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GENERALIZED INFORMATION CRITERIA IN MODEL
SELECTION FOR LOCALLY STATIONARY PROCESSES

Junichi Hirukawa*, Hiroko Solvang Kato**, Kenichiro Tamaki*** and
Masanobu Taniguchi****

The problem of fitting a parametric model of time series with time varying pa-
rameters attracts our attention. We evaluate a goodness of time varying spectral
models from an information theoretic point of view. We propose model selection cri-
teria for locally stationary processes based on nonlinear functionals of a time varying
spectral density without assuming that the true time varying spectral density belongs
to the model. Also, we obtain a sufficient condition such that our information criteria
coincide with Akaike’s information criterion.

Key words and phrases: Generalized information criterion, locally stationary pro-
cess, minimum distance estimation, misspecified models, time varying spectral den-
sity.

1. Introduction

The problem of evaluating goodness of statistical models has been well in-
vestigated from an information theoretic point of view. To evaluate models, we
usually assume their structure is specified by some function. As examples of such
functions we can take the probability distribution function p(x) for the i.i.d. case,
the trend function µ(u) for regression models, the spectral density function f(λ)
for stationary processes, and the dynamic system function F (Xt−1, . . . , Xt−p) for
nonlinear models.

Time series analysis has been developed under stationarity. However, the
assumption of stationarity is insufficient to describe the real time series data.
Recently, an important class of nonstationary processes has been proposed by
Dahlhaus (1996a, 1996b, 1996c), called locally stationary processes. We give the
precise definition which is due to Dahlhaus (1996a, 1996b).

Definition 1. A sequence of stochastic processes Xt,T (t = 1, . . . , T ;T ≥
1) is called locally stationary with transfer function A◦ if there exists a represen-
tation

Xt,T =

∫ π

−π
exp(iλt)A◦

t,T (λ)dξ(λ),
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where
(i) ξ(λ) is a stochastic process on [−π, π] with ξ(λ) = ξ(−λ) and

cum{dξ(λ1), . . . , dξ(λk)}(1.1)

= η


 k∑

j=1

λj


κk(λ1, . . . λk−1)dλ1 · · · dλk−1,

where cum{· · ·} denotes the cumulant of k-th order , κ1 = 0, κ2(λ) =
(2π)−1, |κk(λ1, . . . , λk−1)| ≤ constk for all k ≥ 3 and η(λ) =

∑∞
j=−∞ δ(λ+

2πj) is the period 2π extension of the Dirac delta function. Write εt =∫ π
−π exp(iλt)dξ(λ), then {εt} becomes a white noise sequence and is called the

innovation of the process. If the innovation εt’s are i.i.d., then κk(λ1, . . . ,
λk−1) ≡ κk (constant).

(ii) There exists a constant K and a 2π-periodic function A : [0, 1] × R → C
with A(u, λ) = A(u,−λ) and

sup
t,λ

∣∣∣∣A◦
t,T (λ) −A

(
t

T
, λ

)∣∣∣∣ ≤ KT−1(1.2)

for all T . A(u, λ) is assumed to be continuous in u and g(u, λ) := |A(u, λ)|2
is called the time varying spectral density of the process.

A major difference between the above definition and Priestley’s definition
of an oscillatory process (see Priestley (1981), Chapter 11) is that we consider
double indexed processes. That is, the locally stationary process depends on both
t and T , which allows us to use asymptotic considerations. A justification of the
locally stationary approach and a comparison with the approach of Priestley can
be found in Dahlhaus (1996b, 1996c).

The structure of locally stationary processes is specified by the smooth func-
tion, namely the time varying spectral density function g(u, λ). We want to
fit a class of time varying spectral models P = {fθθθ(u, λ) : θ ∈ Θ ⊂ Rq} to
g(u, λ). Dahlhaus (1996a) and Van Bellegem and Dahlhaus (2006) proposed
model selection criterion for locally stationary processes based on the Gaussian
Kullback-Leibler distance. In this paper, more generally, we suggest model se-
lection criteria for locally stationary processes based on nonlinear functionals
of a time varying spectral density without assuming that the true time varying
spectral density g(u, λ) belongs to the model P.

The distance functions based on nonlinear functionals of time varying spec-
tral densities are defined in Section 2. The asymptotic normality of our minimum
distance estimators are proved in Section 3. The generalized information crite-
ria based on nonlinear integral functionals are derived in Section 4. Numerical
examples and empirical study are shown in Sections 5 and 6. Some technical
lemmas are given in the Appendix.

2. Nonlinear distance functions

Many important quantities in locally stationary processes are often expressed
as functionals of time varying spectral densities. For a linear functional, a nat-
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ural idea of constructing an estimator is to replace an unknown time varying
density by the local periodogram based on the data. The functional of interest
is, however, not always linear with respect to the time varying spectral density.
In these cases we use the nonparametric kernel type time varying spectral density
estimator instead of a local periodogram to avoid the inconsistency.

To simplify, we restrict ourselves to univariate locally stationary processes
{Xt,T } (t = 1, . . . , T ;T ≥ 1) with mean zero and time varying spectral density
g(u, λ). Suppose a stretch XT = {X2−N/2,T , . . . , X1,T , . . . , XT,T , . . . , XT+N/2,T }
is available from this locally stationary processes. We want to fit a class of time
varying spectral models P = {fθθθ(u, λ) : θ ∈ Θ ⊂ Rq} without assuming that
the true time varying spectral density g(u, λ) belongs to P. Dahlhaus (1996a)
and Van Bellegem and Dahlhaus (2006) proposed model selection criterion for
locally stationary processes based on the Gaussian Kullback-Leibler distance.
More generally, we consider in this paper the local distance function at time u of
the form

D(θ, g, u) =

∫ π

−π
K{θ, g(u, λ), u, λ}dλ(2.1)

associated with function K(·, ·, ·, ·) defined below. Some concrete examples of
distance functions of this form for stationary processes are found in Dahlhaus
and Wefelmeyer (1996) and Taniguchi and Kakizawa (2000), and they will be
naturally extended to locally stationary processes.

We set a functional S by the requirement

D{Sg(u), g, u} = min
θθθ∈ΘΘΘ

D(θ, g, u),(2.2)

and make the following assumption, as did Dahlhaus and Wefelmeyer (1996).

Assumption 1.
(i) The parameter space Θ ⊂ Rq is compact and the function K(θ, z, u, λ) :

Θ×(0,∞)× [0, 1]× [−π, π] → R in (2.1) is three time differentiable in (θ, z)
with continuous derivatives in (θ, z, u, λ).

(ii) For the true time varying spectral density g and for all u, Sg(u) exists, is
unique and lies in the interior of Θ.

Denote the first and second derivatives of K(θ, z, u, λ) by

Kj(z, ·, ·) =
∂

∂θj
K(θ, z, ·, ·) |θ=Sg(u)

and

Kj,k(z, ·, ·) =
∂2

∂θj∂θk
K(θ, z, ·, ·) |θ=Sg(u),

and the first derivative of Kj(z, u, λ) by

K
(1)
j (z, ·, ·) =

∂

∂z
Kj(z, ·, ·).
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Furthermore, we define

Dg(u) =

∫ π

−π

∂2

∂θ∂θ′K{θ, g(u, λ), u, λ} |θ=Sg(u) dλ(2.3)

and assume the following:

Assumption 2.
(i) The first derivative of Kj(z, u, λ) satisfies

K
(1)
j {g(u,−λ), u,−λ} = K

(1)
j {g(u, λ), u, λ}.

(ii) The q × q matrix Dg(u) is nonsingular for all u.

We now give two specific forms of the function K(·, ·, ·, ·).
Contrast type: Let H(x) on (0,∞) be an appropriate smooth function
which is three times continuously differentiable and has a unique minimum
zero at x = 1, such as

H1(x) = − log (x) + x− 1,

H2(x) =
1

α(1 − α)
{log(αx+ 1 − α) − α log(x)}, 0 < α < 1,

H3(x) =
1

2
(x− 1)2.

Then, we define the contrast type function

K(θ, z(u, λ), u, λ) = H{fθθθ(u, λ)z(u, λ)−1}(2.4)

or

K(θ, z(u, λ), u, λ) = H{z(u, λ)fθθθ(u, λ)−1}(2.5)

or

K(θ, z(u, λ), u, λ)(2.6)

=
1

2
[H{z(u, λ)fθθθ(u, λ)−1} +H{fθθθ(u, λ)z(u, λ)−1}].

Weighted squared function: Let ψ(u, λ) be a given weighted function
which satisfies ψ(u,−λ) = ψ(u, λ). Then, we define

K(θ, z(u, λ), u, λ) =
1

2
[ψ(u, λ){fθθθ(u, λ) − z(u, λ)}]2.

In these cases, the identifiability condition (S1) below on parametrization of the
model P = {fθθθ(u, λ) : θ ∈ Θ ⊂ Rq} implies that

Sfθθθ(u) = θ uniquely for every θ ∈ Θ,
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since K{t, fθθθ(u, λ), u, λ} ≥ K{θ, fθθθ(u, λ), u, λ} and the equality holds if and only
if t = θ. On the other hand Assumption 1 (i) is fulfilled, if the model time
varying densities fulfill the assumption (S2) below.

We make the following assumption on the model time varying spectral den-
sity fθθθ.

Assumption 3.
(S1) For fixed u, if θ1 �= θ2, then fθθθ1

(u, λ) �= fθθθ2
(u, λ) on a set of positive

Lebesgue measure.
(S2) The model time varying spectral density fθθθ is three times continuously

differentiable with respect to θ and these derivatives are continuous in u
and λ. Furthermore, fθθθ and its derivatives are uniformly bounded and
bounded away from 0.

3. Parameter estimation based on functionals

Now, we turn to developing estimation theory for estimators corresponding
to Sg(u), where S is the functional defined in (2.2). The estimator is naturally
defined by SĝT (u), where ĝT is a suitable time varying spectral density estimator.
We will examine the large sample behavior of SĝT (u) when ĝT is a nonparametric
kernel type time varying spectral density estimator

ĝT (u, λ) =

∫ π

−π
WM (λ− µ)IN (u, µ)dµ,(3.1)

where

IN (u, λ) =
1

2πHN

∣∣∣∣∣
N−1∑
s=0

h

(
s

N

)
X[uT ]−N/2+s+1,T exp (iλs)

∣∣∣∣∣
2

(3.2)

is the data tapered local periodogram at time u, WM (λ) = M
∑∞

ν=−∞W{M(λ+
2πν)} is the weight function, h : [0, 1] → R is a data taper and HN =∑N−1

s=0 h2(s/N) ∼ N
∫ 1
0 h

2(x)dx. We impose the following assumptions on the
parameters M and N .

Assumption 4. The parameters M = M(T ) and N = N(T ), M � N �
T depends on T in such a way that

M

N1/2
+
N1/4

M
+
N5

T 4
→ 0.

Furthermore, we assume that the functions W (·) and h(·) satisfy the follow-
ing:

Assumption 5.
(i) The weight function W : R → [0,∞] satisfies W (x) = 0 for x /∈ [−π, π],

and is a continuous and even function satisfying
∫ π
−πW (x)dx = 1 and∫ π

−π x
2W (x)dx <∞.
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(ii) For M = O(Nα), (1/4 < α < 1/2), the function WM (λ) = M
∑∞

ν=−∞ ·
W{M(λ+ 2πν)} can be expanded as

WM (λ) =
1

2π

N−1∑
j=−(N−1)

ω

(
j

M

)
e−ijλ,

where ω(x) is a continuous, even function with ω(0) = 1, |ω(x)| ≤ 1 and∫∞
−∞ ω(x)dx <∞.

Assumption 6. The data taper h : R → R satisfies (i) h(x) = 0 for all
x /∈ [0, 1] and h(x) = h(1 − x), (ii) h(x) is continuous on R, twice differentiable
at all x /∈ U where U is a finite set of R, and supx/∈U |h′′(x)| <∞.

Write

Kt(x) :=

{∫ 1

0
h(x)2dx

}−1

h(x+ 1/2)2, x ∈ [−1/2, 1/2],

which plays a role of kernel in the time domain.
Using Lemma 3 and (ii), (iii) of Lemma 2, we obtain

√
N{SĝT (u) − Sg(u)}

= −Dg(u)
−1

√
N

(∫ π

−π
φj(u, λ)[IN (u, λ) − E{IN (u, λ)}]dλ

)′

j=1,...,q

+ oP (1),

where φj(u, λ) = K
(1)
j (g(u, λ), u, λ). The following theorem is a consequence of

Lemma 1.

Theorem 1. Under Assumptions 1, 2, 4–6, we have:
√
N{SĝT (u) − Sg(u)}

d→ N(0, v(h)Dg(u)
−1Γg(u)Dg(u)

−1),

where Γg(u) is the covariance matrix of a Gaussian vector ξ(φj), j = 1, . . . , q
given in (A.1) below.

In particular, if we take the contrast type function (2.4) as K(·, ·, ·, ·, ), then
we have

Dg(u) =

∫ π

−π

[
H(2){fθθθ(u, λ)g(u, λ)−1}

g(u, λ)2
∂

∂θ
fθθθ(u, λ)

∂

∂θ′ fθθθ(u, λ)(3.3)

+
H(1){fθθθ(u, λ)g(u, λ)−1}

g(u, λ)

∂2

∂θ∂θ′ fθθθ(u, λ)

]
θθθ=Sg(u)

dλ

and

{Γg(u)}j,k = 4π

∫ π

−π
φj(u, λ)φk(u, λ)g2(u, λ)dλ(3.4)

+ 2π

∫ π

−π

∫ π

−π
φj(u, λ)φk(u, µ)g(u, λ)g(u, µ)

× κ4(λ,−λ, µ)dλdµ
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with

φj(u, λ) = −
[[
H(2){fθθθ(u, λ)g(u, λ)−1}fθθθ(u, λ)

g(u, λ)3

+
H(1){fθθθ(u, λ)g(u, λ)−1}

g(u, λ)2

]
∂

∂θj
fθθθ(u, λ)

]
θθθ=Sg(u)

,

where H(i)(·), i = 1, 2 are the first and second derivatives of H(·). In addition,
we introduce the following assumptions.

Assumption 7. The true time varying spectral density of the process is
fθθθ, where θ lies in the interior of Θ.

Assumption 8. The process is Gaussian, or θ is innovation free (namely,
the innovation εt’s are i.i.d. and θ satisfies ∂

∂θθθ

∫ π
−π log fθθθ(u, λ)dλ = 0).

Under Assumptions 1–7, we have

Dg(u) = H(2)(1)

∫ π

−π

1

fθθθ(u, λ)2
∂

∂θ
fθθθ(u, λ)

∂

∂θ′ fθθθ(u, λ)dλ

and

Γg(u) = 4πH(2)(1)Dg(u)

+ 2π{H(2)(1)}2
∫ π

−π

∫ π

−π

κ4(λ,−λ, µ)

fθθθ(u, λ)fθ(u, µ)

∂

∂θ
fθθθ(u, λ)

∂

∂θ′ fθθθ(u, µ)dλdµ.

Similarly we have the following results for general contrast type distance
function:

Theorem 2. For the contrast type K(·, ·, ·, ·) of the form (2.4) or (2.5) or
(2.6), denote the functional Sg(u) of (2.2) by Sc

g(u). Under Assumptions 1–7,
we have:

(i) Then
√
N{Sc

ĝT
(u)− θ} is asymptotically normal with mean vector zero and

covariance matrix v(h)D̃g(u)
−1{4πD̃g(u) + Πg(u)}D̃g(u)

−1. Here D̃g(u)
and Πg(u) are given by

D̃g(u) =

∫ π

−π

1

fθθθ(u, λ)2
∂

∂θ
fθθθ(u, λ)

∂

∂θ′ fθθθ(u, λ)dλ

and

Πg(u) = 2π

∫ π

−π

∫ π

−π

κ4(λ,−λ, µ)

fθθθ(u, λ)fθθθ(u, µ)

∂

∂θ
fθθθ(u, λ)

∂

∂θ′ fθθθ(u, µ)dλdµ.

(ii) In addition if Assumption 8 holds, then the asymptotical covariance matrix
of

√
N{Sc

ĝT
(u) − θ} becomes 4πv(h)D̃g(u)

−1.
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4. Model selection criterion

We now turn to discuss model selection criterion. Recall that we fit a class
of parametric models P = {fθθθ(u, λ) : θ ∈ Θ ⊂ Rq} to g by use of a measure of
local disparity at time u, D(θ, g, u), and we estimate θ by the value SĝT (u) which
minimizesD(θ, ĝT , u), where ĝT (u, λ) is a nonparametric kernel type time varying
spectral density estimator at time u. Nearness between fSĝT

(u) and g is measured

by D(SĝT (u), g, u). A simple estimator of D(SĝT (u), g, u) is given by substituting
for g the nonparametric time varying spectral density estimator ĝT , yielding
D(SĝT (u), ĝT , u). Ordinarily this provides an underestimate of D(SĝT (u), g, u).
Writing bias as

bg(u) = EXT
{D(SĝT (u), ĝT , u) −D(SĝT (u), g, u)},(4.1)

we define the generalised information criterion as

D(SĝT (u), ĝT , u) − bĝT (u).

Recall we define the pseudo true value of θ in terms of the functional Sg(u) by
the requirement D(Sg(u), g, u) = minθθθ∈ΘΘΘD(θ, g, u). Expanding D(SĝT (u), g, u)
at Sg(u) we obtain the approximation

D(SĝT (u), g, u)

≈ D(Sg(u), g, u) + (SĝT (u) − Sg(u))
′ ∂
∂θ

D(θ, g, u) |θθθ=Sg(u)

+
1

2
(SĝT (u) − Sg(u))

′ ∂2

∂θ∂θ′D(θ, g, u) |θθθ=Sg(u) (SĝT (u) − Sg(u))

= D(Sg(u), g, u)

+
1

2
(SĝT (u) − Sg(u))

′ ∂2

∂θ∂θ′D(θ, g, u) |θθθ=Sg(u) (SĝT (u) − Sg(u)).

On the other hand, expanding D(Sg(u), ĝT , u) at SĝT (u) we have

D(Sg(u), ĝT , u)

≈ D(SĝT (u), ĝT , u) + (Sg(u) − SĝT (u))′
∂

∂θ
D(θ, ĝT , u) |θθθ=SĝT

(u)

+
1

2
(SĝT (u) − Sg(u))

′ ∂2

∂θ∂θ′D(θ, ĝT , u) |θθθ=SĝT
(u) (SĝT (u) − Sg(u))

= D(SĝT (u), ĝT , u)

+
1

2
(SĝT (u) − Sg(u))

′ ∂2

∂θ∂θ′D(θ, ĝT , u) |θθθ=SĝT
(u) (SĝT (u) − Sg(u)).

From the fact that ∂2

∂θθθ∂θθθ′
D(θ, ĝT , u) |θθθ=SĝT

(u)
P→ ∂2

∂θθθ∂θθθ′
D(θ, g, u) |θθθ=Sg(u)= Dg(u)

and EXT
{D(Sg(u), ĝT , u)} ≈ D(Sg(u), g, u), we see that

D(SĝT (u), g, u) −D(SĝT (u), ĝT , u)

≈ D(Sg(u), g, u) −D(Sg(u), ĝT , u)

+ (SĝT (u) − Sg(u))
′Dg(u)(SĝT (u) − Sg(u))

and
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−bg(u) ≈ EXT
{(SĝT (u) − Sg(u))

′Dg(u)(SĝT (u) − Sg(u))}(4.2)

≈ v(h)

N
tr{Dg(u)

−1Γg(u)},

where Dg(u) and Γg(u) are as in (2.3) and (A.1). Since Dg(u) and Γg(u) de-
pend on g, we replace g by the nonparametric time varying spectral density
estimator ĝT . Then (4.1) and (4.2) validate that GN (q) = D(SĝT (u), ĝT , u) +
N−1v(h) tr{DĝT (u)−1ΓĝT (u)} is an asymptotically unbiased estimator of
EXT

{D(SĝT (u), g, u)}. Multiplying GN (q) by N we call

GIC(q) = ND(SĝT (u), ĝT , u) + v(h) tr{DĝT (u)−1ΓĝT (u)}
a generalized information criterion.

In particular, for the contrast typeK(·, ·, ·, ·) of the form (2.4) or (2.5) or (2.6)
under Assumptions 1–8, the generalized information criterion GIC(q) becomes
Akaike’s information criterion

AIC(q) = ND(SĝT (u), ĝT , u) + 4πH(2)(1)v(h)q.(4.3)

5. Numerical examples

In this section we give concrete examples of the quantity
v(h) tr{Dg(u)

−1Γg(u)} in (4.2), which is interpreted as the penalized term in
the GIC. Here we take the contrast type function (2.4) as K(·, ·, ·, ·) with
H(x) = H1(x) = − log(x) + x− 1.

(i) First, we consider the misspecified case. Namely, we fit the stationary
model fθθθ(u, λ) = fθθθ(λ) to a locally stationary process which has the true
time varying spectral density g(u, λ). Here we assume that θ is innovation
free (the innovation εt’s are i.i.d. and θ satisfies ∂

∂θθθ

∫ π
−π log fθθθ(λ)dλ = 0).

Then, θ satisfies

∂2

∂θ∂θ′

∫ π

−π
log fθθθ(λ)dλ(5.1)

=

∫ π

−π
fθθθ(λ)−1∂

2fθθθ(λ)

∂θ∂θ′ − fθθθ(λ)−2
(
∂fθθθ(λ)

∂θ

)(
∂fθθθ(λ)

∂θ′

)
dλ

= 0.

Therefore, we have

Dg(u) =

∫ π

−π

{
g(u, λ)−1∂

2fθθθ(λ)

∂θ∂θ′

}
θθθ=Sg(u)

dλ,

Γg(u) =

∫ π

−π

{
g(u, λ)−2

(
∂fθθθ(λ)

∂θ

)(
∂fθθθ(λ)

∂θ′

)}
θθθ=Sg(u)

dλ.

If the true time varying spectral density is of the form g(u, λ) = fθθθ(λ)α(u),
then from (5.1) the penalized term becomes

tr{ν(h)Dg(u)
−1Γg(u)} = 4π

ν(h)

α(u)
q,

which coincides with the penalized term of AIC when α(u) ≡ 1.
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(ii) Next, we consider the overfitted case. Namely, we fit the locally stationary
model fθθθ(u, λ) = f1,θθθ(q−1)

(λ)f2,θ(q)(u), θ = (θ′
(q−1), θ(q))

′, θ(q−1) ∈ Rq−1,

θ(q) ∈ R1 to a stationary process which has the true spectral density g(λ).
Here we assume that θ(q−1) is innovation free (the innovation εt’s are i.i.d.

and θ(q−1) satisfies ∂
∂θθθ(q−1)

∫ π
−π log f1,θθθ(q−1)

(λ)dλ = 0). Then, we have

Dg(u) =

(
Dg(u)(11) 0

0 Dg(u)(22)

)
and

Γg(u) =

(
Γg(u)(11) ∗

∗ Γg(u)(22)

)
,

where

Dg(u)(11) =

∫ π

−π

{
f2,θ(q)(u)

g(λ)

∂2f1,θθθ(q−1)
(λ)

∂θ(q−1)∂θ
′
(q−1)

}
θθθ=Sg(u)

dλ,

Dg(u)(22) = 2π


f2,θ(q)(u)

−2

{
∂θ(q)f2,θ(q)(u)

∂θ(q)

}2


θθθ=Sg(u)

,

Γg(u)(11)

= 4π

∫ π

−π

{
f2,θ(q)(u)

2

g(λ)2

(
∂f1,θθθ(q−1)

(λ)

∂θ(q−1)

)(
∂f1,θθθ(q−1)

(λ)

∂θ′
(q−1)

)}
θθθ=Sg(u)

dλ,

Γg(u)(22) = 4π

∫ π

−π


{∂θ(q)f2,θ(q)(u)

∂θ(q)

}2 f1,θθθ(q−1)
(λ)2

g(λ)2



θθθ=Sg(u)

dλ

+ 8π3κ4


f2,θ(q)(u)

−2

{
∂θ(q)f2,θ(q)(u)

∂θ(q)

}2


θθθ=Sg(u)

and

tr{v(h)Dg(u)
−1Γg(u)}

= tr{v(h)Dg(u)
−1
(11)Γg(u)(11)} + tr{v(h)Dg(u)

−1
(22)Γg(u)(22)}.

If the true spectral density is of the form g(λ) = f1,θθθ(q−1)
(λ) and the pseudo

true value θ0(u) = (θ0
(q−1)(u)

′
, θ0

(q)(u))
′ = Sf1,θθθ(q−1)

(u) satisfies θ0
(q−1)(u) =

θ(q−1) and f2,θ0
(q)

(u)(u) ≡ 1, then the penalized term becomes

tr{v(h)Dg(u)
−1Γg(u)} = 4πv(h){(q − 1) + 1 + πκ4}.

6. Empirical study

Because we explained the model selection procedures and the parameter es-
timation methods, we can now identify the statistical models from real data. We
apply our methods to the daily log returns {X1−N/2,T , . . . , X0,T , . . . , XT,T , . . . ,
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XT+N/2,T } of the S&P 500 index from September 20, 2005 to September 14, 2007
(500 trading days).

First, we fit stationary AR(q) models to the data {Xk+1−N/2,T , . . . ,
Xk+N/2,T } in terms of Yule-Walker equations for each uk = k/T , k = 0, . . . , T .
The estimated models are

f
θ̂θθ
(uk, λ) =

σ(uk)
2

2π

∣∣∣∣∣∣1 +
q∑

j=1

aj(uk)e
ijλ

∣∣∣∣∣∣
−2

, k = 0, . . . , T.

Then, we select the order of models in terms of q̂(uk), k = 0, . . . , T which
minimizes

GIC(q(uk)) = N

∫ π

−π
K

(
ĝT (uk, λ)

fˆθ
(uk, λ)

)
dλ+ 4πν(h)(q + 1),

where the parameters are T = 400, N = 100 and M = 8, and we employ the
symmetric contrast type function K = 1

2{x + x−1 + 2}, the Bartlett-Priestley
window

W (λ) =




3

4π
{1 − (λ/π)2}, |λ| ≤ π,

0, |λ| ≥ π,

and taper function

h2(x) =

{
6x(1 − x), 0 ≤ x ≤ 1,

0, otherwise.

The selected q̂(uk) and minimal GIC values GIC(q̂(uk)) are plotted in Figs. 1
and 2. From both figures we see that the model is not constant in time. Therefore,
we can conclude time varying spectral models are desirable rather than stationary
spectral models.

Dec Jan FebMar Apr May Jun Jul Aug Sep Oct Nov Dec Jan FebMar Apr May Jun Jul

2005 - 2007

0

2

4

6

8

S
el

ec
te

d 
q

Figure 1. The selected q̂(uk).
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Figure 2. The minimal GIC values GIC(q̂(uk)).

Appendix A
In this Appendix we briefly summarize some convergence results for time

varying spectral estimates.
Suppose {Xt,T } is locally stationary with mean function µ ≡ 0 and transfer

function A◦ with corresponding A whose derivatives ∂2

∂u2A, ∂2

∂λ2 , ∂2

∂∂u∂λ are contin-
uous and uniformly bounded. Then, the nonparametric kernel type time varying
spectral density estimator ĝT in (3.1) and the data tapered local periodogram
IN in (3.2) possess the following asymptotic properties. First, by Corollary 4.1
of Dahlhaus and Giraitis (1998), we have the following.

Lemma 1. Let φj be functions of bounded variation with φj(u, λ) =
φj(u,−λ). Then, under Assumptions 4 and 6, we have

√
N

(∫ π

−π
φj(u, λ)[IN (u, λ) − E{IN (u, λ)}]dλ

)′

j=1,...,q

d→ {v(h)}1/2(ξ(φj))
′
j=1,...,q,

where

v(h) =

∫ 1
0 h

4(x)dx

{
∫ 1
0 h

2(x)dx}2
,

and ξ(φj), j = 1, . . . , q is a Gaussian vector with zero mean and covariance
matrix

{Γg(u)}j,k = E{ξ(φj)ξ(φk)}(A.1)

= 4π

∫ π

−π
φj(u, λ)φk(u, λ)g2(u, λ)dλ

+ 2π

∫ π

−π

∫ π

−π
φj(u, λ)φk(u, µ)g(u, λ)g(u, µ)κ4(λ,−λ, µ)dλdµ,

where κ4(λ,−λ, µ) is the 4th order cumulant spectrum of innovation {εt}.

Lemma 2. Under Assumptions 4–6, we have:
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(i) E|ĝT (u, λ) − g(u, λ)|2 = O(MN ), uniformly in u and λ.

(ii)
√
N
∫ π
−π ψ(u, λ){ĝT (u, λ) − IN (u, λ)}dλ = oP (1), for continuous ψ.

(iii)
√
N
∫ π
−π ψ(u, λ)[E{IN (u, λ)} − g(u, λ)]dλ = o(1), for bounded ψ.

(iv) maxu,λ∈[0,1]×[−π,π] |ĝT (u, λ) − g(u, λ)| P→ 0.

Proof. From Theorem 2.2 of Dahlhaus (1996c), we see that

E|ĝT (u, λ) − g(u, λ)|2 = O

(
M

N

)
+O


(M−2 +

N2

T 2

)2

 = O

(
M

N

)

and

E{IN (u, λ)} − g(u, λ) = O

(
N2

T 2
+

logN

N

)
,

which imply the assertion (i) and (iii). Putting

√
N

∫ π

−π
ψ(u, λ){ĝT (u, λ) − IN (u, λ)}dλ

=
√
N

∫ π

−π
ψ(u, λ){ĝT (u, λ) − g(u, λ)}dλ

−
√
N

∫ π

−π
ψ(u, λ){IN (u, λ) − g(u, λ)}dλ

= LN − JN (say),

by the same argument as in the proof of Theorem 1 of Taniguchi et al. (1996),
we have

|LN − JN | = oP (1),

which implies the assertion (ii). The assertion (iv) follows from (ii) of Assump-
tion 5, since

max
u,λ∈[0,1]×[−π,π]

|ĝT (u, λ) − E{ĝT (u, λ)}|

≤
N−1∑

j=−(N−1)

∣∣∣∣ω
(
j

M

)∣∣∣∣ |ĉN (u, j) − E{ĉN (u, j)}|,

where

ĉN (u, j) =
1

2πHN

N−1∑
s=0

h

(
s

N

)
h

(
s+ j

N

)
X[uT ]−N/2+s+1,TX[uT ]−N/2+s+j+1,T

and from Theorem 4.1 of Dahlhaus and Giraitis (1998), we have

E|N1/2[ĉN (u, j) − E{ĉN (u, j)}]| ≤ C.

Lemma 3. Under Assumptions 1, 2, 4–6, we have:
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(i) SĝT (u)
P→ Sg(u).

(ii) There exists an integrable function m(u, λ) with respect to λ ∈ [−π, π] such
that , with

R̂T =

∫ π

−π
m(u, λ)|ĝT (u, λ) − g(u, λ)|2dλ,

the relation

SĝT (u) − Sg(u) +Dg(u)
−1
(∫ π

−π
φj(u, λ){ĝT (u, λ) − g(u, λ)}dλ

)′

j=1,...,q

= OP (R̂T )

holds.
(iii) R̂T = OP (MN ).

Proof. By (i) of Theorem 6.2.3 of Taniguchi and Kakizawa (2000), (iv) of
Lemma 2 implies the assertion (i). From the definition of SĝT (u) and Sg(u) we
obtain

0 =
∂

∂θ
D(θ, ĝT , u) |θθθ=SĝT

(u)

=
∂

∂θ
D(θ, ĝT , u) |θθθ=Sg(u)

+

{
∂2

∂θ∂θ′D(θ, ĝT , u) |θθθ=Sg(u)

}
{SĝT (u) − Sg(u)}

+OP (|SĝT (u) − Sg(u)|2),
∂

∂θj
D(θ, ĝT , u) |θθθ=Sg(u)=

∫ π

−π
K

(1)
j (g(u, λ), u, λ){ĝT (u, λ) − g(u, λ)}dλ

+OP

(∫ π

−π
mj(u, λ)|ĝT (u, λ) − g(u, λ)|2dλ

)

and

∂2

∂θ∂θ′D(θ, ĝT , u) |θθθ=Sg(u)= Dg(u) +OP {(R̂′
T )1/2},

where mj(u, λ) is some integrable function with respect to λ ∈ [−π, π] and

R̂′
T =

∫ π

−π
|ĝT (u, λ) − g(u, λ)|2dλ.

By the same argument as in the proof of Theorem 6.1.2 of Taniguchi and
Kakizawa (2000), the assertions (ii) hold. The assertion (iii) follows from (i)
of Lemma 2.
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