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EFFICIENT ESTIMATION AND MODEL SELECTION
FOR GROUPED DATA WITH LOCAL MOMENTS

Kohtaro Hitomi*, Qing-Feng Liu**, Yoshihiko Nishiyama** and
Naoya Sueishi***

This paper proposes efficient estimation methods of unknown parameters when
frequencies as well as local moments are available in grouped data. Assuming the
original data is an i.i.d. sample from a parametric density with unknown parameters,
we obtain the joint density of frequencies and local moments, and propose a maxi-
mum likelihood (ML) estimator. We further compare it with the generalized method
of moments (GMM) estimator and prove these two estimators are asymptotically
equivalent in the first order. Based on the ML method, we propose to use the Akaike
information criterion (AIC) for model selection. Monte Carlo experiments show that
the estimators perform remarkably well, and AIC selects the right model with high
frequency.

Key words and phrases: AIC, GMM, grouped data, local moments, MLE, model
selection.

1. Introduction

In practice, some data are provided only in a grouped form. An example is
personal income data reported by government organizations. They provide only
masked data for reasons of confidentiality. Typically, an income distribution is
divided into classes (by age, for instance) and only summary statistics such as
frequencies and class-wise means are observable to researchers. Also, we often
see insurance claim data in the same form. Researchers cannot directly observe
the claim sizes of each accident, but only the summaries for each stratum are
available. It is also possible to model this by some discrete distribution, however
regular discrete distributions may not always be appropriate. Throughout this
paper, we assume that the “original” sample {xi}, i = 1, . . . , n, which is unavail-
able for statisticians, is a realization of a random sample {Xi}, i = 1, . . . , n from
a d-dimensional distribution with parametric density f(x;θ) where θ ∈ Θ ⊂ R

p

is a vector of unknown parameters. We also suppose that the bounds of each
stratum are non-random.

A common and classical situation is the case when only the frequencies are
available. Suppose that the support of X1 is divided into a set of fixed disjoint
classes B1, B2, . . . , BL, and we observe only the frequency nj in each of the classes
Bj . Since the individual data are not available, the following standard maximum
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likelihood estimator is infeasible:

θ̂iMLE = arg max
θθθ

n∑
i=1

log f(xi;θ)(1.1)

even though we know the explicit form of the density. The subscript iMLE
indicates infeasible maximum likelihood estimator. In this case, however, we
easily obtain the log-likelihood function with respect to nj , j = 1, . . . , L, which

equals to
∑L

j=1 nj logPj(θ), where Pj(θ) =
∫
Bj
f(x;θ)dx is the probability that

an observation falls in Bj . This gives an MLE of θ as a solution to the normal
equation:

L∑
j=1

nj
∂ logPj(θ̂nMLE)

∂θ
= 0.(1.2)

We call it the naive MLE (nMLE). Asymptotic properties of the nMLE have
been examined in several papers (see, for example, Lindley (1949) and Tallis
(1967)). It is consistent for θ0, the true value of θ, and asymptotically normally

distributed with covariance matrix −{
∑L

j=1 Pj(θ0)
∂2 logPj(θ0)

∂θ∂θ′ }−1. Victoria-Feser
and Ronchetti (1997) discuss the properties of the nMLE and some related esti-
mators in terms of robustness. An estimator that is easy to compute is proposed
by Brix and Pfeifer (2000) which does not require explicitly evaluating Pj(θ).
See also Yanagimoto (1990) and Wooldridge (2001) which treat related topics.

In this paper, we consider the situation in which local moments in each class,
namely,

x̄
(k)
j =

1

nj

n∑
i=1

I(xi ∈ Bj)x
k
i , i = 1, . . . , n, k = 1, . . . ,K

are also available in addition to the frequencies nj , where I(·) denotes the in-
dicator function. The purpose of this paper is to propose efficient estimation
methods in this setup, and a model selection method. Though we believe we can
proceed for any integer K satisfying E(XK

1 ) <∞, we only discuss the case when
K = 1. It is partly because we do not know of any data sets reporting local
higher order moments. We derive two forms of the joint density of frequencies
and local means, then propose MLE estimators. They are proved to be consis-
tent, asymptotically normally distributed and efficient. In the sequel, we denote
Nj =

∑n
i=1 I(Xi ∈ Bj), nj =

∑n
i=1 I(xi ∈ Bj), X̄j =

∑n
i=1 I(Xi ∈ Bj)Xi/Nj ,

and x̄j =
∑n

i=1 I(xi ∈ Bj)xi/nj .
We can compare alternative parametric models by AIC criteria (see Akaike

(1973, 1974)). It is easy to compute and a practically convenient criteria in the
context of maximum likelihood, and hence it has been widely used by empirical
researchers. We apply this criteria to the analysis of grouped data.

This paper is organized as follows. In Section 2 we give the MLE of θ and
present its asymptotics. Section 3 discusses model selection for this problem.
Section 4 shows results from Monte Carlo experiments. Section 5 concludes. All
proofs are in the Appendix.
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2. Efficient estimation by MLE

This section provides maximum likelihood estimators and their asymptotic
properties when the frequencies and local means are available.

2.1. Estimators
We can use (nj , nj x̄j), j = 1, . . . , L, only, not the individual observations

{xi}, i = 1, . . . , n. The best we can do is to obtain the likelihood function with
respect to the frequencies and local means, and maximize it with respect to θ.
We obtain two forms of the joint density of (Nj , NjX̄j), j = 1, . . . , L. The first
expression involves a distribution of sums of nj independent random variables,
and thus a nj-fold convolution of I(x ∈ Bj)f(x; θ) conditional on Nj = nj ,

l(θ) =

L∑
j=1

log f (nj)(nj x̄j ; θ),(2.1)

where

f (nj)(x) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
I(x− y1 − · · · − ynj ∈ Bj)f(x− y1 − · · · − ynj ; θ)

×
nj∏
k=1

I(yk ∈ Bj)f(yk; θ)dyk.

We rewrite it in the form of an inverse Fourier transform of a characteristic
function which includes only two integrations,

l(θ) =

L∑
j=1

log

[
1

2π

∫ ∞

−∞
e−iunj x̄j

{∫ ∞

−∞
eiuxI(x ∈ Bj)f(x; θ)dx

}nj

du

]
.(2.2)

We show later in the Theorems that it is approximated by a simpler expression,

1

n
l̄(θ) =

L∑
j=1

[
−nj{x̄j − µj(θ)}

2

2nVj(θ)
+
nj
n

logPj(θ)

]
(2.3)

where Yj is a random variable with a density fj(y) = I(yεBj)f(y; θ)/Pj(θ),
µj(θ) = E(Yj), Vj(θ) = Var(Yj).

Given the above likelihood functions, we can estimate parameter θ by the
maximum likelihood method. There are three possibilities, namely maximizing
either of (2.1), (2.2) or (2.3). The first two are of course equivalent, thus we can
think of:

θML = arg max
θ

l(θ), θ̄ML = arg max
θ

l̄(θ).

Using the three forms of likelihood functions are shown to be asymptotically
equivalent later. Among them, (2.3) will practically be the most convenient
computationally in most cases.
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2.2. Asymptotic properties of MLE
We first state the assumptions.

Assumption 1. (i) If Pj(θ) = Pj(θ0) for all j = 1, . . . , n, then θ = θ0
and no other θ ∈ Θ satisfies Pj(θ) = Pj(θ0), where the parameter space Θ is a
compact subset of Rp.

(ii) µj(θ) and Vj(θ) exist for all j = 1, . . . , L and ∀θ ∈ Θ.

This assumption guarantees the identification.

Assumption 2. (i) µj(θ) and Vj(θ) are continuous in θ for all j = 1, . . . , L.
(ii) There exist ε1 > 0 and ε2 > 0 such that infθ∈Θ Pj(θ) ≥ ε1 and

infθ∈Θ Vj(θ) ≥ ε2 for all j = 1, . . . , L.
(iii) fj(x; θ) is continuous in x in the neighborhood of Pj(θ0)µj(θ0) uniformly

in θ for all j = 1, . . . , L.
(iv) maxj supθ∈ΘE|Yj |3 <∞.

Assumption 3. (i) θ0 is an interior point of Θ.
(ii) µj(θ), Vj(θ) and logPj(θ) are twice continuously differentiable in the

neighborhood N of θ0 for all j = 1, . . . , L.
(iii) The information matrix

I(θ0) =

L∑
j=1

{
Pj(θ0)

Vj(θ0)

∂µj(θ0)

∂θ

∂µj(θ0)

∂θ′
− Pj(θ0)

∂2 logPj(θ0)

∂θ∂θ′

}

is nonsingular.

The following theorems state the asymptotic properties of these estimators.

Theorem 1. Suppose Assumptions 1 and 2 hold , then
(i) The approximation error of l̄(θ) to l(θ) is

1

n
{l̄(θ) − l(θ)} = Op

(
log n

n

)
(2.4)

uniformly in θεΘ.
(ii) θ̂

p→ θ, where θ̂ = θML, θ̄ML.

Theorem 2. Suppose Assumption 3 holds in addition to the assumptions
in Theorem 1, then:

(i) The approximation error of ∂l̄(θ)/∂θ to ∂l(θ)/∂θ is

1√
n

{
∂l(θ)

∂θ
− ∂l̄(θ)

∂θ

}
= op(1).(2.5)

(ii) We also have

√
n(θ̂ − θ0) d→ N(0, I(θ0)

−1).
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(2.5) guarantees that
√
n(θML − θ̄ML) = op(1) (see Robinson (1988), The-

orem 1) so that these two estimators share the same asymptotic distribution.
We note that the information matrix corresponding to the naive estimator is

−
∑L

j=1 Pj(θ0)
∂2 logPj(θ0)

∂θ∂θ′ which equals to the second term of the information

matrix. The first term
∑L

j=1
Pj(θ0)
Vj(θ0)

∂µj(θ0)
∂θ

∂µj(θ0)
∂θ′ presents the efficiency gain as-

sociated with the local mean information.
Sueishi et al. (2006) considered a GMM estimator for the same model. It

also has the same asymptotic variance.

3. Model selection

In the previous sections, we propose efficient estimation methods for the
parameter θ when the underlying density is assumed to be f(x; θ). In some
cases, there may exist a number of possible candidates of f(x; θ). In examining
income distribution, econometricians often fit the data to log-normal, χ2, or
Pareto distributions. Researchers would like to know which is the most suitable
distribution.

One criteria in choosing a suitable model is the AIC when maximum likeli-
hood estimation is possible. Using the maximum log-likelihood l(θ̂ML) or l̄(θ̂ML),
we can construct,

AIC = −2l(θ̂ML) + 2p

≈ −2l̄(θ̂ML) + 2p.

In the current context, the meaning of AIC is slightly different from the usual
one because of the unavailability of the “original” data {xi}, i = 1, . . . , n. AIC
was introduced as an estimate of −

∫
g(x) log f(x; θ)dx where g(x) is the true

density of X1. Here, we can observe only nj , x̄j , j = 1, . . . , L and thus we cannot
compute

AIC = −2
n∑

i=1

log f(Yi; θ̂ML) + 2 × (# of parameters).

Instead, the best we can do is to construct AIC in terms of the feasible log-
likelihood functions (2.1)–(2.3). Therefore, we do not directly compare f(x; θ)
and g(x), but through the Kullback-Leibler distance between ΠL

j=1f
(nj)(nj x̄j ; θ)

and the true joint density of Nj , NjX̄j , j = 1, . . . , L. This seems to work satis-
factory in view of the Monte Carlo results reported in the next section.

4. Monte Carlo results

We carry out Monte Carlo simulations to examine the small sample perfor-
mances of the MLE and GMM estimators, as well as the AIC model selection
proposed in the previous sections. In Subsection 4.1, we compare the iMLE
(1.1), nMLE (1.2), MLE and GMM in terms of the mean squared error (MSE).
iMLE is obviously the efficiency benchmark. The GMM estimator is calculated
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Table 1. Efficiency comparison of estimators: relative ratio of MSE.

iMLE nMLE GMM MLE

n = 100

µ [0.0886] 1.1109 1.0894 0.9961

σ [0.0431] 2.0608 1.4116 1.0221

n = 1000

µ [0.0097] 1.0952 1.0066 1.0001

σ [0.0040] 1.7898 1.0233 1.0044

using the algorithm proposed by Sueishi et al. (2006). Subsection 4.2 provides
results of sample selection by the AIC. The number of replications is 1, 000 for
all experiments.

4.1. Comparison of estimators
The data are generated with samples of size n = 100, 1000 from N(0, 9).

Setting the bounds of grouping (−30,−3,−1, 1, 3, 30), so that L = 7, we classify
each observation accordingly and compute the u and the class means for each
sample. The results are tabulated in Table 1. For iMLE, the level of MSE is
reported, while the relative e to that of iMLE are provided for other estimators.
Firstly, the efficiency is improved when the sample size increases for all estimation
methods.

We immediately realize that the relative MSEs for µ are quite close to unity
for all estimators, though the MLE seems to slightly outperform the others. In
the case of the GMM and MLE, it may be obvious that the iMLE of µ is simply
the mean of the sample, and we can compute it in fact from the local means
and frequencies of each class in our hands. For the estimation of σ, we find
differences in the efficiencies. nMLE is apparently less efficient than the others,
meaning that the local mean information significantly increases the efficiency of
estimation. Also we point out that the efficiency gain in the nMLE by increased
sample size is not as large as the others. It seems MLE performs better than
GMM though the asymptotic variances are the same in theory. We think this is
partly because we compute the weight matrix by a bootstrap method using the
nMLE as the pilot estimate, so that it is a kind of two-step procedure which may
have some bias. If we use a continuous updating GMM instead, the performance
may be improved. We find the MLE performs very well, almost equivalent to the
iMLE where all the observations are available in this setup.

4.2. Model selection
We also study the the performance of model selection by the AIC. We con-

sider two distributions, N(0, 9) and a mixture of N(0, 9) and Exp(1/2) or expo-
nential distribution with parameter 1/2. Table 2 reports how many times each
model is selected out of 1000 replications when the data is generated from the
mixture for n = 100, 1000. Table 3 gives the same numbers when the true dis-
tribution is N(0, 9). Table 2 show that the AIC chooses the correct model all
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Table 2. Number of selections when mixture is true.

n N(0, 9) Mixture (true)

100 144 856

1000 0 1000

Table 3. Number of selections when N(0, 3) is true.

n N(0, 9)(true) Mixture

100 981 19

1000 980 20

the time when n = 1000, while not so good for smaller sample sizes. In view of
Table 3, the number of wrong choices from the model is always about 20. Tak-
ing into account that the mixture nests the true distribution N(0, 9), it is not
surprising that the mixture is selected. It may be considered outstanding that
the AIC do not select unnecessarily complex models.

5. Conclusion

We applied the maximum likelihood principle to grouped data analysis when
we can obtain not only counts but also local moments for each group. It provides
asymptotically efficient estimates of the parameters. We carry out Monte Carlo
experiments to investigate the performance of the estimator. Simulation results
show that it performs remarkably well even in finite samples. Comparing with
the nMLE, which does not use the local moments information, we can see they
provide a significant efficiency improvement.

In the context of maximum likelihood estimation, we propose to apply the
AIC model selection criterion. It shows a superb performance for the present
problem. Our results suggest that local moments in grouped data could be
highly informative.

Appendix A: Mathematical proofs
We give brief proofs for the results in Section 2.

Proof of Theorem 1. (i) Let γj be

γj(u) = E(eiuYj ) = Pj(θ)
−1

∫ ∞

−∞
eiuxI(xεBj)f(x; θ)dx.(A.1)

Setting u = t/n, write

E(ei(t/n)NjX̄j | Nj = nj) =

{
γj

(
t

n

)}nj

Pj(θ)
nj .(A.2)

Because

log

{
γj

(
t

n

)}nj

= nj log

{
γj

(
t

n

)}
= nj logE

{
exp

(
it
Yj
n

)}
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= nj log

{
1 +

it

n
E(Yj) −

t2

2n2
E(Y 2

j ) +O

(
|t|3E(Y 3

j )

n3

)}

= nj

[
it

n
µj(θ) −

t2

2n2
E(Y 2

j ) − 1

2

{
it

n
µj(θ) −

t2

2n2
E(Y 2

j )

}2

+O

(
|t|3E(Y 3

j )

n3

)]

= nj

{
it

n
µj(θ) −

t2

2n2
Vj(θ) +O

(
|t|3E(Y 3

j )

n3

)}
,

we have{
γj

(
t

n

)}nj

= exp

{
itnj
n
µj(θ) −

t2nj
2n2

Vj(θ) +O

(
|t|3njE(Y 3

j )

n3

)}
.(A.3)

(A.2) and (A.3) yield{∫ ∞

−∞
ei(t/n)xI(x ∈ Bj)f(x | θ)dx

}nj

= Pj(θ)
nj exp

{
itnj
n
µj(θ) −

t2nj
2n2

Vj(θ) +O

(
|t|3njE(Y 3

j )

n3

)}
.(A.4)

Plugging (A.4) into (2.2), we write, noting the transformation u = t/n,

l(θ)

n
=

1

n

L∑
j=1

log

[
Pj(θ)

nj

2πn

∫ ∞

−∞
exp{Aj(t; θ)}dt

]
+Rn

where

Aj(t; θ) = −itnj
n
{x̄j − µj(θ)} −

t2nj
2n2

Vj(θ),

Rn =
1

n

L∑
j=1

log



∫∞
−∞ e

−i(t/n)nj x̄j

{
γj

(
t

n

)}nj

dt

Pj(θ)nj
∫∞
−∞ exp{Aj(t; θ)}dt


 .

Because∫ ∞

−∞
exp{Aj(t; θ)}dt =

∫ ∞

−∞
exp

{
−itnj

n
{x̄j − µj(θ)} −

t2nj
2n2

Vj(θ)

}
dt

=

√
2πn2

njVj(θ)
exp

[
−nj{xj − µj(θ)}

2

2Vj(θ)

]
,
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we have

l(θ)

n
=

1

n

L∑
j=1

[
−nj{xj − µj(θ)}

2

2Vj(θ)
− 1

2

{
log

(
njVj(θ)

n

)}
+ nj logPj(θ)

]

− L

2n
log(2πn) +Rn.(A.5)

Now we evaluate the residual term. Write

Rn =
1

n

L∑
j=1

log


1 +

∫∞
−∞

[
e−i(t/n)nj x̄j

{
γj

(
t

n

)}nj

− Pj(θ)nj expAj(t; θ)

]
dt∫∞

−∞ Pj(θ)
nj expAj(t; θ)dt


 .

Using Assumption 2,∣∣∣∣
∫ ∞

−∞
e−i(t/n)nj x̄j

{
γj

(
t

n

)}nj

dt

∣∣∣∣ = fYj

(
nj x̄j
n

)
<∞,∣∣∣∣

∫ ∞

−∞
exp{Aj(t; θ)}dt

∣∣∣∣ <∞,

uniformly in θ as n→ ∞. Therefore,
∫∞
−∞Rnj(t; θ)dt exists where

Rnj(t; θ) = e−i(t/n)nj x̄j

{
γj

(
t

n

)}nj

− Pj(θ)nj expAj(t; θ).

Because of the existence, it equals to its principal value which is, for ε > 0,∫ ∞

−∞
Rnj(t; θ)dt = P.V.

∫ ∞

−∞
Rnj(t; θ)dt = lim

n→∞

∫ nε

−nε

Rnj(t; θ)dt.

We show this integral converges to zero in probability uniformly in θ. Note∣∣∣∣ lim
n→∞

∫ nε

−nε

Rnj(t; θ)dt

∣∣∣∣ ≤ lim
n→∞

∫ nε

−nε

|Rnj(t; θ)|dt,

and ∣∣∣∣
{
γj

(
t

n

)}nj

−
{
it
nj
n
µj(θ) −

t2nj
2n2

Vj(θ)

}∣∣∣∣ ≤ C|t|3
for a generic positive constant C, as E|Yj |3 =

∫
|x|3I(xεBj)f(x; θ)dx ≤ ∞ uni-

formly in θ by Assumption 2 (iii). Then, using the inequality |eix − 1 − ix −
(ix)2/2| ≤ |t|3/6, and 0 < Pj(θ)

nj ≤ 1 for any θεΘ, we have,

∫ nε

−nε

|Rnj(t; θ)|dt ≤
∫ nε

−nε

nj

∣∣∣∣
{
γj

(
t

n

)}nj

−
{
it
nj
n
µj(θ) −

t2nj
2n2

Vj(θ)

}∣∣∣∣
n3

dt

≤ Cnj
n
n4ε−2.
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Setting ε < 1/4, we obtain Rn = op(n
−1) uniformly in θ, and therefore by (A.5),

l(θ)

n
=
l̄(θ)

n
+Op

(
log n

n

)

uniformly in θεΘ, because nj/n
p→ Pj(θ0) and xj

p→ µj(θ0) by the weak law of
large numbers.

(ii) Because of (i) above, it suffices to show that l̄(θ)
n

p→ Q(θ) uniformly
in θεΘ and θ0 = maxθQ(θ). Due to the weak law of large numbers, we have

nj/n
p→ Pj(θ0) and xj

p→ µj(θ0). Therefore,

1

n
l̄(θ) =

L∑
j=1

[
−nj{x̄j − µj(θ)}

2

2nVj(θ)
+
nj
n

logPj(θ)

]

p→ Q(θ) =
L∑

j=1

[
−Pj(θ0){µj(θ0) − µj(θ)}

2

2nVj(θ)
+ Pj(θ0) logPj(θ)

]
.

This convergence is obviously uniform in θ by Assumptions 1 and 2. It is also
obvious that Q(θ) ≤

∑L
j=1 Pj(θ0) logPj(θ0) and the equality holds only when

θ = θ0.

Proof of Theorem 2. (i) The proof proceeds similarly to the proof of
Theorem 1 (i). Since evaluating all the remainder terms makes the expression too
tedious, we only pick up first order terms. The detailed proof for the validation
is available from the authors upon request. Write

f
(nj)
j (nj , nj x̄j ; θ) =

1

2πn

∫ ∞

−∞
e−i(t/n)nj x̄j

{
γj

(
t

n

)}nj

dt,

then the log-likelihood is written as

l(θ) =
L∑

j=1

[log f
(nj)
j (nj , nj x̄j ; θ) + nj logPj(θ)]

and the k-th element of the score is

1√
n

∂l(θ)

∂θk
=

L∑
j=1


 1
√
nf

(nj)
j (nj , nj x̄j ; θ)

∂f
(nj)
j (nj , nj x̄j ; θ)

∂θk
+
Nj√
n

∂ logPj(θ)

∂θk




where

∂f
(nj)
j (nj , nj x̄j ; θ)

∂θk
=
nj

2πn

∫ ∞

−∞
e−i(t/n)nj x̄j

{
γj

(
t

n

)}nj−1 ∂γj

(
t

n
; θ

)
∂θk

dt.
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We can show after some tedious but straightforward algebra that,

∂γj

(
t

n
; θ

)
∂θk

≈ −γj
(
t

n

)
+ γj

(
t

n

){
1 +

it

n

∂µj(θ)

∂θk

}
,

so that we have

∂f
(nj)
j (nj , nj x̄j ; θ)

∂θk
= −njf (nj)

j (nj , nj x̄j ; θ)

+
nj

2πn

∫ ∞

−∞
e−i(t/n)nj x̄j

{
γj

(
t

n

)}nj
{

1 +
it

n

∂µj(θ)

∂θk

}
dt.

Using approximation exp{ it
n
∂µj(θ)
∂θk

} ≈ 1+ it
n
∂µj(θ)
∂θk

, the integral above is shown to
be approximated by

√
2πn2

njVj(θ)
exp


−
{
nj(xj − µj(θ)) +

∂µj(θ)

∂θk

}2

2njVj(θ)


 .

This gives,

1
√
nf

(nj)
j (nj , nj x̄j ; θ)

∂f
(nj)
j (nj , nj x̄j ; θ)

∂θk

≈

nj exp


−
{
nj(xj − µj(θ)) +

∂µj(θ)

∂θk

}2

2njVj(θ)




√
n exp

[
−nj{xj − µj(θ)}

2

2Vj(θ)

] − nj

=
nj{xj − µj(θ)}√

nVj(θ)

∂µj(θ)

∂θk
− 1

2
√
nVj(θ)

{
∂µj(θ)

∂θk

}2

+ op(1).

Therefore, we have
1√
n

{
∂l(θ)

∂θ
− ∂l̄(θ)

∂θ

}
= op(1)

uniformly in θ.

(ii) We show that 1√
n

∂
∂θ l̄(θ0)

d→ N(0, I(θ0)) and − 1
n

∂2

∂θ∂θ′ l̄(θ0)
p→ I(θ0)

−1.

Firstly, replacing nj and x̄j by Nj and X̄j ,

1√
n

∂

∂θ
l̄(θ0) =

L∑
j=1

[
Nj

√
n{X̄j − µj(θ0)}
nVj(θ0)

∂µj(θ0)

∂θ
+
Nj√
n

∂ logPj(θ0)

∂θ

]
.
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Using Nj =
∑n

i=1 I(XiεBj) and NjX̄j =
∑n

i=1 I(XiεBj)Xi, we can rewrite it as

1√
n

∂

∂θ
l̄(θ0) =

1√
n

n∑
i=1


 L∑

j=1

Wji


 ,

where

Wji =
{Xi − µj(θ0)}I(XiεBj)

Vj(θ0)

∂µj(θ0)

∂θ
+ I(XiεBj)

∂ logPj(θ0)

∂θ
.

It is straightforward to show that
∑L

j=1Wji are i.i.d. with mean zero and variance
I(θ0). Therefore, due to a central limit theorem,

1√
n

∂

∂θ
l̄(θ0)

d→ N(0, I(θ0)).

Secondly, we obtain the information matrix as follows using the weak law of large
numbers:

− 1

n

∂2

∂θ∂θ′
l̄(θ0)

= −
L∑

j=1

[
nj{x̄j − µj(θ0)}

nVj(θ0)

∂2µj(θ0)

∂θ∂θ′
− nj
nVj(θ0)

∂µj(θ0)

∂θ

∂µj(θ0)

∂θ′

+
nj
n

∂2 logPj(θ0)

∂θ∂θ′

]

p→
L∑

j=1

{
Pj(θ0)

Vj(θ0)

∂µj(θ0)

∂θ

∂µj(θ0)

∂θ′
− Pj(θ0)

∂2 logPj(θ0)

∂θ∂θ′

}
= I(θ0).
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