
Introduction

Molecular biology has experienced an unprecedented explo-
sion of available data over the last decade with the introduc-
tion of high-throughput experimental technologies in the
fields of genomics, transcriptomics, proteomics, and
metabolomics, collectively termed with other-omes as
“omics.” The wealth of available biological data is best exem-
plified by the 858 databases listed in the Nucleic Acids Re-
search Molecular Biology Database Collection 20061) and
over 2000 genome projects listed in the Genomes OnLine
Database2) that are growing at an exponential rate (see the
graph in http://www.ncbi.nih.gov/Genbank/genbankstats.html).
Computational approaches and bioinformatics have already
proven to be a successful and indispensable counterpart in
molecular biology to utilize the huge masses of information,
both in the hypothesis-free and hypothesis-generating
processes.3) The first approach was primarily required in the

genome projects such as in filtering and pre-processing of
large-scale experimental data and for functional and structural
characterization of genes and other molecular components.
The latter is more crucial in the post-genome era, which com-
pensates the research cycle of molecular biology by generat-
ing hypotheses that are difficult to formulate with only human
intuition through the use of in silico data mining of the variety
of complex omics data.

Despite of the existence of a myriad of established bioin-
formatics software tools for specific tasks, a combination of
the software tools in a pipeline or a workflow interlinking the
available tools and databases is required in order to perform
bioinformatics research, just as bench biologists require ex-
perimental protocols integrating numerous procedures and ap-
paratuses. For example, even the trivial task of homology
searching consists of a workflow of querying databases for a
sequence, retrieving the sequence record, running a BLAST4)

search for the obtained sequence, parsing the output, and fil-
tering the result to retrieve desired matches. EnsEMBL is a
perfect example of a bioinformatics pipeline in action, com-
bining numerous software tools and databases to achieve
genome annotation in automation.5) Therefore a meta-level
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software platform for the integration of multiple software
tools and databases to develop workflows is essential for ef-
fective computational biology researches. As a platform, such
an integrated workbench should be able to handle multiple
database and software input and output (I/O) formats, should
be equipped with rich user interfaces in the development of
the workflows, and should be able to build and reuse analysis
workflows. Tools for each of these purposes have become
available mostly from open-source community based efforts,
with Bio*Toolkit being the most successful example.6,7) BioP-
erl,8) BioJava, BioPython, and BioRuby projects hosted at the
Open Bioinformatics Foundation (http://open-bio.org/, OBF)
provide application programming interfaces (APIs) and li-
braries to handle biological databases and software tools in
the popular programming languages used for bioinformatics
research, Perl, Java, Python, and Ruby. Using these toolkits
bioinformaticians need not worry about the variety of data-
base formats, and can manipulate the data contents seamlessly
as with any other data structures in the programming lan-
guage. The European Molecular Biology Open Software Suite
(EMBOSS) is another successful software package that is
listed at the OBF, which is a comprehensive collection of
more than 150 UNIX command line tools mostly aimed for
bioinformatics sequence analysis.9) Each program included in
the EMBOSS package is accompanied by its I/O definition in
Ajax Command Definitions (ACD) files, which pre-defines
the required data formats and software parameters so that the
command line tools can be easily interlinked to create a work-
flow, making the system interpret all necessary I/O specific
requirements. The Taverna project provides a rich graphical
user interface (GUI) to graphically create and run workflows
by interconnecting available Simple Object Access Protocol
(SOAP) web-services for bioinformatics.10) Several other
projects offer interfaces and means to create reusable work-
flows for life science researchers including Biopipe3) and
GPIPE.11)

So far the main contribution of bioinformatics and compu-
tational biology has primarily belonged to and focused in the
genomics domain, and although successful and important, the
majority of the tasks would be categorized as data processing
and hypothesis-free science. However, more inductive and de-
ductive contributions from in silico researches are critical in
the post-genome era, as the “systems biology” approach rap-
idly gains momentum in the anticipations of its potential to
compensate the traditional descriptive reductionism approach
in the understanding of life as a complex system.12) Systems
biology is a computationally intensive discipline by nature, re-
quiring informatics for the data mining of omics data for hy-
pothesis generation and computational modeling and simula-
tion for in silico experiments for the complex behavior of the
living systems.13) In this way, a computational framework for
post-genome sciences should enable seamless integration of
the multitude of layers of omics data under a uniform inter-
face for data mining, and to aid in silico modeling and obser-

vation of the analysis results in the context of cellular path-
ways and systems.

In order to overcome these issues, the G-language software
suite developed at the Institute for Advanced Biosciences of
Keio University provides an integrated workbench for re-
searchers working with complex omics data. The project was
started in 2001, initially with the development of a generic
workbench for bioinformatics, G-language Genome Analysis
Environment (G-language GAE).14) Currently the software
suite includes a benchmarking method for genome informat-
ics analysis designated Gene Prediction Accuracy Classifica-
tion (GPAC),15) comprehensive application suite for the analy-
sis of cDNAs,16) KEGG-based pathway visualization sys-
tem,17) and a tool to automatically prototype a cell-wide meta-
bolic pathway model from the genome sequence named the
GEM (Genome-based Modeling) System.18)

G-language Genome Analysis Environment

1. System and methods
G-language GAE is an integrated analysis and development
environment for bioinformatics, with three main aims: (1) to
construct an integrated environment for the development of
analysis software, (2) to systematically accumulate existing
analysis software, methodologies, and their results to avoid
redundancy of efforts, and (3) to construct analysis workflows
for frequent batch tasks. Therefore, from the user’s point of
view, G-language GAE may be thought of as a set of software
libraries in the Perl programming language for database ma-
nipulation and genome informatics, or as a bioinformatics ap-
plication equipped with over 200 tools and a GUI, or as a set
of tools and interfaces for the agile development of bioinfor-
matics software.

As a set of Perl libraries, G-language GAE consists of three
main layers: I/O layer, application layer, and interface layer
(see Fig. 1 for overall system architecture). The I/O modules
provide APIs for common database access and manipulation
for GenBank, EMBL, Fasta, Swiss-Prot, and other formats
supported by BioPerl. A single gateway class mediates all I/O,
and the types of databases and corresponding classes required
are automatically interpreted. Data stored as an instance of
the gateway class has uniform structure and can be handled
with the same interfaces regardless of the data type. The ap-
plication layer contains over 200 analysis applications using
the data obtained through the I/O layer, such as genome se-
quence analyses and APIs for common bioinformatics soft-
ware tools. We describe detailed examples in the following
sections, and complete listing is available at our web site
(http://www.g-language.org). Each analysis program in the
application layer is implemented and provided as a native Perl
function, most of which accept the data structure given by the
I/O layer as the first argument. Using both of the I/O layer and
the application layer, the interface layer contains APIs for the
creation of graphical output and interfaces. As a set of soft-
ware libraries, G-language GAE retains high level of compati-
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bility with BioPerl. As described above, G-language GAE
employs BioPerl in the I/O layer to support a variety of data-
base formats, and therefore the BioPerl sequence object can
be readily converted to G-language GAE type object by sup-
plying the object to the gateway class constructor. The G-lan-
guage GAE type object may also be reversely converted to a
BioPerl sequence object by calling the conversion method
from the instance. Moreover, all functions in the application
layer that take sequence data as the first argument also di-
rectly accept BioPerl sequence object.

In addition to the library interface, G-language GAE is ac-
cessible as a command-line interpreter and as a GUI applica-
tion. The command-line interpreter is an interactive shell that
processes Perl line-by-line, equipped with basic UNIX shell
functions such as command history, basic input editing, tab-
completion for file names and functions in the application
layer, and the execution of standard UNIX commands. All
variables used during a session can be saved when quitting the
interpreter, so that the users can start the next session with a

consistent workspace. Since a significant fraction of bioinfor-
matics research involves trial and error processes to search for
the best procedures to solve a particular problem, this inter-
face is especially suitable for the rapid testing of ideas with
immediate responses. The entire procedure can be logged and
exported as a working Perl script, therefore the trial and error
processes directly results in a reusable piece of program that
can be built upon. G-language GAE is easily pluggable with
Perl scripts, where the system dynamically loads and provides
subroutines as native functions, when they are present in the
scripts deposited inside the plug-in folder. Thus scripts writ-
ten using G-language GAE library interface can be immedi-
ately used from the interpreter.

The GUI of G-language GAE provides intuitive access to
the analysis programs implemented in the application layer
without writing a single line of code and is aimed for biolo-
gists that are not familiar with command-line interface and
programming. Here the users can select and connect the
analysis programs and create a workflow with customizable
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Fig. 1. System architecture of G-language GAE. The API is comprised of three layers: I/O layer for general manipulation of databases com-
patible with BioPerl, application layer containing over 200 analysis programs mainly for genome informatics, and interface layer for the creation
of user interfaces and graphics.



parameters provided for each of the programs, basically by
clicking through the available options. Workflow created with
this interface can be readily exported as a Perl script for more
thorough control using the library interface. However, the
most novel feature of this GUI is its ability to load any Perl
scripts with subroutines and to convert it into a GUI-based
program. The system identifies the subroutines, interprets the
I/O for that subroutine, and makes the subroutines control-
lable from the coherent GUI. In terms of software engineer-
ing, development of the GUI is one of the most time and ef-
fort consuming processes, and this GUI converter imple-
mented with G-language GAE reduces this effort, therefore
enabling bioinformatics software developers to send a Perl
script to biologists that are not accustomed to programming
and let them use the programs from the GUI. In this way, all
three interchangeable interfaces of G-language GAE work
seamlessly together to create a solid framework for a bioinfor-
matics workbench.

2. Applications of G-language GAE in omics research
G-language GAE was initially targeted for genome sequence
analysis and therefore the system is especially strong for this
purpose. The GUI initially loads a workflow named Bacteria
Analysis System, which is a collection of 25 analysis pro-
grams suitable for comprehensive investigation of complete
bacterial genomes, with functions for the calculation of codon
usage and its bias, for the detection of conserved sequences
around the coding regions by several informatics measures
such as entropy and information content, for the prediction of
replication origin and terminus, calculation of GC content and
skews, identification of palindromes and tandem repeats, and
visualization of the genome as a map of genes. For example,
Chen et al.19) calculated the transition of GC content through-
out the genome to observe the correlation of gene location
with regions having relatively low or high GC contents, in
their report of the complete sequencing of a large virulence
plasmid pLVPK in Kebsiella pneumoniae CG43. Suzuki et al.
proposes novel methods for the statistical analyses of synony-
mous codon usage bias20,21) by comparing existing methods
including the codon adaptation index (CAI),22) the predicted
expression level for characterizing predicted highly expressed
genes (PHX),23) the codon bias index (CBI),24) the intrinsic
codon deviation index (ICDI),25) and the effective number of
codons (Nc)

26) that are all implemented in the application
layer.

Several works have already taken advantage of the ability
of G-language GAE to formulate research workflows. Sato et
al.27) have developed an in silico analysis pipeline for the
comprehensive detection of candidate genes that undergo stop
codon readthrough event that produces extended proteins in
eukaryotes, especially focusing on the presence of protein
motifs or conserved domains in the 3� untranslated regions.
Yachie et al.28) predicted non-coding antisense RNA genes in
Escherichia coli genome using Gapped Markov Model Index

(GMMI), and experimentally confirmed 12 transcripts. Both
workflows implemented upon the G-language GAE are avail-
able upon request from the authors of the above works. In the
pathway visualization tool17) described below, systematic mi-
croarray results of 125 comprehensive deletion mutant strains
of E. coli29) were normalized, filtered, and clustered using the
programs in the application layer, and visualized upon KEGG
pathway maps.30) Several other workflows aimed for the
analysis of cDNAs containing pipelines for the detection of
translation initiation/termination signals, multivariate analysis
of codon usage, comparative study of amino acid composi-
tion, comparative homology-based modeling of the structures
of product proteins, prediction of alternative splice forms, and
metabolic pathway reconstruction and alignment have been
packaged and distributed.16)

3. Availability
G-language GAE is freely available with the entire set of
source code under the open-source GNU General Public Li-
cense Vesion 2, at our web site (http://www.g-language.org)
with documentations about the software. Software packages
are available for Windows, Linux, and MacOS X, but we also
recommend using Knoppix for Bio (KNOB) live Linux CD
available at http://knob.sourceforge.jp/. The KNOB project
organized by Itoshi Nikaido is developing a free fully func-
tional Linux distribution that boots and runs completely from
the CD-ROM in almost all personal computers without affect-
ing the existing operating systems and is bundled with numer-
ous bioinformatics software packages such as EMBOSS,
BioPerl, BioPython, BioRuby, BLAST, and G-language GAE.
Using KNOB, there is no need to install additional software
packages and the users can use G-language GAE together
with other bioinformatics tools.

Gene Prediction Accuracy Classification

Computational “dry” biology deals with biological informa-
tion and data acquired by “wet” experimental biology of the
organisms and organic components. In this respect, the pri-
mary data source for biology in silico is innately secondary
data. Usually these data further undergo several additional in
silico steps, as typified by functionally annotated sequence
data that are central to omics researches. Although thorough
validations are conducted throughout the data preparation
processes in order to assure the quality of information, a cer-
tain order of error rate is inevitable. To name a few, functional
genome annotation is prone to error in the processes of se-
quencing,31) detection of the open reading frames (ORFs),32,33)

characterization of genes,34) and curation of annotations.35)

Therefore, genome informatics methods with extremely high
sensitivity are likely to be affected by the innate errors of the
primary data, which could possibly result in erroneous out-
comes. This is especially critical for comparative genomics,
since the complete genomes from different organisms used in
these studies have varying levels of annotation completeness,
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and the sensitivity of the analysis method should be assured
for all target genomes. GPAC test included with the G-lan-
guage software suite15) provides a means to quantitatively
benchmark the sensitivity of genome informatics analysis
with regard to the annotation completeness of the genomes.

GPAC firstly classifies genes into five categories according
to the annotation credibility levels as the following: group 1
consisting of all genes other than hypothetical ORFs, group 2
consisting of all genes other than hypothetical and putative
ORFs, group 3 consisting only of conserved ORFs as charac-
terized by the NCBI Clusters of Orthologous Groups (COGs)
database,36) group 4 consisting only of conserved functional
ORFs, and group 5 consisting of functional, putative, and
conserved hypothetical ORFs. Then the analysis being bench-
marked is repeated using the selected set of genes for each of
the five groups and the genes eliminated by the selection, and
the sensitivity of the analysis can be observed as the devia-
tions of the results of the selected groups compared with the
original result which targets all genes in the genome. The de-
gree of deviation can be statistically quantified by the boot-
strap method. Users may choose alternative classification
scheme defined using the evidence codes of Gene Ontology
Annotation (GOA)37,38) instead of the five gene groups defined
above.

GPAC test of the calculation of average gene length using
an old version of E. coli genome (U00096 18-NOV-1998) re-
vealed that this simple calculation is actually sensitive, result-
ing in longer average gene length above the standard devia-
tion computed by the bootstrap test when including hypotheti-
cal genes, therefore exclusion of this set of genes is advised
for comparative study. Latest E. coli genomes significantly re-
duced the number of hypothetical ORFs, and GPAC test using
the latest versions do not determine the calculation of average
gene length as being sensitive. In this way, GPAC test is con-
venient for the selection of data and for the improvement of
analysis methods in the preparation of in silico researches.

Pathway Visualization Tool

Comprehensive omics dataset based on high-throughput
measurement such as transcriptome, proteome, and
metabolome provides practical information about the cell-
wide activity of the layers analyzed. However, systematic in-
terpretation and understanding of omics data is often difficult,
given the huge amount of data and the intricacy of the under-
lying physiological network that interconnects the composi-
tional molecules. Scientific visualization of such data with a
cellular context is a potential technology to aid human under-
standing of complex phenomena of the whole cell with the
systems biology approach. Several software tools exist for the
visualization of biological data; for example, Cytoscape39)

draws biological interaction network graphs, ArrayXPath,40)

VitaPad,41) and GenMAPP42) maps microarray data to path-
way diagrams, and BioCyc Omics Viewer43) and KEGG
API30) provides interfaces to map given data onto the pathway

databases.
In order to observe systematic properties of the whole cell,

it is desirable for a visualization tool to be able to simultane-
ously map omics data from different layers such as transcrip-
tome, proteome, and metabolome, and to be mapped onto fa-
miliar pathway diagrams as opposed to automatic layouts de
novo. Pathway visualization tool of the G-language software
suite17) provided as a web service (http://www.g-language.
org/data/marray/) simultaneously maps complex omics data
including genes, mRNAs, proteins, and metabolites onto
KEGG pathway diagrams in a single vector graphic, and it is
especially advantageous when systematically observing the
results from computer simulations of cellular pathway mod-
els. Given comma-delimited name-value pairs of the mole-
cules, with common or canonical name for genes, EC number
for enzymes, and KEGG compound ID for metabolites, a
pathway diagram is generated as a FLASH(SWF) vector
image with corresponding objects color coded. Color values
are integers from 1 to 100, which represent a red to green
spectrum for genes/mRNAs/proteins, and a blue to yellow
spectrum for metabolites. Heteropolymeric enzymes with
multiple subunits are correctly represented by subdividing the
box representing the enzyme. Using this tool, transcriptome
data of 38 two-component regulatory system mutants44) of E.
coli as well as 125 carbon metabolism mutants29) are visual-
ized with 104 pathway diagrams.

GEM System

Dynamic behaviors of the living systems arise as a result of
complex nonlinear interactions of the underlying molecular
components, and computational simulation is necessary in
order to capture the non-intuitive outcomes. A key process in
this aspect is the system-level integration and modeling based
on the reservoir of knowledge accumulated by traditional re-
ductive approaches and the recent omics data from different
layers of biology. However, the majority of the tasks required
during current computational modeling for systems biology
requires time-consuming manual operations, resulting in a
major bottleneck in systems biology research. The GEM Sys-
tem of the G-language software suite enables automatic proto-
typing of cell-wide metabolic pathway models, integrating
various omics databases using the genome sequence as its pri-
mary input and references during the integration processes.
The resulting model is generated in the standard Systems Bi-
ology Markup Language (SBML) format,45) ready for simula-
tion using software environments such as E-Cell.46–48)

Starting from a genome flatfile, the GEM System firstly
matches all genes to the product proteins or enzymes by com-
bined method of annotation reference, homology search, and
orthology search using Swiss-Prot,49) COGs, KEGG, and
WIT50) databases. Then the inferred protein is matched to the
corresponding stoichiometric reactions using KEGG and
Brenda,51) and after checking this reaction list against the
KEGG reference pathway to distinguish isozymes and het-
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eromeric enzymes, the pathway model is generated in SBML.
A list of 90 bacterial metabolic pathway models generated by
GEM System is available at http://www.g-language.org/gem/
models/static.cgi with models in SBML and stoichiometric
matrix, reaction and gene lists, and pathway diagrams visual-
izing the components and their interactions in the generated
models. All models retain high accuracy compared with
KEGG organism specific pathways, achieving over 90% cov-
erage in most bacteria, and 100% coverage in E. coli with
1195 metabolites and 968 reactions.

Conclusions and Outlook

The advent of high-throughput measurement technologies and
the introduction of omics datasets compensated the existing
paradigm of molecular biology, which tended to be qualitative
and segmented, to be able to quantitatively capture a compre-
hensive snapshot of cell-wide activity. Phenotypes of the
whole cell resulting from the nonlinear interactions of the
components are predominantly quantitative, and factors con-
tributing to the phenotypes distributed among the system52)

are also principally quantitative. Moreover, quantitative rea-
soning extends the dimension of research in the vector of
time-course progression, allowing predictive approaches and
deductive simulation experiments in silico. Availability of
comprehensive datasets also demands for holistic approaches
in order to understand how the numerous components con-
tribute to the characteristics of the system. In this respect, a
systems biology approach is invaluable for omics research,
and a computational framework should be generated to sup-
port the analysis throughout the necessary steps including the
database I/O, preprocessing and filtering of the data and meth-
ods, data integration and mining, and computational modeling
and simulation. Although the targeted layer of omics is cur-
rently limited by mainly focusing on the genome and meta-
bolic domains, the G-language suite already encompasses
most of the required processes. The generic workbench G-
language GAE provides a flexible framework for bioinformat-
ics, and methods developed upon this workbench can be
benchmarked for sensitivity with GPAC. Multi-omics data
sets can be visualized with the pathway mapping tool in order
to understand the data within the context of cellular activities,
and the GEM System coupled with the E-Cell enables compu-
tational modeling and simulation from omics information. All
software systems are designed with flexible architecture and
the open-source development style of the software system
will allow rapid implementation for other layers of omics in
the future development.

While omics definitely advances our knowledge of life sci-
ences by enabling our observation from a macroscopic land-
scape view of the inner molecular components as opposed to
the specific study of microscopic set of components, it should
be noted that this approach primarily inherits the descriptive
and hypothesis-free paradigm of traditional molecular biol-
ogy, inherently emphasizing the ability to list the parts that

make up a living system. Moreover, current approaches
mainly target only a specific layer of omics, which should
eventually shift to research that interconnects multiple layers
in order to dissect how the systematic properties and design
of the molecular components in the microscopic layer con-
tribute to the characteristics that arise as the result in a more
macroscopic layer. Although the integrative and constructive
aspects of systems biology seem to be mainly anticipated,
here an inductive approach is especially critical,3) connecting
the systematic properties identified by comprehensive data
mining of microscopic and macroscopic layers at an interme-
diately meso-level. Hypothetical “designs” implied or de-
duced from this mesoscopic approach can then be tested and
refined in silico by the simulation of mathematical models,
which are then verified by laboratory experiments, enhancing
the research cycle of molecular cell biology.
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