presented here are
similar to those obtained by these authors, but they are at the same time both
(a) more specific, in that they focus on models that have been fitted using least
squares, and (b) less restrictive, in that they impose regularity conditions on the
data generating processes and models that are minimal and very weak.

To the current author’s knowledge the majority of papers in this area employ
assumptions that amount to assuming homoscedastic, stationary structures. Two
notable exceptions are Paulsen and Tjøstheim (1985) and Potscher (1989). This
paper expands on the ideas presented in these latter two articles and considers the
properties of penalized least squares model selection procedures under conditions
on the data generating process that are sufficiently weak to permit the analysis of
heterogeneous data structures, as well as stationary and non-stationary processes.
Thus we will provide an analytical background that is sufficiently flexible to allow
for various different modeling scenarios involving irregular situations. We will
also consider the behaviour of selection criteria constructed using penalty terms
that are very general functions of the data. Unlike more conventional criteria
such as AIC and BIC where the penalty only depends on the model dimension,
such criteria attempt to measure other features of the model. One such criterion
function, based on entropic complexity, is presented in Poskitt (1987).

2. Modeling assumptions

We will suppose that we are interested in modeling a real valued stochastic
process yt, t ∈ N, defined on a probability space (Ω,F, P ), using a linear regres-
sion model where the regressors are chosen from the collection R = {ztn : n =
1, . . . , N}, N ∈ N, of real-valued processes defined on the same probability space
as yt. Here N denotes the natural numbers (positive integers) and the variables



MODEL SELECTION FOLKLORE 77

in R are those deemed to be appropriate for the analysis at hand. In this case the
set of relevant models R contains the 2N different models MJ , J = 1, . . . , 2N ,
where under model MJ the subset of regressors {ztnJ(k)

: k = 1, . . . ,KJ} enter
the regression equation. Let Fs, s ∈ N ∪ {0}, denote a filtration of the σ-field
F. Then we will suppose that {ztn : n = 1, . . . , N} are Ft−1-measurable for all
t ∈ N. Note that we are not assuming that the models exhibit any particular
structure. They are not nested, for example, although situations where the po-
tential regressors have a natural ordering and all or subsets of the models are
nested are clearly encompassed within the framework that we envisage.

Assumption 1. There exists an Ft−1-measurable function mt such that yt
can be decomposed almost surely (a.s.) into yt = mt + ut such that (i) ut is Ft

measurable, and (ii) E[ut | Ft−1] = 0 for all t ∈ N.

The notation employed in Assumption 1 is motivated by the observation that
the stated decomposition always exists given appropriate integrability, with mt

equal to the conditional mean of yt. Thus we may loosely think of mt as the
mean value of yt. The conditions in Assumption 1 ensure that mt and ut are
uniquely defined up to sets of measure zero and that the innovation process ut
is a martingale difference sequence. More importantly, the processes mt and ut
are assumed to exist independently of any of the models in R.

Before establishing the link between the decomposition of Assumption 1 and
R let us define some additional notation. Let y = (y1, . . . , yT )′ denote the T × 1
vector of observations on the dependent variable, or regressand, and similarly
set m = (m1, . . . ,mT )′ and u = (u1, . . . , uT )′, the corresponding vectors of
unobservable mean values and stochastic disturbances. Define XJ to be the
T ×KJ observation matrix for the regressor set for model MJ with rows x ′

Jt =
(ztnJ(1)

, . . . , ztnJ(KJ )
} for t = 1, . . . , T . For any T × q matrix A with column rank

ρ ≤ q we will use PA to denote the idempotent, symmetric matrix A(A′A)†A′

where (A′A)† denotes the Moore-Penrose generalized inverse of A′A. The T ×T
matrix PA is the (prediction) operator of rank ρ that projects on to the space
spanned by the columns of A and RA = IT − PA is the associated (residual)
operator of rank T − ρ which projects on to the orthogonal complement of that
space. The residual sum of squares obtained from fitting model MJ to the data
is y ′RXJ

y = ‖RXJ
y‖2, where for x ∈ R

T ‖x‖2 = x ′x .

Definition 2.1. A model MJ will be said to be true if ‖RXJ
m‖2 = 0 with

probability one. If , on the other hand , there exists a δ > 0 such that for all
T > T ′ P [ω : T−1‖RXJ

m‖2 > δ] = 1, then MJ will be said to be a false model
with proximity bounded by δ, or more simply a false model. A false model MJ

will be called a pseudo true model of propinquity δ if there exists a T ′ such that
P [ω : T−1‖RXJ

m‖2 < δ] = 1 for all T > T ′. If limT−1‖RXJ
m‖2 = δ a.s. then

MJ will be called a δ-neighbourhood model.

To illustrate Definition 2.1 suppose that yt is an autoregressive process of
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order h, so that mt = α1yt−1 + · · · + αhyt−h, and that R = {yt−n+1 : n =
1, . . . , N}, N > h. If the J ’th model MJ corresponds to an autoregression with
regressors yt−1, . . . , yt−p, MJ = AR{p} say, then MJ = AR{p} will be be true if
p ≥ h, but false if p < h. If yt is a finite order moving-average process, however,
all AR{p} models will be false. The proximity of MJ = AR{p} will depend on
how closely yt can be approximated in mean squared error by an autoregression
of order p. For p sufficiently large MJ = AR{p} will be a pseudo true model

with propinquity that exceeds the almost sure limit of minα1,...,αp T
−1
∑T

t=1[(mt−∑p
j=1 αjyt−j)

2].
Although Definition 2.1 allows for the possibility that there exists a member

of R that is congruent to the true data generating process, it does not of itself
presuppose that the axiom of correct model specification holds. Assuming that
R contains a correct specification, i.e. a true model, will in general be implausible
since the structure of most models is governed by questions other than realism,
analytic tractability often being an important consideration. Indeed, the axiom
of correct model specification can sometimes be precluded by virtue of the very
nature of the models under investigation. We do not want to preclude the axiom
of correct model specification in our analysis, but we do wish to allow for the
rather more reasonable possibility that it is violated.

Assumption 2. The innovation process ut is such that (i) lim inft≥1 σ
2
t > 0

a.s., where σ2
t = E[u2

t | Ft−1], and (ii) supt≥1 E[u2+γ
t | Ft−1] < ∞ a.s. for some

γ > 0.

The restrictions on ut in Assumption 2 mean, in essence, that the noise in the
data generating mechanism does not die out and the observed process does not
ultimately become deterministic. It is useful to note that under Assumption 2

lim inf
T→∞

T−1‖u‖ = lim inf
t≥1

σ2
t > 0 a.s.

and that

T−1‖u‖2 = T−1
T∑
t=1

u2
t = σ̄2 + o(1) a.s.

where σ̄2 = T−1
∑T

t=1 σ
2
t (see Chow (1965)).

In Lai and Wei (1982) the eigenvalues of X ′
JXJ are used to characterize very

weak regularity conditions for the strong consistency of least squares estimators in
correctly specified stochastic regression models. If λmax(X

′
JXJ) and λmin(X

′
JXJ)

are, respectively, the maximum and minimum of the non-zero eigenvalues of
X ′

JXJ , it is assumed that

λmin(X
′
JXJ) → ∞ a.s. and

log λmax(X
′
JXJ) = o(λmin(X

′
JXJ)) a.s.

(2.1)

The restrictions on the regressors given in (2.1) are satisfied by several processes.
If T−1(X ′

JXJ) converges a.s., as would be the case if xJt were stationary and
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ergodic for example, then λmin(X
′
JXJ) = O(T ) and log λmax(X

′
JXJ) = O(log T )

a.s. A linear dynamic input-output system where the exogenous inputs ztn =
O(tα), α > 0, and the autoregressive operator has zeroes on the unit circle in
the complex plane, but is otherwise stable, produces outputs yt = O(tβ), β > 0,
(Lai and Wei (1982), Theorem 2) and log λmax(X

′
JXJ) = O(log T ) a.s. for such

a model. See Lai and Wei (1982) for further discussion. This motivates the
following:

Assumption 3. The regressors in R are such that for all XJ , J = 1, . . . ,
2N , condition (2.1) holds and, furthermore, log λmax(X

′
JXJ)/T → 0 a.s. as T →

∞.

3. Model selection

Let σ̂2
TJ = T−1‖RXJ

y‖2. We will be concerned here with the problem of
selecting a model (or models) from within R using a model selection criterion of
the form

SCT (MJ) = log(σ̂2
TJ) +

C(MJ , T )

T
,

where C(MJ , T ) is a nonnegative, real-valued variable that is chosen so as to
measure the complexity of the model MJ . The complexity measure may be a
function of the data and the order of magnitude of C(MJ , T ) is assumed to be
the same for all candidate models, so that the ratio of any two such functions
is O(1). Common choices are C(MJ , T ) = 2KJ and C(MJ , T ) = KJ log T ,
which give rise to AIC and BIC respectively. The operational characteristics
of SCT (MJ) can be determined from the following lemma, wherein an event
ET ⊆ Ω is said to occur eventually if P [Ω\ET ] = 0 for T sufficiently large.

Lemma 3.1. Suppose that Assumptions 1, 2 and 3 hold.
(i) Without loss of generality , let M1 be a true model or a pseudo true model of

propinquity δ1, and M2 a false model with proximity bounded by δ2 ≥ δ1 > 0.
Then the event

log

(
σ̂2
T2

σ̂2
T1

)
>

C(M1, T ) − C(M2, T )

T

will occur eventually if

C(M1, T ) − C(M2, T )

T
→ 0 a.s.

as T → ∞.
(ii) Now let M1 and M2 denote two models for which

‖(RX2 −RX1)m‖ = O(‖(RX2 −RX1)u‖)(3.1)

and

|‖RX2m‖2 − ‖RX1m‖2| = O(|‖RX2u‖2 − ‖RX1u‖2|),(3.2)
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set ξT = max{‖PX1u‖2, ‖PX2u‖2}, and suppose that |C(M1, T ) −
C(M2, T )| → ∞ as T → ∞ such that

lim inf
T→∞

|C(M1, T ) − C(M2, T )|
ξT

≥ c > 0 a.s.(3.3)

Then if c is sufficiently large, there exists a random variable c′T (ω) such
that for almost all ω and all T sufficiently large, c′T (ω) ≥ γ > 0 and

T (SCT (M1) − SCT (M2))

ξT
→ ±c′T (ω) a.s.

according to whether |C(M1, T )−C(M2, T )| = ±(C(M1, T )−C(M2, T )).

Note that for two true models conditions (3.1) and (3.2) hold trivially since
‖(RX2 −RX1)m‖2 = 0 and ‖RXJ

m‖2 = 0. If MJ is a false model, however, the
approximation error ‖RXJ

m‖2 grows at least linearly with T , and it is possible
for ‖RXJ

m‖2 to have an order of magnitude greater than T . Thus, if M1

is true and M2 is false then (3.1) and (3.2) must be violated; since ‖(RX2 −
RX1)m‖2 = ‖RX2m‖2 − ‖RX1m‖2 = ‖RX2m‖2 = O(Tα) where α ≥ 1 but
the right hand sides of (3.1) and (3.2) are both of order ξT at most, and by
Lemma 1 (iii) of Lai and Wei (1982) ‖PXJ

u‖2 = O(log λmax(X
′
JXJ)) a.s. and

log λmax(X
′
JXJ)/T → 0 a.s. by Assumption 3. Similarly, if M1 is a pseudo true

model then ‖RX1m‖2 = O(T ), and if M2 is false and ‖RX2m‖2 = O(Tα) where
α > 1, then ‖(RX2 −RX1)m‖2 and |‖RX2m‖2 −‖RX1m‖2| will both be O(Tα)
and again (3.1) and (3.2) will not hold. For two pseudo true models M1 and M2

whose regressors are not collinear, but which nevertheless satisfy (3.1) and (3.2),
T−1|‖RX2m‖2 − ‖RX1m‖2| → 0 a.s. as T → ∞, implying that the two models
will eventually have the same proximity and propinquity. Conditions (3.1) and
(3.2) will hold in a trivial sense if the regressors of two false models span the
same space, of course, because then RX2m = RX1m .

Now let us suppose that model selection is based upon the minimization of
SCT (MJ) over the 2N different models in R. The chosen model is

M̂ = arg min
MJ∈R

SCT (MJ),

or an arbitrary model that minimizes the criterion function if the minimum is not
unique. Let R(δ) denote the subset of pseudo true models in R of propinquity
δ, N(δ) the subset of δ-neighbourhood models, and let T denote the subset of
models in R that are true. Set R(0) = ∅ and T(δ) = T∪R(δ). Now let ∆ denote
the finite set of (at most 2N ) different values of δ such that δ = inf δ′ ∈ (0,∞) :
MJ ∈ {T(δ′) ∪ N(δ′)} for J = 1, . . . , 2N , and let δ∗ ∈ ∆ be such that δ ∈ ∆

implies δ ≥ δ∗ ≥ 0. Then the following result characterizes the behaviour of M̂.

Theorem 3.2. Suppose that Assumptions 1, 2 and 3 hold. Then:
(i) The event M̂ ∈ {T(δ∗) ∪ N(δ∗)} occurs eventually if for all MJ the com-

plexity measures satisfy C(MJ , T )/T → 0 a.s. as T → ∞.
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(ii) If for any two models M1,M2 ∈ {T(δ∗) ∪ N(δ∗)} the complexity mea-
sures satisfy C(MJ , T ) → ∞ a.s. as T → ∞ for J = 1, 2,, and conditions

(3.1), (3.2) and (3.3) of Lemma 3.1 obtain, then eventually M̂ will be ei-
ther (i) a true model of minimal complexity , or , if T = ∅, a pseudo true
δ∗-neighbourhood model of minimal complexity , or (ii) a false model with
proximity bounded by δ∗.

4. Implications

Combining parts (i) and (ii) of Theorem 3.2 indicates that if the com-
plexity measure is structured so that C(MJ , T ) → ∞ as T → ∞ such that
lim inf C(MJ , T )/‖PXJ

u‖2 ≥ c > 0 and C(MJ , T )/T → 0 a.s., then if c is suf-
ficiently large SCT (MJ) will be consistent for the true model of minimal com-
plexity, if such exists, and if no true model exists then SCT (MJ) will eventually
select the closest approximating, pseudo true model with minimal complexity.

Consider now the behaviour of

AIC = log(σ̂2
TJ) +

2KJ

T
and BIC β = log(σ̂2

TJ) + β · KJ log T

T

where β > 0. AIC (Akaike (1974)) and BIC = BIC 1 (Schwarz (1978)) are
arguably the two most popular model selection criteria in current use. Obviously
AIC satisfies the first part of Theorem 3.2 but not the second. BIC β also satisfies
Theorem 3.2 (i) for any β > 0. Moreover, ‖PXJ

u‖2 = O(log λmax(X
′
JXJ)) a.s.

(Lai and Wei (1982), Lemma 1 (iii)) and if log λmax(X
′
JXJ) = o(log T ) a.s. and β

is sufficiently large, BIC β will also satisfy Theorem 3.2 (ii) and will be consistent.
Thus, under the current scenario we reproduce the “well known result” that AIC
is not consistent in the classical sense. Perhaps rather surprisingly, we also find
that consistency of BIC is not guaranteed.

Knowledge that BIC β will be consistent if β is chosen sufficiently large is not
particularly useful. Even if it can be shown that log λmax(X

′
JXJ) = o(log T ) a.s.,

the value of β required to produce consistency depends on the models and the
data generating process and will be unknown to the practitioner. An arbitrary
choice of β is unlikely to be innocuous, although there are situations where BIC β

will be consistent for any choice of β. If yt is a stationary autoregressive process,
for example, and XJ corresponds to an autoregressive model with regressors
yt−1, . . . , yt−J , then it can be shown that ‖PXJ

u‖2 = O(log log T ) and condition
(3.3) can be replaced by lim infT→∞ |C(M1, T ) − C(M2, T )|/ log log T ≥ c > 0
(c.f. Hannan and Quinn (1979)). Thus BIC β will be consistent for any value
of β > 0 in this case. Such examples lend support to the oft-stated comment
that BIC is consistent, but examples of this type can also be used to show that,
contrary to common belief, AIC can be consistent. Following Knight (1989),
suppose that yt is a finite autoregression with innovations that constitute a simple
random sample from a distribution that is in the domain of attraction of an α-
stable law where α ∈ (0, 2). Assumption 2 will now be violated. Nevertheless,
it can be shown that ‖PXJ

u‖2 = O(log T/T )1/α = o(1) in probability (Theorem
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2.1, Phillips (1990, p. 50)) and AIC will be (weakly) consistent (see Burridge
and Hristova (2007) for further details). Indeed, from the inequality ‖PXJ

u‖2 ≤
‖XJu‖2/λmin(X

′
JXJ) it follows from Assumption 3 that in situations where the

assumptions on the innovation process ut are sufficient to ensure that ‖XJu‖2 =
o(λmin(X

′
JXJ)), any criterion SCT (MJ) where C(MJ , T )/T → 0 as T → ∞,

will be consistent.
If all the candidate models are false and δ∗ > 0 then M̂AIC and M̂BICβ

,
to use an obvious notation, will eventually enter N(δ∗) and we can think of
AIC and BIC β as being approximation-consistent in that they will select the
closest approximating model from within R. If N(δ∗) contains two or more
models that are equally close to the data generating process then T−1‖RX2m‖2 =
T−1‖RX1m‖2 = δ∗. In this case AIC will not necessarily select the δ∗-neigh-
bourhood model of minimal dimension, nor need BIC β. When T = ∅ the target
model is, presumably, a model that minimizes the approximation error, but if
more than one such model exists we may wish to distinguish between them on the
basis of desiderata other than just parsimony. This suggests giving consideration
to complexity measures C(MJ , T ) that could be very different from the type of
penalty terms that appear in AIC and BIC .

Finally, in discussions involving the most commonly used model selection
devices it is often supposed that AIC is inconsistent and that BIC is consistent.
From the previous analysis it is clear that a cavalier assumption that this folk-
lore holds true is unlikely to be justified, even in the context of relatively simple
models. Yang (2005) has shown that for the estimation of regression functions,
consistency and minimax optimal convergence rates are incompatible. It seems
therefore that we can conclude that there are cases where both AIC and BIC
will be consistent but not optimal, and vice-versa! The ideas on model selec-
tion introduced by Akaike have spawned a vast literature, and Yang’s seemingly
paradoxical result suggests that they are likely to continue to do so.

5. Proofs

Proof of Lemma 3.1. Part (i). Consider first the difference

T (σ̂2
T2 − σ̂2

T1) = ‖RX2y‖2 − ‖RX1y‖2.(5.1)

Substituting y = m + u and expanding the right hand side we obtain

‖RX2y‖2 − ‖RX1y‖2 = (‖RX2m‖2 − ‖RX1m‖2)(5.2)

+ 2(m ′RX2u −m ′RX1u)

+ (‖PX1u‖2 − ‖PX2u‖2).

By Lemma 1 (iii) of Lai and Wei (1982)

‖PXJ
u‖2 = O(log λmax(X

′
JXJ)) a.s., J = 1, 2,(5.3)

and by Corollary 2 to the same lemma (Lai and Wei (1982, p. 159))

m ′RXJ
u = O(‖RXJ

m‖[log ‖RXJ
m‖]1/2) a.s.,(5.4)
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for J = 1, 2. By assumption, however, T−1‖RX1m‖2 < δ1 and T−1‖RX2m‖2 ≥
δ2 > δ1 a.s. It follows that for all T sufficiently large the right hand side of (5.2)
can be bounded below by

‖RX2m‖2

[(
1 − δ1

δ2

)
(1 + o(1)) +

o(1)

δ2

]
a.s.

Now, ‖RX1y‖2 ≤ ‖y‖2 and applying Minkowski’s inequality to ‖y‖ = ‖m +
u‖ we find that

T σ̂2
T1 = ‖RX1y‖2 ≤ ‖u‖2

(‖m‖
‖u‖ + 1

)2

.

Thus we can conclude that the event

σ̂2
T2 − σ̂2

T1

σ̂2
T1

≥ ‖RX2m‖2

‖u‖2

( ‖u‖
‖m‖ + ‖u‖

)2 [(
1 − δ1

δ2

)
(1 + o(1)) +

o(1)

δ2

]
will occur eventually.

It follows that

log

(
σ̂2
T2

σ̂2
T1

)
= log

(
1 +

σ̂2
T2 − σ̂2

T1

σ̂2
T1

)
≥ log

(
1 +

1

(σ̄2 + o(1))

( ‖u‖
‖m‖ + ‖u‖

)2

[(δ2 − δ1)(1 + o(1)) + o(1)]

)
> 0 a.s.

and hence that the event

log

(
σ̂2
T2

σ̂2
T1

)
>

C(M1, T ) − C(M2, T )

T

will occur eventually if {C(M1, T ) − C(M2, T )}/T → 0 a.s.
Part (ii). By definition∣∣∣∣log

(
σ̂2
T2

σ̂2
T1

)∣∣∣∣ = log

(
1 +

|σ̂2
T2 − σ̂2

T1|
min{σ̂2

T2, σ̂
2
T1}

)
.

Let

ζT =
|σ̂2

T2 − σ̂2
T1|

min{σ̂2
T2, σ̂

2
T1}

.

By the Mean Value Theorem of calculus (Apostol (1960, Theorem 5-10))∣∣∣∣log

(
σ̂2
T2

σ̂2
T1

)∣∣∣∣ = ζT
1 + λζT

(5.5)
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where 0 ≤ λ ≤ 1 for ζT in a neighbourhood of the origin. We will show below that
ζT → 0 a.s. as T → ∞ and thus it follows that (5.5) will hold with probability
one as T → ∞.

To verify that ζT → 0 a.s. as T → ∞ note from (5.1) and (5.2) that

T |σ̂2
T2 − σ̂2

T1| ≤ |‖RX2m‖2 − ‖RX1m‖2| + 2|m ′(RX2 −RX1)u |(5.6)

+ |‖PX1u‖2 − ‖PX2u‖2|.

Now, by Corollary 2 to Lemma 1 of Lai and Wei (1982)

|m ′(RX2 −RX1)u | = O(‖(RX2 −RX1)m‖[log ‖(RX2 −RX1)m‖]1/2) a.s.,

and for any two models that satisfy conditions (3.1) and (3.2)

‖(RX2 −RX1)m‖ = O(‖PX1u‖ + ‖PX2u‖)
and

|‖RX2m‖2 − ‖RX1m‖2| = O(‖PX1u‖2 + ‖PX2u‖2),

since

‖(RX2 −RX1)u‖ = ‖(PX2 −PX1)u‖ ≤ ‖PX1u‖ + ‖PX2u‖
and

|‖RX2u‖2 − ‖RX1u‖2| = |‖PX2u‖2 − ‖PX1u‖2| ≤ ‖PX1u‖2 + ‖PX2u‖2.

We can therefore conclude from (5.6) that T |σ̂2
T2 − σ̂2

T1| is majorized by

4ξT

[
O(1) + O

(
(‖PX1u‖ + ‖PX2u‖)[log(‖PX1u‖ + ‖PX2u‖)]1/2

‖PX1u‖2 + ‖PX2u‖2

)]
(5.7)

and hence, by virtue of (5.3) and Assumption 3, that |σ̂2
T2 − σ̂2

T1| → 0 with
probability one as T → ∞.

Similarly,

min{σ̂2
T2, σ̂

2
T1}

= T−1 min
J=1,2

{‖RXJ
m‖2 + 2m ′RXJ

u + ‖RXJ
u‖2}

= min
J=1,2

{
‖RXJ

m‖2

T

[
1 + 2O

(
[log(‖RXJ

m‖)]1/2
‖RXJ

m‖

)]
+

‖RXJ
u‖2

T

}

≥ {‖u‖2 − maxJ=1,2 ‖PXJ
u‖2}

T
= σ̄2 + o(1) a.s.

and it follows that ζT → 0 a.s. as T → ∞, as required.
Thus, from (5.5) we can deduce that

T{SCT (M1) − SCT (M2)}
ξT

= ζ ′T ± |C(M1, T ) − C(M2, T )|
ξT

a.s.(5.8)
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according to whether C(M1, T )−C(M2, T ) = ±|C(M1, T )−C(M2, T )|, where

|ζ ′T | =
TζT

ξT (1 + λζT )

≤ TζT
ξT

and T (σ̄2 + o(1))ζT is bounded by (5.7). The desired conclusion now follows,
with the right hand side of (5.8) equal to ±c′T (ω) as |C(M1, T ) − C(M2, T )| =
±(C(M1, T )−C(M2, T )), since log λmax(X

′
JXJ)/ξT = O(1) a.s. This completes

the proof. �

Proof of Theorem 3.2. To show Part (i) assume that M̂ does not en-

ter {T(δ∗) ∪ N(δ∗)}. Then eventually M̂ = M2 where M2 is a false model
with proximity bounded by δ∗. By Lemma 3.1 (i) however, this implies that
SCT (M2) > SCT (M1) infinitely often for any M1 ∈ {T(δ∗)∪N(δ∗)}, contradict-

ing the definition of M̂. Hence M̂ must enter {T(δ∗)∪N(δ∗)} eventually. Part (ii)
follows similarly. Assume M1,M2 ∈ {T(δ∗)∪N(δ∗)} and C(M1, T ) < C(M2, T )
a.s. Then by Lemma 3.1 (ii)

T{SCT (M1) − SCT (M2)}
ξT

→ −c′T (ω) ≤ −γ < 0.

Thus the possibility that M̂ will eventually equal M2 is excluded. Hence we
can conclude that eventually M̂ must either equal M1, or M̂ does not enter
{T(δ∗) ∪ N(δ∗)}. If δ∗ = 0 then M1 is a true model of minimal complexity,
if δ∗ > 0 then M1 is a pseudo true δ∗-neighbourhood model of minimal complex-
ity. �
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