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JOINT DISTRIBUTIONS OF WAITING TIME RANDOM
VARIABLES FOR PATTERNS

Sigeo Aki* and Katuomi Hirano**

Exact joint distributions of waiting times for two patterns in a sequence of �-th
order time-homogeneous Markov dependent trials are studied, where the patterns
are not necessarily assumed to be distinct from each other. We prove that exact
joint probability generating functions, which are regarded as expectations of the
corresponding random variables, are derived through calculating the conditional ex-
pectation based on conditioning by the sooner waiting time and the pattern which
comes sooner. We also give illustrative numerical examples in order to demonstrate
the performance of our results.

Key words and phrases: Conditional expectation, discrete distribution theory, dis-
crete pattern, generalized probability generating function, waiting time.

1. Introduction

When we are interested in waiting times for two patterns which never occur
simultaneously, for example, the waiting times for a success run and a failure
run, we usually study the sooner and later waiting times. In this case, we can
readily obtain the distribution of the sooner waiting time and the conditional
distribution of the later waiting time given the sooner waiting time and which
pattern comes sooner, and hence we can derive the joint distribution of the sooner
and later waiting times. However, if we can not assume the above condition, it
is not obvious to obtain the joint distribution of waiting times for two patterns
from the distributions of the sooner and the later waiting times. We propose in
this paper a general method for obtaining the joint distribution of the waiting
times for two patterns. In our approach, the sooner waiting time also plays an
important role.

Let S be a finite set and let {Xt}∞t=1 be an �-th order time-homogeneous
S-valued Markov chain with P (X1 = x1, . . . , Xr = xr) = px1,...,xr , r = 1, 2, . . . , �
and P (Xi+� = x�+1 | Xi = x1, . . . , Xi+�−1 = x�) = p(x1,...,x�),x�+1

, for i = 1, 2, . . . .
Let {Yt}∞t=−∞ be an �-th order time-homogeneous S-valued Markov chain with
P (Yi+� = y�+1 | Yi = y1, . . . , Yi+�−1 = y�) = p(y1,...,y�),y�+1

, for i = 1, 2, . . . , that
is, {Yt}∞t=−∞ is the two-sided sequence of the �-th order time-homogeneous S-
valued Markov dependent trials with the same transition probabilities as {Xt}∞t=1.
A finite sequence of elements of S is called a pattern. Let A = (a1, a2, . . . , am)
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and B = (b1, b2, . . . , bn) be two patterns. WA and WB denote the waiting time
in {Xt}∞t=1 for A and B, respectively. WA and WB denote the waiting time in
{Yt}∞t=1 for A and B, respectively, taking the values of {Yt}0

t=−∞ into considera-
tion. We assume m ≤ n without loss of generality and � ≤ m is also assumed for
simplicity.

We study the joint distribution of WA and WB. Our approach to the joint
distribution is a method for obtaining the expectation of sWAtWB by using the
stepwise smoothing formula of the conditional expectations. The essential part
of this approach is to make conditioning by the sooner waiting time between WA

and WB. Though the distributions of the sooner waiting times for several pat-
terns have been investigated by many authors (see e.g. Fu (1996), Fu and Chang
(2002), Balakrishnan and Koutras (2002), Fu and Lou (2003)), there were some
constraints on the patterns such that every pattern never be a subpattern of other
patterns. When we study only the sooner waiting time, such constraints may be
reasonable in order to simplify the final result. When we study joint distributions
of some waiting time variates, however, we have to investigate the sooner waiting
time without such constraints, because every marginal distribution of the waiting
time for one pattern should be derived from the joint distribution.

2. Joint distribution

For patterns A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bn), we define some
sets of subpatterns from the left end and from the right end as follows:

SPL(A) = {(), (a1), (a1, a2), . . . , (a1, a2, . . . , am−1), A},
SPL(B) = {(), (b1), (b1, b2), . . . , (b1, b2, . . . , bn−1), B},
SPL0(A) = SPL(A) \ {A},
SPL0(B) = SPL(B) \ {B},
SPR(A) = {(), (am), (am−1, am), . . . , (a2, a3, . . . , am), A},
SPR(B) = {(), (bn), (bn−1, bn), . . . , (b2, b3, . . . , bn), B},

where we are assuming that the empty pattern denoted by () is an element of
every set of subpatterns. We denote by A�B the longest element in SPR(A)∩
SPL0(B) and denote by B�A the longest element in SPR(B)∩SPL0(A). Let
τ = min(WA,WB).

First, we study the case that there exits j(> m) such that (b1, b2, . . . , bj) ∈
SPL0(B) and a1 = bj−m+1, a2 = bj−m+2, . . . , am = bj . In this case, j∗ denotes
the minimum of j which satisfies the above condition. In this case, τ = WA <
WB necessarily holds. Let E1 be the event that {(Xτ−j∗+1 = b1, Xτ−j∗+2 =
b2, . . . , Xτ = bj∗) occurs}. Then, we can calculate the joint probability generating
function (p.g.f.) as follows:

φ(s, t) = E[sWAtWB ]

= E[(st)τ tWB−τ ]

= E[(st)τ tWB−τIE1 ] + E[(st)τ tWB−τIEc
1
]
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= E[E[(st)τ tWB−τIE1 | (τ, IE1)]]

+ E[E[(st)τ tWB−τIEc
1
| (τ, IEc

1
)]]

= E[(st)τIE1E[tWB−τ | (τ, IE1)]]

+ E[(st)τIEc
1
E[tWB−τ | (τ, IEc

1
)]].

Here, since the underlying sequence is time-homogeneous, we can write

IE1E[tWB−τ | (τ, IE1)]

= IE1E[tWB | Y−j∗+1 = b1, Y−j∗+2 = b2, . . . , Y0 = bj∗ ]

≡ IE1ψB(t; (b1, . . . , bj∗), (am−�+1, . . . , am)) (say).

Similarly, we have

IEc
1
E[tWB−τ | (τ, IEc

1
)]

= IEc
1
E[tWB | Y−m+1 = a1, Y−m+2 = a2, . . . , Y0 = am]

≡ IEc
1
ψB(t;A�B, (am−�+1, . . . , am)) (say).

Next, we treat the other case, that is, the case where j(> m) does not exist
such that (b1, b2, . . . , bj) ∈ SPL0(B) and a1 = bj−m+1, a2 = bj−m+2, . . . , am = bj .
In this case, it is random which comes sooner between A and B. Therefore, we
can calculate the joint p.g.f. as follows:

φ(s, t) = E[sWAtWB ]

= E[(st)τsWA−τ tWB−τ ]

= E[(st)τ tWB−τI{τ=WA<WB}]

+ E[(st)τsWA−τI{τ=WB<WA}]

+ E[(st)τI{τ=WA=WB}]

= E[(st)τI{τ=WA<WB}E[tWB−τ | (τ, I{τ=WA<WB})]]

+ E[(st)τI{τ=WB<WA}E[sWA−τ | (τ, I{τ=WB<WA})]]

+ E[(st)τI{τ=WA=WB}].

Here, the value of the conditional expectation E[tWB−τ | (τ, I{τ=WA<WB})] on

{τ = WA < WB} and the value of the conditional expectation E[sWA−τ |
(τ, I{τ=WB<WA})] on {τ = WB < WA} do not depend on τ . In fact, we see
that

I{τ=WA<WB}E[tWB−τ | (τ, I{τ=WA<WB})]

= I{τ=WA<WB}E[tWB | Y−m+1 = a1, Y−m+2 = a2, . . . , Y0 = am]

≡ I{τ=WA<WB}ψB(t;A�B, (am−�+1, . . . , am)) (say),

and
I{τ=WB<WA}E[sWA−τ | (τ, I{τ=WB<WA})]

= I{τ=WB<WA}E[sWA | Y−n+1 = b1, Y−n+2 = b2, . . . , Y0 = bn]

≡ I{τ=WB<WA}ψA(s;B �A, (bn−�+1, . . . , bn)) (say).



100 SIGEO AKI AND KATUOMI HIRANO

Summarizing, we have the following result.

Theorem 1. Let {Xt}∞t=1 be an �-th order time-homogeneous S-valued
Markov chain with the initial probabilities P (X1 = x1, . . . , X� = xr) = px1,...,xr ,
r = 1, 2, . . . , � and the transition probabilities P (Xi+� = x�+1 | Xi = x1, . . . ,
Xi+�−1 = x�) = p(x1,...,x�),x�+1

, for i = 1, 2, . . . . Then, the joint probability gen-
erating function of WA and WB is written as

φ(s, t) = E[(st)τI{τ=WA<WB}∩E1
] · ψB(t; (b1, . . . , bj∗), (am−�+1, . . . , am))

+ E[(st)τI{τ=WA<WB}∩Ec
1
] · ψB(t;A�B, (am−�+1, . . . , am))

+ E[(st)τI{τ=WB<WA}] · ψA(s;B �A, (bn−�+1, . . . , bn))

+ E[(st)τI{τ=WA=WB}],

where ψB(t; (b1, . . . , bj∗), (am−�+1, . . . , am)), ψB(t;A�B, (am−�+1, . . . , am)), and
ψA(s;B �A, (bn−�+1, . . . , bn)) are defined above.

Based on the above theorem, we show how to obtain the joint p.g.f. of WA

and WB. For two patterns α = (α1, . . . , αa) and β = (β1, . . . , βb), we let 〈α, β〉 =
(α1, . . . , αa, β1, . . . , βb) be the concatenated pattern. For 1 ≤ i ≤ j ≤ a, we
denote by [α]ji the subpattern (αi, αi+1, . . . , αj) of α. In the following, we explain
how to obtain the joint p.g.f. of WA and WB.

First, we calculate the generalized p.g.f. of τ with markers (x1, x, y, z),

E[(st)τI{τ=WA<WB}∩E1
]x1 + E[(st)τI{τ=WA<WB}∩Ec

1
]x

+ E[(st)τI{τ=WB<WA}]y + E[(st)τI{τ=WA=WB}]z.

Here, the idea of the generalized p.g.f. was introduced by Ebneshahrashoob
and Sobel (1990). For a nonnegative integer r, Sr denotes the set of all the
patterns of length r. In particular, S0 = {()} denotes the set of the empty pat-
tern (). In order to derive the generalized p.g.f. of τ , we define the mapping
f : (SPL0(A)∪SPL0(B))× (

⋃�
r=0 S

r)×S → (SPL(A)∪SPL(B))× (
⋃�

r=0 S
r),

by f(α, β, u) = (f1(α, u), f2(β, u)), where f1(α, u) is the longest element in
SPR(〈α, u〉) ∩ (SPL(A) ∪ SPL(B)), and

f2(β, u) =


 〈β, u〉 if the length of β is less than �,

[〈β, u〉]�+1
2 if the length of β is equal to �.

We denote by

p(β, u) =



pβ,u if the length of β is equal to �,
p〈β,u〉
pβ

if the length of β is less than �,

the conditional probability that “u” comes next given β, where we set p() = 1.

For every α ∈ SPL0(A) ∪ SPL0(B) and β ∈ ⋃�
r=0 S

r, the pair (α, β) is called a
consistent pair if at least [α]aa−b+1 = β or [β]bb−a+1 = α holds, where a and b are
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the length of α and β, respectively. We denote by CP ((SPL0(A)∪SPL0(B))×⋃�
r=0 S

r) the set of all the consistent pairs (α, β) ∈ (SPL0(A) ∪ SPL0(B)) ×⋃�
r=0 S

r. Similarly, we define CP (SPL0(A) × S�) and CP (SPL0(B) × S�). For
every (α, β) ∈ CP ((SPL0(A) ∪ SPL0(B)) ×⋃�

r=0 S
r) we set

φτ (s, t;α, β;x1, x, y, z)

=
∑
u∈S

p(β, u)stφτ (s, t; f1(α, u), f2(β, u);x1, x, y, z).

Further, we set

φτ (s, t; f1(α, u), f2(β, u);x1, x, y, z) = x1 if f1(α, u) = (b1, . . . , bj∗),

φτ (s, t; f1(α, u), f2(β, u);x1, x, y, z) = x if f1(α, u) = A �= B,

φτ (s, t; f1(α, u), f2(β, u);x1, x, y, z) = y

if f1(α, u) = B and [B]nn−m+1 �= A,
and

φτ (s, t; f1(α, u), f2(β, u);x1, x, y, z) = z

if f1(α, u) = B and [B]nn−m+1 = A.

By solving the above system of equations with respect to{
φτ (s, t;α, β;x1, x, y, z) | (α, β) ∈ CP

(
(SPL0(A) ∪ SPL0(B)) ×

�⋃
r=0

Sr

)}
,

we get the generalized p.g.f. of τ with markers (x1, x, y, z) as the particular so-
lution, φτ (s, t; (), ();x1, x, y, z).

Next, we generate the following systems of equations:


ψB(t;α, β) =
∑
u∈S

p(β, u)tψB(t; f1(α, u), f2(β, u))

for every (α, β) ∈ CP (SPL0(B) × S�),

ψB(t;B, (bn−�+1, . . . , bn)) = 1,

(2.1)

and 


ψA(s;α, β) =
∑
u∈S

p(β, u)sψA(t; f1(α, u), f2(β, u))

for every (α, β) ∈ CP (SPL0(A) × S�),

ψA(s;A, (am−�+1, . . . , am)) = 1.

(2.2)

By solving (2.1) with respect to {ψB(t;α, β) | (α, β) ∈ CP (SPL0(B) × S�)}, we
obtain ψB(t; (b1, . . . , bj∗), (am−�+1, . . . , am)) and ψB(t;A�B, (am−�+1, . . . , am)).

Solving (2.2) with respect to {ψA(s;α, β) | (α, β) ∈ CP (SPL0(A)×S�)}, we
get ψA(s;B �A, (bn−�+1, . . . , bn)).

Consequently, substituting x1 = ψB(t; (b1, . . . , bj∗), (am−�+1, . . . , am)), x =
ψB(t;A� B, (am−�+1, . . . , am)), y = ψA(s;B � A, (bn−�+1, . . . , bn)) and z = 1 in
φτ (s, t; (), ();x1, x, y, z), we obtain φ(s, t).
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3. Illustrative examples

First, we give a simple example of the joint distribution of waiting times for
A and B with A completely included in B. Let us consider the waiting times
for A = (1, 1) and B = (0, 1, 1, 1) in the second order {0,1}-valued Markov chain
and let τ = min(WA,WB). In this case, A comes sooner almost surely. However,
we have to check whether the event E1 occurs or not, when A occurs. Then, in
order to calculate the generalized p.g.f. of τ with markers (x1, x), we write down
the system of equations for conditional p.g.f.’s of τ as follows:

φτ ((), ()) = p(1)stφτ ((1), (1)) + p(0)stφτ ((0), (0)),

φτ ((1), (1)) =
p(1,1)

p(1)
stx+

p(1,0)

p(1)
stφτ ((0), (1, 0)),

φτ ((0), (0)) =
p(0,1)

p(0)
stφτ ((0, 1), (0, 1)) +

p(0,0)

p(0)
stφτ ((0), (0, 0)),

φτ ((0), (1, 0)) = p(1,0),1stφτ ((0, 1), (0, 1)) + p(1,0),0stφτ ((0), (0, 0)),

φτ ((0), (0, 0)) = p(0,0),1stφτ ((0, 1), (0, 1)) + p(0,0),0stφτ ((0), (0, 0)),

φτ ((0, 1), (0, 1)) = p(0,1),1stx1 + p(0,1),0stφτ ((0), (1, 0)),

where φτ (α, β) is short for φτ (s, t;α, β;x1, x, y, z). By solving the above equations
with respect to φτ ((), ()), φτ ((1), (1)), φτ ((0), (0)), φτ ((0), (1, 0)), φτ ((0, 1), (0, 1))
and φτ ((0), (0, 0)), we obtain

φτ (s, t; (), ();x1, x, y, z)

= p(1,1)s
2t2x

+

p(1,0)s
2t2p(0,1),1stx1

(
p(1,0),1st+

p(1,0),0p(0,0),1s
2t2

1 − p(0,0),0st

)

1 − p(0,1),0st

(
p(1,0),1st+

p(1,0),0p(0,0),1s
2t2

1 − p(0,0),0st

)

+
p(0,1)p(0,1),1s

3t3x1

1 − p(0,1),0st

(
p(1,0),1st+

p(1,0),0p(0,0),1s
2t2

1 − p(0,0),0st

)

+

p(0,0)p(0,1),1s
3t3x1

(
p(0,0),1st

1 − p(0,0),0st

)

1 − p(0,1),0st

(
p(1,0),1st+

p(1,0),0p(0,0),1s
2t2

1 − p(0,0),0st

) .

The system of equations corresponding to (2.1) is

ψB((), (1, 1)) = p(1,1),1tψB((), (1, 1)) + p(1,1),0tψB((0), (1, 0)),

ψB((0), (1, 0)) = p(1,0),1tψB((0, 1), (0, 1)) + p(1,0),0tψB((0), (0, 0)),

ψB((0, 1), (0, 1)) = p(0,1),1tψB((0, 1, 1), (1, 1)) + p(0,1),0tψB((0), (1, 0)),

ψB((0), (0, 0)) = p(0,0),1tψB((0, 1), (0, 1)) + p(0,0),0tψB((0), (0, 0)),

ψB((0, 1, 1), (1, 1)) = p(1,1),1t+ p(1,1),0tψB((0), (1, 0)).
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By solving the above equations, we obtain

ψB((), (1, 1)) =
p(1,1),0t

1 − p(1,1),1t

p(0,1),1p(1,1),1t
2

C(t)

(
p(1,0),1t+

p(1,0),0p(0,0),1t
2

1 − p(0,0),0t

)
,

and
ψB((0, 1, 1), (1, 1)) = p(1,1),1t+ p(1,1),0t

×
(
p(1,0),1t+

p(1,0),0p(0,0),1t
2

1 − p(0,0),0t

)
p(0,1),1p(1,1),1t

2

C(t)
,

where

C(t) = 1 − (p(0,1),1p(1,1),0t
2 + p(0,1),0t)

(
p(1,0),1t+

p(1,0),0p(0,0),1t
2

1 − p(0,0),0t

)
.

Finally, substituting x and x1 for the above ψB((), (1, 1)) and ψB((0, 1, 1), (1, 1)),
respectively, in φτ (s, t; (), ();x1, x, y, z), we obtain the joint p.g.f. of (WA,WB).

In particular, we further study the joint p.g.f. of WA and WB in the sequence
of i.i.d. trials for simplicity. By setting q = 1 − p, p(1,1) = p2, p(1,0) = pq,
p(0,1) = pq, p(0,0) = q2, p(i,j),1 = p and p(i,j),0 = q for i, j = 0, 1, we obtain the
joint p.g.f. of WA and WB as

φ(s, t) =
p5qs2t6

1 − t+ p3qt4
+
p2qs3t3(pst+ 1)

1 − qst− pqs2t2

(
pt+

p3qt4

1 − qt− pqt2 − p2qt3

)
.

From the joint p.g.f. we can immediately get the marginal p.g.f.’s

φ(s, 1) =
p2s2

1 − qs− pqs2
,

and

φ(1, t) =
p3qt4

1 − t+ p3qt4
.

The next example is the joint probability of waiting times of two patterns C =
(0, 1, 0, 1) and D = (1, 0, 1, 1) in {0,1}-valued independent trials with P (Xi =
1) = p = 1 − q. The example was introduced by Chen and Zame (1979) in
the situation of fair coin tossing games. Assuming p = 1

2 , they showed that
P (WD < WC) = 5

14 < 1
2 , whereas E(WC) = 20, E(WD) = 18. From the

counterexample, the following intuitive statement was shown to be false, that if
E(WC) > E(WD) then P (WD < WC) > 1

2 . The joint p.g.f. of WC and WD can
be written as

φ(s, t) = p2qs4t4
{

(−p4q4s7t3 − p3q3s5t+ p3q2s4 + p4q3s6t2)
1

ξ(s)

+ (pqt+ p3q2s3t4)
ζ(t)

η(t)

}

× {1 − st+ pqs2t2 − pq2s3t3 − p3q3s6t6}−1,
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where

ξ(s) = 1 − s+ pqs2 − pqs3 + p2q2s4,

η(t) = −1 + t− p2qt3 + p2q2t4,

ζ(t) = −1 + t− pqt2 + pq2t3.

The joint probability function of (WC ,WD) is shown in Fig. 1. From the joint
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Figure 1. The joint probability of waiting times of two patterns C = (0, 1, 0, 1) and

D = (1, 0, 1, 1) in {0,1}-valued independent trials with P (Xi = 1) = 1
2
. These two graphs

are the same ones from different viewpoints.
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p.g.f., we can derive exact means and variances ofWC and WD and the covariance
and correlation coefficient of WC and WD. Since they are too long to be written
here, we give only the values of them for p = 1

2 ; E(WC) = 20, E(WD) = 18,

V (WC) = 276, V (WD) = 210, Cov(WC ,WD) = 384
7 and ρ = 32

√
1610

5635 .
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