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CONTRIBUTIONS OF PROFESSOR HIROTUGU
AKAIKE IN STATISTICAL SCIENCE

Genshiro Kitagawa*

Prof. Akaike made significant contributions in various fields of statistical science,
in particular, in time series analysis in frequency domain and time domain, informa-
tion criterion and Bayes modeling. In this article, his research contributions are
described in order of launching period, frequency time domain analysis, time domain
time series modeling, AIC and statistical modeling, and Bayes modeling.
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1. Introduction

Professor Hirotugu Akaike was awarded the 2006 Kyoto Prize for “his major
contribution to statistical science and modeling with the Akaike Information
Criterion (AIC)”. In 1973, he proposed the AIC as a natural extension of the
log-likelihood. The most natural way of applying the AIC is to use it as the model
selection or order selection criterion. In the MAICE (minimum AIC estimation)
procedure, the model with the minimum value of the AIC is selected as the
best one among many possible models. This provided a versatile procedure for
statistical modeling that is free from the ambiguities inherent in application of
the hypothesis test procedure.

However, the impact of the AIC is not limited to the realization of an au-
tomatic model selection procedure, and it eventually led to a paradigm shift in
statistical science. In conventional statistical inference, the theories of estimation
and test are developed under the assumption of the presence of a true model.
However, in statistical modeling, the model should be constructed based on the
entire knowledge such as the established theory, empirical facts, current obser-
vations and even the objective of the analysis. Prof. Akaike gave a practical
answer to the selection of the prior distribution of the Bayes model. Due to the
development of information technologies, we can now access to huge amounts of
data in various fields of science and social life. In this information and knowledge
society, the Bayes model is becoming a key technology.

In this article, we shall look back at his research in five stages, namely, the
launching period, frequency domain time series analysis, time series modeling,
AIC and statistical modeling and Bayes modeling (Parzen et al. (1998)). It
should be noted here that the reader will notice that his research was always
performed based on the needs of researchers in the real-world.
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2. Launching period: Making contacts with engineers

In 1952, Professor Akaike graduated from the Department of Mathematics,
The University of Tokyo and became a researcher at the Institute of Statisti-
cal Mathematics. During the 1950’s, he published several theoretical papers
related to decision processes, evaluation of probability distributions, computa-
tion of eigenvalues, and the Monte Carlo method for solving linear equations.
Among these works, the most famous one is the convergence analysis of the opti-
mum gradient method (Akaike (1959a)). In this paper, he analyzed the limiting
behavior of a probability distribution when a type of transformation was repeat-
edly applied to an initial distribution, and showed the convergence property of
the optimum gradient method. This result became a foundation in the develop-
ment of more sophisticated nonlinear optimization methods and is introduced in
a standard textbook of nonlinear optimization methods (Kowarik and Osborne
(1968)).

During this launching period, however, he was rather interested in real-world
problems and tried to develop substantial contacts with engineers in various fields
of industries. Through these contacts, he realized that the conventional data
analysis methods often are not able to yield interesting results for real-world
problems, and that we should develop a model that fully takes into account the
structure of the process. In the analysis of traffic density on a road, he considered
a zero-one process and, under the assumption of the independence of the lengths
of time intervals between cars, he derived the gap process for the structure of
the series (Akaike (1956)). Then, in collaboration with Dr. Shimazaki of the
Sericultural Experiment Station, Ministry of Agriculture, he developed a control
method for silk filature production processes, based on gap process modeling
(Akaike (1959b)). This method provided a reference process that could be used
for the detection of abnormalities in the actual reeling process. By extending
this method, Dr. Shimazaki brought significant innovation to the method of silk
production in Japan.

It should be emphasized here that from a very early stage in the 1950’s, he
realized the importance and necessity of modeling the structure of an object.

3. Frequency domain time series analysis

In the early 1960’s, however, he suddenly changed his research policy. Dur-
ing his communications with industrial engineers, he became to understand that
linear stationary models were used frequently and that they had a very wide
range of applications. Further, he noticed that there were many unsolved impor-
tant problems that statisticians should contribute to. He therefore, changed his
mind and tried to develop practical analysis methods based on linear stationary
models. Through collaboration with Dr. Kaneshige of the Isuzu Motor Company,
he learned the Blackman-Tukey method, and realized that a practical method
of spectrum estimation can be developed by using a smoothing method. In this
area of spectrum smoothing, he proposed a spectral window with negative co-
efficients so that the peak of the spectrum is not reduced significantly (Akaike
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(1962)). He suggested comparing the results of smoothing by positive windows
and non-positive windows.

Then, by the cooperative research with Dr. Yamanouchi of the Transporta-
tion Technical Research Institute, he developed a practical method of estimating
the frequency response function by solving the problem of phase-shift by shifting
the time axis of the cross-covariance function (Akaike and Yamanouchi (1962)).
This method made it possible to estimate the frequency response function from
observations under normal steering without using sinusoidal inputs to systems
with various frequencies. He then organized a workshop and tried to apply the
method to various areas of engineering such as, vibrations, engines of cars, the
roll of a ship, the response of an airplane to cross winds, hydroelectric power
plants, underground structures based on micro-tremors, tsunamis, the back rush
of a nonlinear system, etc. The outcome of the workshop was reported in the
supplement of AISM (Annals of the Institute of Statistical Mathematics) (Akaike
(1964)).

However, during the joint work with these engineers, an important problem
that cannot be solved by the conventional spectral analysis arose. Namely, most
of the systems in the real-world such as ships, cars, airplanes, chemical plants,
and economics contain some kind of feedback. In these feedback systems, an
output from a subsystem A becomes an input to another subsystem B, and the
output of the subsystem B becomes an input to the subsystem A. Then it is quite
difficult to identify the real cause of the fluctuation in the feedback system. In
particular, it cannot be solved by the conventional frequency domain approach,
since in the frequency domain analysis; we cannot explicitly utilize the physical
realisability of the system that imperatively exists in the real world physical
system. In Akaike (1967), he pointed out this difficulty and the limitation of the
frequency domain analysis.

4. Time domain time series modeling

At this opportunity, he returned to the time domain analysis. At that time,
Chichibu Cement Company was preparing to apply optimal control theory to
the control of a rotary kiln in a cement plant instead of the conventional PID
controller. Conventional spectral analysis methods were useless for the analysis
of a typical feedback system consisting of the raw material feed, fuel feed, gas
damper angle, and temperature at various locations, etc. As stated in the previ-
ous section, this is because in the spectral analysis, we cannot properly take into
account the restrictions necessary for physical realisability.

However, if we introduce a structural model that expresses the relation be-
tween variables yn1, . . . , yn� with feedback,

yni =
∑
j �=i

m∑
k=1

αkijyn−k,j + εni,(4.1)

where m is the maximum time lag and εni is a Gaussian white noise, then it is
possible to perform causal analysis of a feedback system. Akaike (1968) used the
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fact that the above structural model for a feedback system can be expressed in
a multivariate autoregressive model,

yn =
m∑
j=1

Ajyn−j + wn,(4.2)

where yn = (yn1, . . . , yn�)
T , wn = (εn1, . . . , εn�)

T and Aj is an � × � AR coef-
ficient matrix, therefore the above structural model can be estimated from the
time series data. In the paper, based on the identified model and the relation
between the multivariate autoregressive model and the cross spectrum, the power
contribution was defined by

rij(f) =
|bij |2σ2

j

pii(f)
,(4.3)

where pii(f) is the power spectrum of the channel i at frequency f obtained by

Pii(f) =
�∑

j=1

|bij |2σ2
j ,(4.4)

and B(f) = (bjk) = (
∑m

j=1 aj(j, k) exp(−2πijf))−1. The power contribution
rij(f) expresses the proportion of the contribution of noise of the variable yj in
the power of the fluctuation of the variable yi at frequency f in the feedback
system. This method was used to analyze not only the cement rotary kiln, but
also in the analysis of nuclear and thermal power plants, living bodies, economic
and financial systems, etc. (Akaike and Nakagawa (1988), Akaike and Kitagawa
(1998)).

Thus, by the use of a multivariate autoregressive model, the analysis of
feedback systems became practical. However, there was a difficulty with this
method. It is not so difficult to estimate the parameters of a given autoregressive
model. However, if we use an autoregressive model with different order, we
will have quite different results in prediction or in the analysis. Therefore, if
we do not have a reasonable and practical procedure to determine the order of
autoregression, the method of analysis of a feedback system through the use of
a time series model will not become practical.

To solve the problem, Akaike (1969a) proposed a predictive point of view.
In conventional statistical analysis, we aim at reproducing the “true” structure
as precisely as possible. On the other hand, he considered the situation where
we use the estimated AR model for the prediction of future values that will be
generated from the same structure as the one used for the estimation of the
model. There was a significant difference between the modeling for the purpose
of the estimation of the true structure and for the prediction of future values,
and the introduction of the predictive points of view had a strong impact on
statistical modeling thereafter.
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In the simplest case of a univariate autoregressive model,

yn =
m∑
j=1

ajyn−j + εn,(4.5)

where m is the order and εn is a Gaussian white noise with mean 0 and variance
σ2, based on the predictive point of view, Akaike (1969a) proposed the final
prediction error (FPE) criterion

FPEm =
n+m+ 1

n−m− 1
σ̂2
m,(4.6)

where n and m are the data length and the order of autoregression, respec-
tively, and σ̂2

m is the least squares estimate of the innovation variance of the
autoregressive model with order m. With this criterion, the best model can be
automatically determined by selecting the order that attains the smallest value
of FPE. Since the power spectrum of the autoregressive model is given by

p(f) =
σ̂2

|1 −∑m
j=1 âj exp(−2πijf)|2 ,(4.7)

where âj and σ̂2
m are the estimated AR coefficient and innovation variance, re-

spectively, an estimate of the power spectrum is automatically obtained by fit-
ting an AR model (Akaike (1969b)). This AR method of spectrum estimation is
equivalent to the MEM spectrum proposed by Burg (1968).

A multivariate version of FPE, MFPE, was also developed. However, the way
of expressing the accuracy of the multivariate time series in a scalar criterion is
not unique. The MFPE proposed in Akaike (1970) uses det Σ̂, where Σ̂ is the
determinant of the estimated variance-covariance matrix of the innovation. It is
equivalent to use the likelihood function for the estimation of the parameters of
the model.

As an important application of the multivariate AR model, Akaike (1971)
proposed a statistical method of optimal control. Optimal control theory was
established in the early 1960’s. However, there was difficulty in applying it to
large-scale complex systems or a system with large noise disturbances, since for
such systems, it was difficult to derive the system model that expressed the
dynamic behavior of the system. The difficulty in obtaining the system model
was the bottleneck in applying optimal control theory in real-world problems.
The statistical control method advocated by Prof. Akaike solved this problem
by using the state-space representation of the multivariate autoregressive model.
This method was first applied to the optimal control of a cement rotary kiln
(Otomo et al. (1972)). In ship controlling, Otsu et al. (1979) applied the method
for designing an autopilot system for improved course keeping navigation. Later,
Mitsui Ship Building Company developed an autopilot system that reduces the
rolling of ships in addition to keeping the course. This was anticipated by a
power contribution analysis of the ship’s motion, determining that there is a
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significant contribution from rudder motion to rolling motion. This indicated
that inappropriate rudder movements caused or at least enhanced rolling motion,
but at the same time it also suggested the possibility of controlling and reducing
the rolling motion by a proper steering motion. The success of roll-reduction
control on ships demonstrates the usefulness of the power contribution analysis
in a feedback system. The statistical control method was also applied to the
computer control of electric power plants and it was reported that a significant
improvement of the control ability was obtained by this method (Nakamura and
Akaike (1981)). This controller has been installed in many real electric power
plants, not only in Japan, but also in other countries (Nakamura and Akaike
(1998)).

The ARMA model became famous, in particular in the econometric area, by
the book by Box and Jenkins (1970). However, in that book, a complex method
of computing the approximate likelihood was used. In Akaike (1973b), the max-
imum likelihood method of estimating the parameters of the ARMA model was
given. Further, Akaike (1974b) shows a method of determining the ARMA order
and initial estimates of the ARMA coefficients based on the Markovian repre-
sentation of the model. Akaike (1978d) developed a method of computing the
variance covariance matrix of the initial state of the ARMA model that enables
the computation of the exact likelihood by the Kalman filter. This state space
representation became a clue to the systematic use of state space models in time
series analysis, such as in the treatment of missing observations (Jones (1980))
and nonstationary time series (Kitagawa and Gersch (1996)).

Prof. Akaike recognized the importance of software and developed a series
of time series program packages, TIMSAC (Time Series Analysis and Control).
Original TIMSAC was published in 1972 as an appendix of the monograph,
Akaike and Nakagawa (1988), and contains the FORTRAN programs for the
fitting of, and analysis by the AR model. For identification of the AR model,
the Yule-Walker method and FPE criterion are used. TIMSAC-74 contains pro-
grams related to the ARMA model and locally stationary AR model (Akaike et
al. (1975)). TIMSAC-78 contains programs for fitting AR models by the House-
holder transformation (Akaike et al. (1979)). TIMSAC-84 contains programs for
Bayesian analysis of nonstationary time series.

5. AIC and statistical modeling

In the 1960’s the order selection criterion for autoregressive models, FPE,
was proposed based on the predictive point of view. However, to obtain a general
model evaluation criterion, we need one more leap. In 1971, Prof. Akaike was
aware of the similarity between the MFPE and a criterion for the factor analysis
model. However, in factor analysis, it was hard to define the predicted value and
the prediction error. He finally realized that, in general, the problem of prediction
should be considered by the predictive distribution rather than the predicted
values themselves. He also found that the log-likelihood can be considered as an
estimate of the Boltzmann’s entropy and thus as a measure of the goodness of



CONTRIBUTIONS OF PROF. AKAIKE IN STATISTICAL SCIENCE 125

the predictive distribution (Akaike (1973a), Sakamoto et al. (1986), and Konishi
and Kitagawa (1996, 2007)). Based on the above considerations, namely, from
the following three:

(i) Predictive point of view,
(ii) Prediction by a distribution,
(iii) Evaluation by entropy (or Kullback-Leibler information),
he showed that the log-likelihood is a natural estimate of the expected log-
likelihood and, in some sense, that of the K-L information, and therefore can
be considered as a measure of goodness of the predictive distribution specified by
the assumed model. This clearly reveals the meaning of the maximum likelihood
method. He further showed that if we evaluate the model whose parameters
are estimated by the maximum likelihood method, then the log-likelihood has a
positive bias as an estimator of the expected log-likelihood. By compensating for
this bias, he derived the Akaike information criterion (AIC)

AIC = −2(maximum log-likelihood) + 2(number of parameters)(5.1)

= −2 log f(x | θ̂) + 2k,

where θ̂ is the maximum likelihood estimate of the parameter vector of the model
and k is the number of free parameters or the dimension of the parameter vector.
Introduction of the information criterion, AIC, makes it possible to select the or-
der or model in statistical modeling almost automatically, and is used in various
fields such as engineering, earth and space sciences, economics, finance, manage-
ment science, psychology, life science, computer science and information science.
Actually the impact of the AIC is very strong and extensively spread (Sakamoto
et al. (1986), Bozdogan (1994), Akaike and Kitagawa (1998) and Konishi and
Kitagawa (2007)), and the year-by-year number of papers citing the two papers
advocating the AIC, Akaike (1973a, 1974a), is increasing very rapidly, even after
30 year from their publication. According to the ISI (Thomson) database, the
total number of papers citing the above two papers exceed 9000, and in 2006 it
was over 10,000, that is an amazing record in the statistical science area.

The AIC criterion had much controversy, in particular, on the consistency of
the order of the model. Most of the arguments were based on the misunderstand-
ing of the objective of the modeling posed by Prof. Akaike. According to him,
the objective of statistical modeling is to obtain a “good” model for prediction
and not to obtain the “true” model. In this context, the consistency is irrelevant,
in various senses (Konishi and Kitagawa (2007)). First, the “true” model does
not directly relates to the “best” model. Namely, in order selection, for finite
samples, the best order may be smaller than the true order, if it exists. Second, if
the consistency of the parameters holds, even if the selected order may be larger
than the true one, the estimated model becomes consistent. Third, in statisti-
cal modeling, the model is built by using various information about the object,
past data, and objective of the analysis. In that sense, it is hard to assume the
presence of the “true” model and what can assume to exist in the data.

As predicted by Prof. Akaike, various information criteria such as BIC, TIC,
c-AIC, RIC, GIC, EIC, are proposed (Konishi and Kitagawa (2007)). It should
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be noted that, Akaike (1977b) proposed the BIC criterion that is similar to the
one proposed later by Schwarz (1978) and is known to have a consistency of
order.

6. Bayes modeling

After the proposal of the information criterion, AIC, Prof. Akaike moved
to Bayes modeling. In Akaike (1977a, 1978a, b, c, 1979), given the data Y =
{y1, . . . , yn} and the candidate models M1, . . . ,M�, he defined the likelihood of
the model Mj by exp(−AICj/2), and the “posterior probability” of the order by

p(Mj | Y ) =
exp(−AICj/2)∑�
i=1 exp(−AICi/2)

.(6.1)

Then given a properly defined prior probability of the order, πj , a Bayes estimate
of the model is obtained by

p(x | Y ) =
�∑

j=1

pj(x | θ̂j)p(Mj | Y ).(6.2)

This type of averaging was done to mitigate the instability intrinsic to the model
selection procedure.

However, in the development of the seasonal adjustment method, Akaike
(1980a, b) proposed an innovative method of Bayesian modeling. In the stan-
dard additive type seasonal adjustment, the observed seasonal time series yn is
decomposed as

yn = Tn + Sn + εn,(6.3)

where Tn, Sn and εn are the trend, seasonal and irregular components, respec-
tively. In the conventional methods, these components are estimated by either an
empirical method or by assuming some parametric models such as a polynomial
function for the trend component or a trigonometric function for the seasonal
component.

On the other hand, in Akaike (1980b), Tn and Sn are considered parameters
of the model. Obviously, it is not possible to obtain meaningful estimates of Tn
and Sn by the ordinary least squares method or the maximum likelihood method,
since the number of estimated parameters are, at least, 2n, namely 2 times the
number of observations. In the paper, he had to resort to the penalized least
squares method that minimizes the criterion

n∑
i=1

[(yi − Ti − Si)
2 + d2(Ti − 2Ti−1 + Ti−2)

2(6.4)

+ r2(Si − Si−12)
2 + z2(Si + · · · + Si−11)

2],

where, d, r and z are properly chosen constants. This type of penalized least
squares method, or the penalized maximum likelihood method, have been used
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in Whittaker (1923) and Good and Gaskins (1980). However, the selection of the
crucial parameters d, r and z are left to the discretion of the analysts. Akaike
(1979, 1980a) showed a Bayesian interpretation of the above criterion. Namely,
by putting y = (y1, . . . , yn)T , a = (T1, . . . , Tn, S1, . . . , Sn)T , the above criterion
can be expressed as

‖y −Ha‖2 + λ2‖Da‖2,(6.5)

where ‖ · ‖ is a properly defined norm of a vector. Then by multiplying −1/2σ2

and taking the exponential, we obtain

exp

{
−‖y −Ha‖2

2σ2

}
× exp

{
−λ2‖Da‖2

2σ2

}
.(6.6)

Since these two terms can be considered the principal part of the normal densities,
they can be interpreted as the data distribution and the prior distribution of a
Bayesian model, respectively. Based on this interpretation, Bayesian information
criterion (ABIC) was defined by (Akaike (1980a))

ABIC = −2(maximum log likelihood of a Bayesian model)(6.7)

+ 2(number of estimated hyper-parameters).

This provides us with a practical method of determining the prior distribu-
tion of the Bayes model. There have been two difficulties in developing practical
Bayes procedures, namely the selection of the prior distribution and the compu-
tation of the posterior distribution. Due to the development of fast computers
and various computational methods such as MCMC and sequential Monte Carlo
methods, Bayes modeling became practical and the key technology in various
fields of scientific research and intellectual information processing. As impor-
tant applications of this Bayes modeling, we may consider the seasonal adjust-
ment method (Akaike and Ishiguro (1980), Kitagawa and Gersch (1984)), time-
varying spectrum estimation (Kitagawa (1983)), tidal data analysis (Ishiguro et
al. (1983)), factor analysis (Akaike (1987)), cohort analysis (Nakamura (1986)),
seismic data analysis (Kitagawa and Takanami (1985), Kitagawa and Matsumoto
(1996)), data assimilation (Fukuda et al. (2004)), etc. Some other applications
can be seen in Akaike and Kitagawa (1998) and Higuchi (2007).

After retirement from the Institute of Statistical Mathematics in 1994, where
he acted as the Director-General for 8 years, he concentrated on the analysis of
golf swing motion (Akaike (2001, 2003)) as an example of statistical thinking. In
Akaike (2001), he claimed that there are three types of informational data sets
composed of objective knowledge, empirical findings, and observational data, and
that we should fully utilize these in building statistical models.
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