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APPROXIMATE DISTRIBUTIONS OF THE LIKELIHOOD
RATIO STATISTIC IN A STRUCTURAL EQUATION

WITH MANY INSTRUMENTS

Yukitoshi Matsushita*

This paper studies properties of the likelihood ratio (LR) tests associated with
the limited information maximum likelihood (LIML) estimators in a structural form
estimation when the number of instrumental variables is large. Two types of asymp-
totic theories are developed to approximate the distribution of the likelihood ratio
(LR) statistic under the null hypothesis H0 : β = β0: a (large sample) asymptotic
expansion and a large-Kn asymptotic theory. Size comparisons of two modified LR
tests based on these two asymptotics are made with Moreira’s conditional likelihood
ratio (CLR) test and the large K t-test.

Key words and phrases: Asymptotic expansion, large-Kn asymptotics, many instru-
ments.

1. Introduction

Statistical inference procedures in structural equation models can be cru-
cially affected by the quality and the number of the instrumental variables. It
has been known that when instruments are only weakly correlated with the en-
dogenous variables, classical normal and chi-square asymptotic approximations
to the finite-sample distributions of estimators and statistics can be poor. See
Nelson and Startz (1990a, b), Bound et al. (1995), and Staiger and Stock (1997),
for instance. If the number of the instrumental variables is large, efficiency can
be improved, but it makes the finite-sample properties of usual inference proce-
dures poor. In addition, in recent microeconometric applications, some econo-
metricians have used many instrumental variables in estimating an important
structural equation. One empirical example of this kind often cited in economet-
ric literature is Angrist and Krueger (1991), where they used 178 instruments in
one of their specifications. Bound et al. (1995) shows that the properties of the
two stage least squares (TSLS) estimator can be poor in the case of many weak
instruments, even when the sample size is huge.

In order to overcome these problems, several new statistical procedures have
been proposed recently. For inference on all the coefficients of endogenous pa-
rameters, the Anderson-Rubin (AR) test is a fundamental building block for
developing reliable inference procedures with weak instruments; see Anderson
and Rubin (1949). Kleibergen (2002) and Moreira (2001) proposed a score-type
statistic, while Moreira (2003) proposed a conditional likelihood ratio (CLR) test,
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both of which are also shown to be robust to weak instruments. Among these
testing procedures, the CLR test has been found to dominate the other tests in
terms of power. Andrews et al. (2006) showed that the CLR test is quite close
to being uniformly the most powerful invariant among a class of two-sided tests.

On the other hand, there has been another approach to provide better ap-
proximation using “large-Kn asymptotics”, where the number of instruments (K)
is allowed to increase with the number of observations (n). Kunitomo (1980)
and Morimune (1983) were early developers of the large-Kn asymptotics, and
they derived asymptotic expansions of the distributions of the k-class estimators
including the TSLS and the limited information maximum likelihood (LIML)
estimators in the case of two endogenous variables. Multivariate first order ap-
proximations to the distributions were derived by Bekker (1994) and Anderson
et al. (2006). Bekker (1994) found that the large-Kn asymptotics provides better
approximations than the one where K is fixed. Hansen et al. (2006) consider
the same model and show that Bekker’s (1994) standard error corrects the size
problem. Matsushita (2006) has derived an asymptotic expansion of the distribu-
tions of the LIML estimator and (large K) t-ratio under H0 under the large-Kn

asymptotics.
The main purpose of this paper is to explore finite sample properties of

the likelihood ratio (LR) test, on all the coefficients of endogenous variables in
a structural equation model, when the number of the instrumetal variables is
large. We develop two types of alternative asymptotic theories to approximate
the null distribution of the LR statistic: a (large sample) asymptotic expansion
(in the case of normal disturbances), and a large-Kn asymptotics (in the case of
non-normal disturbances). We propose two types of modified LR tests from these
asymptotics, and compare their finite sample properties with that of Moreira’s
conditional likelihood ratio (CLR) test using Monte Carlo experiments.

The model and several test statistics are explained in Section 2. An asymp-
totic expansion of the null distribution of the LR statistic is given in Section 3,
while an approximate null distribution based on the large-Kn asymptotics is
given in Section 4. Some Monte Carlo experiments are provided in Section 5,
and conclusions are provided in Section 6.

2. The model and test statistics

Let a single structural equation be

y1 = Y2β + Z1γ + u ,(2.1)

where y1 and Y2 are n×1 and n×G1 matrices, respectively, of observations of the
endogenous variables, Z1 is an n×K1 matrix of observations of the K1 exogenous
variables, β and γ are column vectors with G1 and K1 unknown parameters, and
u is a column vector of n disturbances. We assume that (2.1) is the first equation
in a simultaneous system of G1 + 1 linear stochastic equations relating G1 + 1
endogenous variables and K(= K1 +K2) exogenous variables. The reduced form
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of y = (y1 Y2) is defined as

Y = ZΠ + V = (Z1 Z2)

(
π1

Π2

)
+ (v1 V2),(2.2)

where Z is an n × K matrix of instrumental variables, π1 = (π11 Π12) and
Π2 = (π21 Π22) are K1×(1+G1) and K2×(1+G1) matrices, respectively, of the
reduced form coefficients, and (v1 V2) is an n× (1+G1) matrix of disturbances.
The rows of V are independently distributed, each row having mean 0 and
(nonsingular) covariance matrix

Ω =

(
ω11 ω12

ω21 Ω22

)
.(2.3)

In order to relate (2.1) and (2.2), we postmultiply (2.2) by (1, −β′)′, then u =
v1 −V2β, γ = π11 − Π12β, and

π21 = Π22β.(2.4)

The matrix (π21 Π22) is of rank G1 and so is Π22. The components of u are
independently distributed with mean 0 and variance σ2, which is defined to be
ω11 − 2β′ω21 + β′Ω22β.

The LIML estimator of β, as originally developed by Anderson and Rubin
(1949), is a maximum likelihood estimator when the disturbances are normally
distributed. We define, for any full column matrix F , PF = F (F ′F )−1F ′ and
P̄F = I − F (F ′F )−1F ′. The LIML estimator of β is β̂LI satisfying{(

y ′
1

Y ′
2

)
(PZ −PZ1)(y1 Y2) − λ̂

(
y ′

1

Y ′
2

)
P̄Z(y1 Y2)

}(
1

−β̂LI

)
= 0,(2.5)

where λ̂ is the smallest root of∣∣∣∣∣
(

y ′
1

Y ′
2

)
(PZ −PZ1)(y1 Y2) − λ

(
y ′

1

Y ′
2

)
P̄Z(y1 Y2)

∣∣∣∣∣ = 0.(2.6)

We note that the LIML estimator is the minimizer of the variance ratio

λ =
b ′Y ′(PZ −PZ1)Yb

b ′Y ′P̄ZYb
,(2.7)

where b ′ = (1,−β′).
The TSLS estimator of β is β̂TS satisfying

Y ′
2(PZ −PZ1)(y1 Y2)

(
1

−β̂TS

)
= 0.(2.8)

It minimizes the numerator of the variance ratio (2.7). The LIML and the TSLS
estimators of γ are

γ̂ = (Z ′
1Z1)

−1Z ′
1Y β̂,(2.9)
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where β is β̂LI or β̂TS , respectively. See Anderson (2005) for the details of the
LIML and TSLS estimators.

The likelihood ratio (LR) statistic for the hypothesis H0 : β = β0 can be
defined as

l = (n−K)[λ0 − λ̂],(2.10)

where

λ0 =
b ′

0Y
′(PZ −PZ1)Yb0

b ′
0Y

′P̄ZYb0
,(2.11)

λ̂ = min
b

b ′Y ′(PZ −PZ1)Yb

b ′Y ′P̄ZYb
,(2.12)

and b ′
0 = (1,−β′

0). Morimune and Tsukuda (1984) discussed several test statis-
tics, including the LR statistic, to test significance of a subset of coefficients.

Recently it has been discovered that usual first order asymptotic approxi-
mations can be quite poor in several cases. One is the case of so-called weak
instruments, in which the instruments are weakly correlated to the included en-
dogenous variables. In order to overcome this problem, several new statistical
procedures robust to weak instruments have been proposed: the Anderson-Rubin
(AR) test, a score-type test by Kleibergen (2002) and Moreira (2001), and a con-
ditional likelihood ratio (CLR) test by Moreira (2003).

• Anderson-Rubin (AR) Test
Anderson and Rubin (1949) proposed testing the null hypothesis H0 : β =
β0 to use the statistic

AR =
(1,−β0

′)Y ′(PZ −PZ1)Y (1,−β0
′)′

(1,−β0
′)Y ′P̄ZY (1,−β0

′)′/(n−K)
.(2.13)

In case of normal disturbances, under the null hypothesis, since the
quadratic forms in the numerator and denominator of (2.13) are indepen-
dent χ2 random variables, the AR statistic has an exact FK2,T−K null distri-
bution. Under either the standard large sample theory or the more general
conditions of weak-instrument asymptotics, the AR statistic is asymptot-
ically distributed as a χ2(K2) distribution under the null hypothesis. See
Staiger and Stock (1997), for instance. Thus the AR test is one of the
testing procedures which are robust to weak instruments.

• Score-type Test
Define the statistics

S = (PZ −PZ1)Yb0(b0
′Ωb0)

−1/2(2.14)

and

T = (PZ −PZ1)YΩ−1

(
β0

′

IG1

)[
(β0, IG1)Ω

−1

(
β0

′

IG1

)]−1/2

,(2.15)
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and Ŝ and T̂ denote S and T evaluated with Ω̂ = Y ′P̄ZY /(n − K)
replacing Ω, where b0 = (1,−β0

′)′. Kleibergen (2002) proposed the statistic

K = Ŝ ′T̂ (T̂ ′T̂ )−1T̂ ′Ŝ .(2.16)

Kleibergen showed that under either the standard large sample asymptotics
or weak-instrument asymptotics, the limiting distribution of the K statistic
under the null hypothesis is χ2(G1), i.e. robust to the weak instruments.

• Conditional Likelihood Ratio (CLR) Test
The likelihood ratio (LR) statistic for testing H0 : β = β0, when Ω is
known, is given by

LR =
b ′

0Y
′(PZ −PZ1)Yb0

b ′
0Ωb0

− min
b

b ′Y ′(PZ −PZ1)Yb

b ′Ωb
.(2.17)

Moreira (2003) showed that the LR statistic is a function of S and T
defined in (2.14) and (2.15), and that, in the fixed-instruments and normal-
distubances model with known Ω, if its critical value is computed from the
conditional distribution given T , this conditional likelihood ratio (CLR)
test is similar (i.e. fully robust to weak instruments). Moreira (2003) and
Andrews et al. (2006) suggested computing the null distribution by Monte
Carlo simulation or numerical integration. In parctice, Ω is unknown. How-
ever, Ω can be consistently estimated by Ω̂ = Y ′P̄ZY /(n−K) under the
weak-instrument asymptotics, and the conditional likelihood ratio (CLR)
test based on the plug-in value of Ω can be shown to be asymptotically ro-
bust to weak instruments under general conditions (stochastic instruments
and nonormal disturbances).

3. Asymptotic expansion of the null distribution of the LR statistic

In this section and the next, we will develop two types of alternative asymp-
totic theories to approximate the null distribution of the LR statistic: a (large
sample) asymptotic expansion (Section 3) and a large-Kn asymptotics (Section 4)
in order to explore finite sample properties of the likelihood ratio (LR) test when
the number of the instrumetal variables is large.

First, we consider a modification of the likelihood ratio test based on an
asymptotic expansion of the distribution of the LR statistic under H0 : β = β0.
The following notations are used throughout this chapter:

q ′
2 =

1

σ2
(ω12 − β′Ω22,0) : 1 × p,(3.1)

C1 = q2q
′
2 : p× p,(3.2)

C2 =


 1

σ2
Ω22 0

0 0


−C1 : p× p,(3.3)

X = Z

(
Π12 IK1

Π22 0

)
: n× p,(3.4)

and
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Q̃ = X ′X : p× p.(3.5)

We give a large sample asymptotic expansion of the distribution of the LR
statistic (2.10) under H0 in the case of normal disturbances, which is similar
to Theorem 1 of Morimune and Tsukuda (1984). The derivation is provided in
Appendix A.

Theorem 1. Assume there exists a positive definite matrix Q =
p limn→∞ n−1Q̃ such that Q = n−1Q̃ + Op(n

−1). When the disturbances are
normally distributed , the following asymptotic expansion corresponds to the sam-
ple size going to infinity :

P (l ≤ ξ) = HG1(ξ)(3.6)

− ξ

n

{
1

G1
σ2 tr(Q−1C2)L− 1

2
[G1 − 2 − ξ]

}
hG1(ξ)

+O(n−3/2),

where HG1 and hG1 are the χ2 distribution function and χ2 density function with
G1 degrees of freedom, respectively , and L = K2 −G1.

The Cornish-Fisher type expansion gives the approximate percentile of the
distribution of l as a simple function of the χ2 percentile. The α percentile of l
is

uα +
uα
n

{
1

G1
tr(Q−1C2)σ

2L− 1

2
(G1 − 2 − uα)

}
,(3.7)

where uα is the α percentile of the χ2 distribution with G1 degrees of freedom.
The unknown parameters tr(Q−1C2) can be estimated by the consistent estima-
tor of Q and C2, which are

Q̂−1 = n

(
Y ′

2Z (Z ′Z )−1Z ′Y2 − λ̂Y ′
2P̄ZY2 Y ′

2Z1

Z ′
1Y2 Z ′

1Z1

)−1

(3.8)

and

Ĉ2 =


 1

σ̂2
Y ′

2P̄ZY2/q −
1

σ̂4
Y ′

2P̄ZY b̂b̂ ′Y ′P̄ZY2/q
2 0

0 0


 ,(3.9)

where we use the notations that σ̂2 = b̂ ′Y ′P̄ZY b̂/q and b̂ = (1,−β̂
′
LI)

′. We
propose a modified LR test (LRm1) using the critical value

uα +
uα
n

{
1

G1
tr(Q̂−1Ĉ2)σ̂

2L− 1

2
(G1 − 2 − uα)

}
,(3.10)

instead of uα.
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4. Large-Kn asymptotic approximation of the null distribution of the
LR statistic

In this section, we develop an alternative approximation using “large-Kn

asymptotics” in the case of non-normal disturbances. We consider the sequence
which allows the number of the (excluded) instruments (K2) to grow with the
number of observations (n). We assume that

n→ ∞,
K/n = c1 +O(n−1), (0 ≤ c1 < 1)(4.1)

K/q = c2 +O(n−1), (0 ≤ c2 <∞)

where we defined q = n−K.
Under the sequences (4.1), the next theorem follows. The derivation is pro-

vided in Appendix B.

Theorem 2. Assume that E[‖vi‖6] are bounded , and that there exists a
constant positive definite matrix Q = p limn→∞ n−1Q̃ such that Q = n−1Q̃ +
Op(n

−1). Then, under H0, under the sequences (4.1),

l
d→ 1

σ2
U ′QU ,(4.2)

where U ∼ N(0,Ψ), and

Ψ = σ2Q−1 + c1(1 + c2)Q
−1

[(
Ω22σ

2 0

0 0

)
− q2q

′
2σ

4

]
Q−1

+ Q−1[(Ξ3 + Ξ′
3) + ηΓ4]Q

−1.

The limit distribution can also be expressed as r1χ
2
1,1 + · · · + rpχ2

1,G1
, where the

χ2
1,js are independent χ2 variables with one degree of freedom and the weights
r1, . . . , rG1 are the G1 eigenvalues of QΨ/σ2. Here we have used the nota-

tions that Ξ3 = p limn→∞ D ′
2

1
n

∑n
i=1 zi[(1 + c2)a

(n)
ii − c2]E[u2

iw
′
2i], η = (1 +

c2)
2p limn→∞ 1

n

∑n
i=1 a

(n)2
ii − c22, a

(n)
ii = z ′

i (Z
′Z )−1zi, Γ4 = E(u2

iw2iw
′
2i) −

σ2E[w2iw
′
2i], and w2i = (v ′

2i 0′)′ − uiq2.

We can estimate the weights r1, . . . , rG1 using consistent estimators Q̂ and
Ψ̂. In the case of the normal disturbances, Ψ is identical to the Bekker (1994)
variance, and Q̂ and Ψ̂ can be defined by (3.8) and

Ψ̂ = σ̂2Q̂−1(4.3)

+
K

n
(1 + λ̂)Q̂−1

×
(

1
qY

′
2P̄ZY2σ̂

2 − 1
q2

Y ′
2P̄ZY b̂b̂ ′Y ′P̄ZY2 0

0 0

)
Q̂−1,

where σ̂2 = 1
q b̂

′Y ′P̄ZY b̂ and b̂ = (1,−β̂
′
LI)

′, respectively.
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In case of non-normality, Ψ has additional terms depending on the third and
fourth order moments of the disturbances, which makes it complicated. However,
Anderson et al. (2006) and Matsushita (2006) investigated the effects of these
terms and found that they have little effects even when the distributions of the
disturbances deviate from the normal. We also investigate the effects of the third
and fourth order moments using Monte Carlo experiments in the next section.

We call the LR test, of which the critical value is computed from the asymp-
totic null distribution derived in Theorem 2, the large-K LR test (LRlargeK).

5. Size comparison with the CLR statistic

5.1. The case of normal disturbances
We conduct size comparisons of the two types of modified LR tests, LRm1

and LRlargeK with the CLR test by Moreira (2003) and the large K t-test (Bekker
(1994), Matsushita (2006), for instance).

We considered models with two endogenous variables, i.e., G1 = 1. In this
case, the distributions of all the statistics considered here depend only on the
key parameters used by Anderson et al. (1982), which are K2, the number of
excluded exogenous variables; n−K, the number of degrees of freedom in Ω̂;

δ2 =
Π′

22A22.1Π22

ω22
,(5.1)

the noncentrality parameter associated with (2.1); and

α =
ω22β − ω21

|Ω|1/2 = − ρ

(1 − ρ2)1/2 ,(5.2)

where ρ is the correlation coefficient between u and v2. The numerator of the
noncentrality parameter δ2 represents the additional explanatory power due to
y2i over z1i in the structural equation, and its denominator is the error variance
of y2i. Hence, the noncentrality parameter δ2 determines how well the equation
is defined in the simultaneous equations system.

We generate a set of random numbers by using the two-equation system

y1 = y2β
(0) + Z1γ

(0) + u ,(5.3)

and

y2 = ZΠ
(0)
2 + V2,(5.4)

where K1 = 1, Z ∼ N(0, IK⊗In), (u ,V2) ∼ N(0,Σ⊗In), Σ =

(
1 ρ

ρ 1

)
, and the

true values of parameters β(0) = γ(0) = 0. We have controlled the values of δ2

by choosing a real value of c and setting (1 +K2) × 1 vector Π
(0)
2 = c(1, . . . , 1)′.

Tables 1–4 contain empirical sizes of the statistics at 10, 5, and 1% levels
for various values of δ2, K2, and α. The number of repetitions is 10,000 in each
experiment. We also use 5,000 realizations each of χ2(1) and χ2(K2 − 1) random
variables to simulate the critical values of Moreira’s CLR statistic.



LR TESTS WITH MANY INSTRUMENTS 215

Table 1. Empirical sizes of statistics that test H0 : β = β0 with n−K = 30, δ2/K2 = 5.

α = 0.3

LR LRm1 CLR tlargeK LRlargeK

K2 = 2 10% 12.7 10.8 11.5 5.6 8.1

5% 7.5 5.5 6.6 2.2 4.4

1% 1.8 1.0 1.4 0.3 0.5

K2 = 5 10% 14.5 11.6 12.3 7.5 9.8

5% 8.8 6.1 7.1 3.9 6.7

1% 2.4 1.3 1.7 0.7 1.3

K2 = 30 10% 18.2 14.3 14.5 10.6 11.2

5% 10.3 7.6 8.0 5.1 6.7

1% 3.8 2.4 2.6 1.1 1.4

Table 2. Empirical sizes of statistics that test H0 : β = β0 with n−K = 30, δ2/K2 = 5.

α = 1

LR LRm1 CLR tlargeK LRlargeK

K2 = 2 10% 12.2 10.7 11.3 9.0 9.1

5% 7.0 5.8 6.6 6.3 5.1

1% 1.8 1.2 1.5 2.3 1.1

K2 = 5 10% 13.0 11.0 11.5 8.9 10.7

5% 7.0 5.2 5.9 5.4 4.9

1% 1.9 1.0 1.4 2.0 1.3

K2 = 30 10% 15.3 13.0 13.3 10.9 10.7

5% 8.3 6.5 7.0 5.4 6.5

1% 2.7 1.8 2.0 1.3 1.5

Table 3. Empirical sizes of statistics that test H0 : β = β0 with n−K = 30, δ2/K2 = 1.

α = 0.3

LR LRm1 CLR tlargeK LRlargeK

K2 = 2 10% 20.0 14.5 14.4 1.9 10.1

5% 11.0 7.2 6.1 0.8 6.6

1% 3.6 1.8 2.1 0.1 1.8

K2 = 5 10% 27.1 17.3 16.0 4.5 13.1

5% 18.0 10.2 10.8 1.7 7.6

1% 6.2 2.9 2.1 0.2 2.9

K2 = 30 10% 36.1 22.5 22.5 9.0 14.0

5% 27.3 14.6 17.5 4.8 7.8

1% 16.9 7.2 6.5 1.3 2.6

From the tables, when δ2/K2 is larger than five, all tests have reliable size
properties. The LRm1 test improves upon the LR test, which is prone to reject
H0 more than it should, in all cases. When δ2/K2 is small, the size properties of
the LR test become quite poor. (Tables 3–4) The observed size of the LR test at
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Table 4. Empirical sizes of statistics that test H0 : β = β0 with n−K = 30, δ2/K2 = 1.

α = 1

LR LRm1 CLR tlargeK LRlargeK

K2 = 2 10% 18.1 13.5 11.4 9.9 9.8

5% 9.5 6.7 6.1 6.8 5.1

1% 2.7 1.5 1.9 2.4 1.8

K2 = 5 10% 20.3 13.7 11.7 10.4 10.3

5% 13.2 7.8 6.9 7.2 6.5

1% 4.9 2.1 2.3 3.2 2.0

K2 = 30 10% 25.8 17.1 19.2 9.3 10.4

5% 19.1 11.3 11.9 6.0 7.5

1% 9.1 4.3 3.8 2.7 2.2

Table 5. Empirical sizes of statistics that test H0 (The Cases of Non-normal Disturbances):

β = β0 with n−K = 30, δ2/K2 = 1.

ui = (χ2(3) − 3)/
√

6, α = 1

LR LRm1 CLR tlargeK LRlargeK

K2 = 2 10% 16.0 12.0 11.1 10.5 9.3

5% 9.1 6.7 6.6 7.0 5.2

1% 2.6 1.4 1.7 2.8 1.5

K2 = 5 10% 21.0 14.1 13.2 10.8 12.3

5% 13.7 8.3 7.7 7.5 7.2

1% 5.1 2.5 2.7 3.1 2.3

K2 = 30 10% 25.6 16.9 17.4 8.8 11.9

5% 18.2 10.7 11.3 5.9 7.2

1% 8.9 4.2 4.9 2.6 2.3

Table 6. Empirical sizes of statistics that test H0 (The Cases of Non-normal Disturbances):

β = β0 with n−K = 30, δ2/K2 = 1.

ui = t(3), α = 1

LR LRm1 CLR tlargeK LRlargeK

K2 = 2 10% 16.7 12.9 12.2 9.7 10.3

5% 10.0 7.2 6.9 6.5 5.5

1% 2.8 1.7 1.9 2.4 1.5

K2 = 5 10% 20.6 13.9 13.0 10.6 12.1

5% 13.5 8.2 7.7 7.1 6.8

1% 5.0 2.4 2.4 2.9 2.2

K2 = 30 10% 25.2 17.0 17.5 8.9 11.9

5% 18.1 10.8 11.4 5.6 6.8

1% 8.9 4.0 4.7 2.1 2.2
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the 5% asymptotic critical value can be over 20% when K2 is thirty, for instance.
One interesting finding is that the size properties of the CLR test is also poor
when the number of the instruments is large. Since the CLR test is known to be
robust to weak instruments and has good power properties, this finding seems to
have some importance. When the number of the instruments is small (less than
five), the LRm1 test and CLR test have reasonable size properties. However, as
the number of the instruments increases, the LRm1 test as well as the CLR is
size-distorted. The LRlargeK test has the best size properties when the number
of the instruments is larger than five, while it is size-distorted when the degrees
of overidentifiability is less than two.

5.2. The case of non-normal disturbances
Since the distributions of the LR statistics depend on the distributions of

the disturbances, we have investigated the effects of the non-normality of dis-
turbances. We calculated a large number of cases in which the distributions of
disturbances are skewed (χ2(3)) and have long tails (t(3)). We have chosen the
case of n −K = 30, α = 1, and δ2/K2 = 1 and reported the observed sizes at
the 10%, 5% and 1% asymptotic critical values of LR, LRm1, CLR, tlargeK and
LRlargeK in Tables 5 and 6. We calculated the critical values of the LRm1, tlargeK
and LRlargeK using the asymptotic variance assuming normal disturbances. From
these experiments, we see that size properties of all these statistics, which are
derived under the assumption of normal disturbances, are approximately valid
even if the distributions of disturbances deviate from normal.

6. Conclusions

In this paper, we have made two types of asymptotic approximations of
the distribution of the likelihood ratio statistics under the null hypothesis, and
propose modifications of the LR test. The Monte Carlo experiments show that,
when the instruments are weak, the size properties of the LR test become quite
poor, and the LRm1 test (based on the asymptotic expansion) improves upon
the LR test when the number of the instruments is small and δ2/K2 is more
than one. However, the LRm1 test can be size distorted when the number of the
instruments is large. One finding is that the size properties of the CLR test can
also be poor when the number of the instruments is large. The LRlargeK test
(based on large-Kn asymptotics) has the best size properties when the number
of the instruments is large and δ2/K2 is more than one.

Appendix A
Derivation of Theorem 1

We make use of the results of Kunitomo et al. (1983) and Morimune and
Tsukuda (1984). The variance ratio λ̂ defined by (2.12) is stochastically expanded
as

(n−K)λ̂ = λ̂(0) +
1√
n
λ̂(1) +

1

n
λ̂(2) +Op(n

−3/2),(A.1)



218 YUKITOSHI MATSUSHITA

where

λ̂(0) = u ′(PZ −PX)u/σ2,

λ̂(1) = − 1

σ2
{2u ′(PZ −PX)(V2,0)e(0) + u ′(PZ −PX)u(x− 2q ′

2e
(0))},

λ̂(2) =
1

σ2

{[
(V2,0)e(0) +

1√
n
Xe(1)

]′
(PZ −PZ1)

[
(V2,0)e(0) +

1√
n
Xe(1)

]

− 2u ′(PZ −PX)(V2,0)[e(1) − (x− 2q ′
2e

(0))e(0)]

+
1

σ2
u ′(PZ −PX)u

[
2(w12 − β′W22,0)e(0) − σ

2

3
(x2 − 2)

+ σ2(x− 2q ′
2e

(0))2 + 2σ2q ′
2e

(1) − σ2e(0)′(C1 + C2)e
(0)
]}
,

where

e(0) = Q−1X ′u/
√
n,

and

e(1) = Q−1{(V2,0)′(PZ −PX)u − u ′(PZ −PX)uq2 −X ′(V2,0)e(0)/
√
n},

defining w12 =
√
n[ 1

nv
′
1P̄ZV2 − ω12], W22 =

√
n[ 1

nV
′
2P̄ZV2 − Ω22], and x =

(1,−β′)
√
n[ 1

nVP̄ZV −Ω](1,−β′)′ which is distributed with mean zero and vari-
ance two.

Similarly λ0 defined by (2.11) is expanded as

(n−K)λ0 = λ
(0)
0 +

1√
n
λ

(1)
0 +

1

n
λ

(2)
0 +Op(n

−3/2),(A.2)

where

λ
(0)
0 = u ′(PZ −PZ1)u/σ

2,

λ
(1)
0 = − 1

σ2
[u ′(PZ −PZ1)ux],

and

λ
(2)
0 =

1

σ2

[
u ′(PZ −PZ1)u

{
−1

3
(x2 − 2) + x2

}]
.

Hence the test statistic is stochastically expanded as

l = l(0) +
1√
n
l(1) +

1

n
l(2) +Op(n

−3/2),(A.3)

where

l(0) ≡ v = λ
(0)
0 − λ̂(0) =

1

σ2
u ′(PX −PZ1)u ,

l(1) = λ
(1)
0 − λ̂(1)

=
1

σ2
{2u ′(PZ −PX)(V2,0)e(0) − u ′(PX −PZ1)ux

− 2u ′(PZ −PX)uq ′
2e

(0)},
and
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l(2) = λ
(2)
0 − λ̂(2)

=
1

σ2

{
−
[
(V2,0)e(0) +

1√
n
Xe(1)

]′
(PZ −PZ1)

[
(V2,0)e(0) +

1√
n
Xe(1)

]

+ 2u ′(PZ −PX)(V2,0)[e(1) − (x− 2q ′
2e

(0))e(0)]

− 1

σ2
u ′(PZ −PX)u [2(w12 − β′W22,0)e(0)

− 4σ2q ′
2e

(0)x+ 2σ2q ′
2e

(1) − σ2e(0)′(C1 + C2)e
(0)]

+ u ′(PX −PZ1)u

[
−1

3
(x2 − 2) + x2

]}
.

We shall derive an asymptotic expansion of the distribution of l by inverting
the characteristic function of l up to order n−1:

C(t) = E(exp(itv)) +
1√
n
E(itE(l(1) | v) exp(itv))(A.4)

+
1

n
E(itE(l(2) | v) exp(itv))

+
1

2n
E(i2tE(l(1)

2 | v) exp(itv)) +O(−n−3/2).

Validity of the method can be given following the same method used by Kunitomo
et al. (1983). To calculate the conditional expectations given the first order term
v, we use the following formula which was developed by Morimune and Tsukuda
(1984):

E(e(0)′Cje
(0) | v) =

v

G1
σ2 tr(Q−1Cj), j = 1, 2,(A.5)

where C1 and C2 are defined by (3.2) and (3.3) respectively.
Then we have the conditional expectations given the first order term v as

follows:

E(l(1) | v) = 0,(A.6)

E(l(2) | v) = 2v + tr(Q−1C2σ
2)L,(A.7)

E(l(1)
2 | v) = 4 tr(Q−1C2σ

2)L+ 2v2.(A.8)

The probablity P (l ≤ ξ) is approximated to the order n−1 by the Fourier inverse
transformation of the characteristic function (A.4). The inverse transformation
of the first term is GG1(ξ) which is the χ2 cdf function withG1 degrees of freedom.
We also use the next Fourier Inversion formula which was developed by Kunitomo
et al. (1983): ∫ ξ

x=0

1

2π

∫
t
(−it)p exp(−itx)E[exp(itv)vj ]dtdx(A.9)

=
2jΓ

(
G1

2
+ j

)

Γ

(
G1

2

) · g(p−1)
G1+2j(ξ),
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where i =
√
−1, j is any integer (G1 + 2j > 0), and g

(p−1)
G1+2j(ξ) is the (p − 1)-th

order derivative of gG1+2j , which is the χ2 density function with G1 + 2j degrees
of freedom. Theorem 1 follows after simplifications.

Appendix B
Derivation of Theorem 2

The variance ratio (2.12) is exactly rewritten as

λ̂ =

{
u − 1√

n
[ZD2 + (V2,0)]ê

}′
PZ

{
u − 1√

n
[ZD2 + (V2,0)]ê

}
{
u − 1√

n
(V2,0)ê

}′
P̄Z

{
u − 1√

n
(V2,0)ê

}(B.1)

where

ê =
√
n

(
β̂LI − β

γ̂LI − γ

)

and

D = (D1 D2) =

((
π11

π21

) (
Π12 IK1

Π22 0

))
.

The large-Kn asymptotics of ê is expanded in terms of n−1/2 as

ê = e(0) +
1√
n
e(1) +Op(n

−1).(B.2)

The terms of e(0) and e(1) are given in Matsushita (2006) as

e(0) = Q−1

[
1√
n
D ′

2Z
′u +

√
c1√
K

W ′
2PZu −

√
c1c2√
q

W ′
2P̄Zu

]
,(B.3)

e(1) = −Q−1

[{
1√
n
D ′

2Z
′(V2 0) +

√
c1√
K

W ′
2PZ(V2 0)(B.4)

−√
c1c2

1√
q
W ′

2P̄Z(V2 0)

}
e(0) +

1√
n
W ′

2ZD2e
(0)

− n
q
λ(1)

[(
Ω22 0

0 0

)
− q2q

′
2σ

2

]
e(0)

+

√
n

q
λ(1) 1√

q
W ′

2P̄Zu

]
.

We first make the large-Kn stochastic expansion of the variance ratio (2.12).
Substituting (B.2) into (B.1), the numerator of the variance ratio devided by K
becomes

σ2 +
1√
n

{√
n

K

√
K

(
1

K
u ′PZu − σ2

)
− 2(b ′

0Ω,0)J2e
(0)
}

(B.5)
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+
1

n

{
−2

√
n

K

√
K

[
1

K
b ′

0V
′PZ(V2,0) − (b ′

0Ω,0)J2

]
e(0)

− 2
n

K

1√
n
u ′ZD2e

(0) +
n

K
e(0)′ 1

n
D ′

2Z
′ZD2e

(0)

+ e(0)′
(

Ω 0

0 0

)
e(0) − 2(b ′

0Ω,0)J2e
(1)

}

to terms of Op(n
−1). The denominator devided by q(= n−K) becomes

σ2 +
1√
n

{√
n

q

√
q

(
1

q
u ′P̄Zu − σ2

)
− 2(b ′

0Ω,0)J2e
(0)
}

(B.6)

+
1

n

{
−2

√
n

q

√
q

[
1

q
b ′

0V
′P̄Z(V2,0) − (b ′

0Ω,0)J2

]
e(0)

− 2
n

K

1√
n
u ′ZD2e

(0) +
n

K
e(0)′ 1

n
D ′

2Z
′ZD2e

(0)

+ e(0)′
(

Ω 0

0 0

)
e(0) − 2(b ′

0Ω,0)J2e
(1)

}

to terms of Op(n
−1).

Multiplying Taylor’s expansion of the inverse of (B.6) to (B.5) it follows the
large-Kn stochastic expansion of the variance ratio (2.12):

λ̂ = λ̂(0) +
1√
n
λ̂(1) +

1

n
λ̂(2) +Op(n

−3/2),(B.7)

where

λ̂(0) = c2,

λ̂(1) =
c2
σ2

{√
n

K

(
1√
K

u ′PZu

)
−
√
n

q

(
1√
q
u ′P̄Zu

)}
,

λ̂(2) =
c2
σ2

{
− n
K

e(0)′Qe(0)

−
√
n

q

1

σ2

[√
n

K

(
1√
K

u ′PZu

)
−
√
n

q

(
1√
q
u ′P̄Zu

)]

×
[√
q

(
1

q
u ′P̄Zu − σ2

)]}
.

Similarly λ0 defined by (2.11) is expanded as

λ0 = λ
(0)
0 +

1√
n
λ

(1)
0 +

1

n
λ

(2)
0 +Op(n

−3/2),(B.8)

where

λ
(0)
0 = c2,
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λ
(1)
0 =

c2
σ2

{√
n

K

(
1√
K

u ′PZu

)
−
√
n

q

(
1√
q
u ′P̄Zu

)}
,

λ
(2)
0 = − c2

σ4

√
n

q

[√
n

K

(
1√
K

u ′PZu

)
−
√
n

q

(
1√
q
u ′P̄Zu

)]

×
[√
q

(
1

q
u ′P̄Zu − σ2

)]
.

Hence we have the relation that

l =
n−K
n

(λ
(2)
0 − λ̂(2)) =

1

σ2
e(0)′Qe(0) + op(1).(B.9)

Anderson et al. (2006) show that

e(0) d→ N(0,Ψ).(B.10)

Then we have the desired result.
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